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Abstract

In this article, we extend the Mossakovskii approach to half-plane contacts supporting a
moment. Since the method relies on approximating the punch geometry by a series of flat
punches, we choose the load path in (P,M)-space that fixes the body tilt, which allows us to
reduce the standard Cauchy singular integral formulation to a non-symmetric Abel integral
equation. We use the formulation to derive simple expressions for the applied normal force
and necessary applied moment as functions of the contact extent and indenter tilt, while
also deriving the coefficients of the square-root terms in the contact pressure expansion at
the edges of the contact. These results are analysed in detail for two specific examples: the
tilted wedge and the tilted flat-and-rounded punch. We conclude by briefly discussing the
equivalent tangential problem when an applied shear force and differential bulk tensions are
present.

Keywords: Half-plane theory, B. Contact mechanics, C. Asymptotic analysis

1. Introduction1

Half-plane theory is a well-established model for considerations of contact problems rel-2

evant to large-scale industrial applications. The contacting bodies are assumed to be suf-3

ficiently large that local to the contact, a half-plane idealisation derived from the Flamant4

solution for the stress field due to a line force at the apex of a wedge is a reasonable ap-5

proximation [4, 5]. In the limit in which the contacting bodies are elastically similar, the6

problems for the normal and tangential displacement gradients — gradients to circumvent7

the problem of the unknown rigid-body terms in the formulation — decouple. For the pur-8

poses of this analysis, we shall concentrate on the normal displacement gradients primarily,9

although much of what we discuss will be applicable to the tangential problem as well, and10

we return to this topic later.11

Consider the formulation in figure 1 where the (x, y)-plane has been chosen so that12

the origin is at the minimum of the upper body, which has profile y = g(x). We define13

the relative normal displacement of the contacting bodies as v = v1(x) − v2(x), where a14

subscript 1 denotes the upper body and a subscript 2 denotes the lower body. Then, for15

elastically-similar bodies, the relative normal displacement gradient is related to the contact16
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pressure p(x) by the following integral equation17

dv
dx

=
κ+ 1

2µπ
−
ˆ a

−b

p(s)

s− x ds, (1)

where (−b, a) is the contact patch, κ is Kolosov’s constant and µ is the modulus of rigidity.18

When −b < x < a, (1) is interpreted in the Cauchy principal value sense, otherwise it is19

regular. Within the contact set, we know that20

v′(x) + g′(x) = 0 for − b < x < a, (2)

where a prime indicates differentiation with respect to argument, so that, for a given ge-21

ometry, one can invert (1) to find the contact pressure following the methodology of, for22

example, [10]. In particular, since in an incomplete contact the contact pressure is bounded23

at the ends of the contact patch, a consistency condition relating a and b must be satisfied24

for a solution to exist, namely25

0 =

ˆ a

−b

v′(s)√
(a− s)(s+ b)

ds. (3)

Over recent years, there has been much consideration of (1) in partial slip problems, see26

for example [6, 7, 13, 16, 18] and references therein. Although there are notable exceptions27

such as [3, 8], the singular integral formulation can prove analytically and numerically tricky28

to handle. An alternative formulation of the problem devised by Mossakovskii [17] and29

extended by [11, 14, 20] utilises the known contact pressure induced by a flat punch to30

approximate the upper body by an infinite series of flat punches, which reduces the singular31

integral to an Abel integral equation, which can be inverted. However, in each of these32

studies, the consideration has been for symmetric problems (i.e. b = a), which precludes the33

presence of a moment. In many industrial applications, for example in oil wellheads or the34

dovetail joint of a turbine blade, the presence of an applied moment is inevitable.35

In this study, we adapt the Mossakovskii method to problems with an applied moment.36

In §2, we shall formulate the problem and derive the corresponding non-symmetric Abel37

integral formulation. We shall use this formulation to derive general results for the applied38

normal force and applied moment, as well as the behaviour of the contact pressure at the ends39

of the contact patch in §3. We move on to discuss the solution for two specific examples in40

§4, the tilted wedge and the tilted flat-and-rounded punch. In §5, we return to the tangential41

problem and consider applications of the method there, before concluding with a summary42

and discussion in §6.43

2. Problem formulation44

We consider the problem depicted in figure 1, in which a body with profile y = g(x) is45

brought into contact with an elastically-similar half-plane under an applied normal force, P .46

We shall assume at the outset that the geometry is known and fixed as P varies, so that47

there is no relative rotation of the body as we change P . Nevertheless, for non-symmetric48

geometries about the origin, an applied moment, M , is necessary to maintain the contact49

in this orientation. The geometrical constraint is necessary for the Mossakovskii method to50
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Figure 1: A large, almost flat body y = g(x) is pressed into an elastically-similar half-space with an applied
normal force, P , and an applied moment, M . The contact patch extends over (−b, a).

apply, else in general we run into issues with the minimum of the punch changing as M,P51

vary and the punch rotates. Hence, we restrict ourselves to a particular load path in (P,M)52

space that fixes the geometry, and as is well-known, the final results for, for example, the53

contact pressure, are the same as had we taken a different load path. Thus our assumption54

is not overly restrictive. We shall discuss this further in §3.2.55

We know that the contact pressure in the contact patch −b < x < a is related to the56

relative normal displacement gradient by (1) and that to maintain vertical equilibrium, we57

must have58

P =

ˆ a

−b
p(s) ds. (4)

If we take P and the indenter geometry g(x) as known, then we can view (3) and (4) as a59

pair of equations for a, b. Moreover, these equations are uncoupled: in particular, we shall60

view (3) as an equation that gives b as a function of a for a specific geometry. Once this has61

been solved, then (4) gives a as a function of P . For the rest of this analysis, we shall assume62

that b(a) is known and that as P increases, both a and b(a) increase (which is reasonable63

provided the body is convex).64

Given these results, we can adapt the methodology of [11] to contacts supporting a65

moment by considering the non-symmetric flat punch in figure 2. It is straightforward to66

show that substituting the pressure distribution m(x, a), where67

m(x, a) =


1√

(a− x)(x+ b(a))
for − b(a) < x < a

0 otherwise
, (5)

corresponds to that of a flat punch by substituting into (1), which