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Abstract

We derive a novel method for addressing half-plane contact problems by using distributions of climb
dislocations over the contact patch to balance the relative overlapping profile of the contacting bodies.
Using this technique, we are able to forgo inverting a singular integral equation, simplifying the analy-
sis. We illustrate the method by deriving the associated contact pressures, external forces and applied
moments for several examples of both symmetric and non-symmetric indenters.

1 Introduction
The standard way to solve contact problems is to write down a formulation based on the surface displacements
caused by a unit normal force applied to the surface, and then to use this as a Green’s function so that the
bodies may be made to conform over a region (the contact patch) while the contact pressure is in equilibrium
with the external normal load [1]. If the contact initially conforms, for example in the case of a complete
contact, an alternative strategy is to start with a domain which is the combination of the two bodies, and
to analyse the internal state of stress subject to the applied loads as if the interface was continuous and
everywhere adhered. If both (a) the direct traction across the interface line is everywhere negative, and (b)
the ratio of the magnitude of the shear to direct traction is everywhere less than the coefficient of friction
then the solution already found is, indeed, correct. However, if there are local regions of violations of these
conditions - for example if there are regions where the traction ratio exceeds the coefficient of friction, then
by using the solution of a glide edge dislocation in the combined bodies it is easy to insert extra tangential
displacements to represent the effects of slip and to restore the Coulomb (for example) friction condition.
Equally, if there are also regions of interfacial tension, climb edge dislocations may be inserted to relieve the
tension and permit separation. One property of an edge dislocation in plane form is that it is Volterra in
character and so one does not need to be worried about the line of the path cut which was used to form it:
it may always be assumed to lie along the contact interface.

Here a form of this idea is applied to incomplete contacts. We assume that the contacting bodies are
sufficiently large to be approximated by half planes, and that they are made from the same material so that
the effects of direct and shear loading are uncoupled. We solve the normal contact problem alone (we have
recently looked at the corresponding tangential loading/slip problem [2, 3]). Suppose that we bring together
the two half-planes and bond them over a region [−b a], which will become the contact patch. We now
insert climb dislocations within that interval whose Burgers vectors sum to form the profile of the bodies
actually brought into contact but are of opposite sign. Provided that there are no regions of tension within
the putative contact, nor regions of interpenetration external to it (that is, the Signorini conditions hold),
we will have solved the contact problem correctly.
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2 Dislocation solution
Two elastically similar half-planes (y > 0 and y < 0), each having plane strain elastic modulus E∗, are
bonded together over the interval [−b, a], where a, b > 0. In the absence of deformation, there is a small
overlap between the two bodies denoted by h(x) = h1(x)− h2(x) where a subscript 1 denotes the front face
profile of the upper body and a subscript 2 corresponds to the lower body.

Deformation of the contacting bodies induces a relative normal surface displacement, v(x) = v1(x)−v2(x)
that must satisfy

v′(x) + h′(x) = 0 for − b < x < a.

The interfacial pressure needed to achieve intimate contact, p (x), is given by

dv

dx
=

2

πE∗
−
ˆ a

−b

p (ξ) dξ

ξ − x , (1)

for −b < x < a. As the extent of contact is determined by the Signorini inequalities, a ‘bounded-both-ends’
solution is needed to this equation. It is given by

p (x) = −E
∗√(a− x)(x+ b)

2π
−
ˆ a

−b

v′(ξ)dξ√
(a− ξ)(ξ + b) (ξ − x)

, (2)

where the consistency condition from the inversion is

0 =

ˆ a

−b

v′(ξ)√
(a− ξ)(ξ + b)

dξ. (3)

Now let us suppose that the surface irregularity is simply an edge dislocation of magnitude by and located
at point c ∈ (−b, a) so that v′(x) = −by(c)δ(x− c) where δ (·) is Dirac’s delta function. The contact pressure
developed by such a dislocation is therefore given by

p (x) =
E∗
√

(a− x)(x+ b)

2π
−
ˆ a

−b

by(c)δ (ξ − c) dξ√
(a− ξ)(ξ + b) (ξ − x)

=
E∗by (c)

2π (c− x)

√
(a− x)(x+ b)

(a− c)(c+ b)
.

Thus, if we represent the overlap h′(x) as a distribution of these dislocations of density By (x) = dby/dx, we
produce a contact pressure distribution given by

p (x) =
E∗
√

(a− x)(x+ b)

2π
−
ˆ a

−b

By (ξ) dξ√
(a− ξ)(ξ + b) (ξ − x)

.

3 Symmetric contact problems
Firstly, we shall restrict ourselves to symmetric problems in which a = b. We note that, for a symmetric
problem, the consistency condition (3) is trivially satisfied since h′(ξ) and hence v′(ξ) are odd functions.
Therefore, in order to determine the contact half-width, a, we must specify equilibrium between the normal
force and the contact pressure.

3.1 Example – Hertzian contact
As an example of a familiar problem, consider the contact of two cylinders of relative radius of curvature R.
The amount of material which overlaps in the contact, h (x), is given by

x2 = −h2 + 2Rh ' 2Rh, h� R

and thus
dh

dx
' x

R
.
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The contact pressure distribution is therefore given by

p (x) =
E∗
√
a2 − x2

2πR
−
ˆ a

−a

ξdξ√
a2 − ξ2 (ξ − x)

=
E∗
√
a2 − x2
2R

. (4)

For equilibrium with an external force, P , we must have

P =
E∗

2R

ˆ a

−a

√
a2 − x2dx =

E∗πa2

4R
, (5)

so that we may write the solution in the conventional form (see Barber [1])

p(x) =
2P

πa2

√
a2 − x2.

3.2 More general symmetric contacts
Suppose we write down the relative overlapping profiles of the contacting bodies as a power series polynomial,
so the slope at any point may also be written down in the form

dh

dx
=
∑

m

A2m+1x
2m+1, (6)

where we only seek odd terms in the gradient profile as the punch is symmetric. There seems no reason why
we should not be able to use such a general profile form, subject to the Signorini conditions on the solution,
which may only be checked a posteriori. We also reiterate that the solution (2)–(3) is completely general:
we are not restricted to indenters of the form (6). We have chosen this form for purely illustrative purposes.

We are interested in the contact pressure distribution together with the normal force, calculated by the
integral of the contact pressure over the contact patch (cf. (5)). In order to calculate these quantities, we
must consider principal value integrals of the form

In = −
ˆ a

−a

ξndξ√
a2 − ξ2 (ξ − x)

. (7)

We can evaluate these integrals by contour integration and present the details in appendix A. Since for
symmetric problems n = 2m+ 1 is odd, we find

I2m+1 = π

m∑

l=0

x2la2(m−l)(−1)m−l
( − 1

2

m− l

)
. (8)

3.2.1 Normal force

In order to calculate the contact half-width a, we must ensure that the total contact pressure is in equilibrium
with the applied normal force P , so that

P =

ˆ a

−a
p(x)dx.

For a general indenter of the form (6), such an expression must be solved numerically for a. However, we
can explicitly calculate the contribution of each term of the series, which we present here.

The contact pressure associated with the term A2m+1x
2m+1 is found to be

p2m+1(x) =
A2m+1E

∗

2

√
a2 − x2

m∑

l=0

x2la2(m−l)(−1)m−l
( − 1

2

m− l

)
, (9)
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for m ∈ N. In practice, we will only be interested in relatively small values of 2m+ 1, so it is informative to
present these explicitly. Upon calculating the coefficients in (9) we find

p1(x) =
A1E

∗

2

√
a2 − x2, (10)

p3(x) =
A3E

∗

2

√
a2 − x2

(
x2 +

a2

2

)
, (11)

p5(x) =
A5E

∗

2

√
a2 − x2

(
x4 +

x2a2

2
+

3a4

8

)
, (12)

with the first of these relating directly to the cylinder example in §3.1 with A1 = 1/R.
For equilibrium with an external force, P , we must have

P =
∑

m

P2m+1, where P2m+1 =

ˆ a

−a
p2m+1(x)dx.

Utilising (9), we can calculate the contribution from the term A2m+1x
2m+1, finding

P2m+1 =
A2m+1E

∗πa2(m+1)

4

m∑

l=0

(−1)m−lΓ(l + 1
2 )

Γ(m+ 1− l)Γ(l −m+ 1
2 )Γ(2 + l)

. (13)

For small powers, the corresponding values for P2m+1 are

P1 =
A1E

∗πa2

4
, P3 =

3A3E
∗πa4

16
, P5 =

5A5E
∗πa6

32
, (14)

where the first expression again confirms the calculation for a Hertzian cylinder in §3.1 provided that A1 =
1/R.

We plot the contact pressure scaled by the normal force for m = 0, 1, 2 in figure 1 with a = 1. As
m increases, which, for |x| < 1 corresponds to a flatter profile in the gradient function h′(x), the contact
pressure at x = 0 reduces, with two peaks forming closer to the edges of the contact. The magnitude of this
peak increases as m increases.

4 Non-symmetric problems
As an example of the flexibility of this procedure, we shall now consider several non-symmetric problems in
which a 6= b.

4.1 Two adjoined cylinders
Firstly, we shall consider an extension to the classical Hertzian cylinder example, in which two cylinders of
different radii of curvature are adjoined at x = 0. For such an indenter, it is straightforward to see that

h′(x) =





x

R1
for 0 < x < a,

x

R2
for − b < x < 0,

where R1, R2 are the respective relative radii of curvature of each part of the indenter.
We can utilise the consistency condition (3) to find the ratio β = b/a as a function of R = R1/R2. A

straightforward integration leads to

π(β − 1)

(
1 +R

1−R

)
= 4
√
β + 2(β − 1) arcsin

(
β − 1

β + 1

)
. (15)
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Figure 1: The first three odd contact pressures scaled by their respective normal forces. In this plot a = 1.

We are therefore able to find β(R) by solving (15) numerically. We start from the known solution β(1) = 1
and increase/decrease R incrementally, solving the resulting nonlinear equation using Newton’s method. We
plot the results in figure 2. It is clear that if we fix the relative radius of curvature for the right-hand side
of the indenter (i.e. x > 0), then as we increase the relative radius of curvature of the left-hand side of
the indenter so that R decreases, β increases and thus b > a so that the contact patch is larger to the left
of the adjoining line. Similarly, if we reduce the relative radius of curvature of the left-hand side so that
R increases, naturally β decreases, with b < a so that the contact patch is now larger to the right of the
adjoining line.

After some algebraic manipulation, we are also able to calculate the contact pressure, p(x), by evaluating
the principal value integral (2) finding that

p(x) =
E∗

4R1
(R+ 1)

√
(a− x)(x+ b) +

E∗

2πR1
(R− 1)

√
(a− x)(x+ b) arcsin

(
b− a
b+ a

)

+
E∗x
4πR1

(R− 1) log

(
(2a− x)b+ ax− 2

√
ab
√

(a− x)(x+ b)

(2a− x)b+ ax+ 2
√
ab
√

(a− x)(x+ b)

)
, (16)

for −b < x < a. We note that if we set R1 = R2, we immediately see from (15) that β = 1, so that a = b,
and therefore (16) reduces to the standard Hertzian solution for a cylinder, (4).

Since we only have one relation between a, b given by (15), we need a to supply a second condition to
solve for the contact width explicitly. Therefore, as in the symmetric case, we again enforce equilibrium
between the contact pressure and a normal force, P . Using the known form of the contact pressure (16), we
find that this condition becomes

P =
E∗π
16R1

(a+ b)2
[

1

2
(1 +R) +

1

π
(R− 1) arcsin

(
b− a
b+ a

)]
+

E∗

8R1
(R− 1)

√
ab(b− a). (17)

The external moment, M , that must be supplied to prevent any rotation of the indenter is given by

M =

ˆ a

−b
xp(x)dx,

5
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Figure 2: The evolution of β = b/a as a function of the ratio of the relative radii of curvatures of the adjoined
cylinders, R, as given by (15). Note that for R < 1, the left-hand side (x < 0) of the indenter has a larger
relative radius of curvature than the right-hand side (x > 0) and vice versa for R > 1. Note that β = 1
returns the Hertzian contact problem.

which can be evaluated explicitly, obtaining

M =
−E∗π
32R1

(b− a)(a+ b)2
[

1

2
(1 +R) +

1

π
(R− 1) arcsin

(
b− a
b+ a

)]
− E∗

48R1
(R− 1)

√
ab(3b2 − 2ab+ 3a2).

(18)

We plot both P and M as functions of the ratio R in figure 3. Again, we note that if R = 1, we get, as
expected, zero applied moment and the corresponding normal force for the Hertzian cylinder given in (5).

4.2 More general non-symmetric contacts
Suppose we proceed as in §3.2 and attempt to write down the relative overlapping profiles of the contacting
bodies as a power series polynomial, so the slope at any point can be expressed in the form

dh

dx
=
∑

n

Anx
n, (19)

where we now include both odd and even terms in the expansion. The consistency condition (3) is readily
evaluated term-by-term to give

0 = π

n∑

l=0

(− 1
2

l

)( − 1
2

n− l

)
(−1)lβn−l. (20)

In order to calculate the contact pressure, we are now interested in a generalisation of (7) to the non-
symmetric contact patch:

Jn = −
ˆ a

−b

ξndξ√
(a− ξ)(ξ + b) (ξ − x)

, (21)

6
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Figure 3: The normal force and first moment as a function of R. For the purposes of illustration we have
simply taken E∗, R1, a = 1 in this figure. Note that the first moment vanishes in the case of equal cylinders
as expected.

where n ∈ N. These principal value integrals are evaluated explicitly in appendix A and we therefore find
the contribution to the contact pressure of the nth-term of the series (19) to be

pn(x) =
AnE

∗

2

√
(a− x)(x+ b)

n−1∑

l=0

n−1−l∑

j=0

(− 1
2

j

)( − 1
2

n− 1− l − j

)
xlajbn−1−l−j(−1)j . (22)

As previously, we shall only in general be interested in the first few powers of n, so we present the corre-
sponding contact pressures explicitly here:

p1(x) =
A1E

∗

2

√
(a− x)(x+ b), (23)

p2(x) =
A2E

∗

2

√
(a− x)(x+ b)

(
x− (b− a)

2

)
, (24)

p3(x) =
A3E

∗

2

√
(a− x)(x+ b)

(
x2 − (b− a)

2
x+

3

8

(
b2 − 2

3
ab+ a2

))
, (25)

We note that if a = b, (23), (25) reduce to their symmetric counterparts (10), (11).
As previously, we need to supplement (20) by enforcing equilibrium between the applied normal force,

P , and the total contact pressure. The contribution of the nth-term of the series (19) to the normal force is
given by

Pn =
AnE

∗π
2

n−1∑

l=0

n−1−l∑

j=0

l+2∑

m=0

(− 1
2

j

)( − 1
2

n− 1− l − j

)( 1
2

m

)( 1
2

l + 2−m

)
aj+mbn+1−m−j(−1)j+m+1, (26)

Finally, the contribution of the nth-term of the power series to the total applied moment required to prevent
rotation of the indenter is given by

Mn =
AnE

∗π
2

n−1∑

l=0

n−1−l∑

j=0

l+3∑

m=0

(− 1
2

j

)( − 1
2

n− 1− l − j

)( 1
2

m

)( 1
2

l + 3−m

)
aj+mbn+2−m−j(−1)j+m+1. (27)

7
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Again, for reference, we report the first few values of the normal force and applied moment here:

P1 =
A1E

∗π
16

(a+ b)2, M1 =
A1E

∗π
32

(a− b)(a+ b)2, (28)

P2 =
A2E

∗π
16

(a− b)(a+ b)2, M2 =
A2E

∗π
256

(9a2 − 14ab+ 9b2)(a+ b)2, (29)

P3 =
3A3E

∗π
256

(5a2 − 6ab+ 5b2)(a+ b)2, M3 =
3A3E

∗π
256

(a− b)(3a2 − 2ab+ 3b2)(a+ b)2. (30)

4.3 Unbounded domains
When one of the ends of the contact patch is taken to be large enough that the contact may be modelled as
semi-infinite, say without loss of generality that b = −∞, the method as described in §2 is valid provided
that h′(x) decays sufficiently rapidly as x → −∞ in order for the integrals exist. Specifically, (3) requires
that h′(x) is o(1) as x→∞, else there is a non-integrable singularity in the integrand for large ξ. It is worth
noting however that, when the integrals exist, in such semi-infinite contacts, the consistency condition will
explicitly give a value for the remaining endpoint a. This is in contrast to the finite contact problems we
have considered, in which we must enforce equilibrium with the applied normal force to determine a and b.

5 Summary
We present novel way of solving half-plane contact problems by using distributions of climb dislocations,
present over the contact, whose integral forms the relative profile of the contacting bodies but of opposite
sign. This has some attractions in that (a) it is not necessary to invert a singular integral equation, and
(b) it is perfectly possible to write down the contact pressure distributions and resultant external force
and moment in a simple closed form. We have demonstrated this for both symmetric and non-symmetric
contacts.
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Figure 4: The contour Γ oriented anticlockwise about the branch cut of the square root. The contour consists
of arcs of a circle centred at x̂, the singular point of the principal value integral (21), arcs of circles around
the endpoints of the branch cut at ξ̂ = −β, 1 and straight line segments on the top and bottom of the cut.

A Evaluation of the contact pressure for a general polynomial
After writing the relative overlapping profiles on the contacting bodies as a power series, we are led to
consider the principal value integral Jn defined in (21) — a generalisation of the symmetric case (7). By
rescaling ξ = aξ̂, x = ax̂, we can remove the size of the contact patch a from the integral, finding that

Jn = an−1Kn = an−1−
ˆ 1

−β

ξ̂ndξ̂√
(1− ξ̂)(ξ̂ + β)(ξ̂ − x̂)

. (31)

We can evaluate Kn using contour integration. Let ζ̂ = ξ̂ + iη̂ and consider

L =

ˆ

Γ

ζ̂ndζ̂√
(ζ̂ − 1)(ζ̂ + β)(ζ̂ − x̂)

, (32)

where Γ is the contour depicted in figure 4. The branch cut for the square root is taken along −β < ξ̂ <
1, η̂ = 0 with the square root positive and real on ξ̂ > 1, η̂ = 0. In the limit in which ε→ 0 and Γ approaches
the cut, it is straightforward to show that

K = 2iJn.

Since the integrand of L is analytic away from the branch cut, by the deformation theorem the integral is
equivalent to that around a circle of radius R centred at the origin, where R� 1. Therefore, by considering
the asymptotic expansion of the integrand for large |ζ̂|, the only contribution to K is from the ζ̂−1-term in
the expansion. With the choice of branch above, the asymptotic behaviour of the integrand is found to be

ζ̂n√
(ζ̂ − 1)(ζ̂ + β)(ζ̂ − x̂)

= ζ̂n−2
( ∞∑

k=0

x̂k

ζk

)( ∞∑

k=0

(− 1
2

k

)
(−1)k

ζ̂k

)( ∞∑

k=0

(− 1
2

k

)(
β

ζ̂

)k
)

as |ζ̂| → ∞.

Multiplying the power series, we deduce that

ζ̂n√
(ζ̂ − 1)(ζ̂ + β)(ζ̂ − x̂)

= ζ̂n−2
∞∑

k=0

dk

ζ̂k
as |ζ̂| → ∞, (33)

where

dk =
k∑

l=0

k−l∑

j=0

x̂l
(− 1

2

j

)( − 1
2

k − l − j

)
(−1)jβk−l−j .

9
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Whence
L = 2iKn = 2πidn−1 =⇒ Kn = πdn−1.

Therefore, returning to original variables, we conclude that

Jn = π

n−1∑

l=0

n−1−l∑

j=0

an−1−lxl
(− 1

2

j

)( − 1
2

n− 1− l − j

)
(−1)jβn−1−l−j . (34)
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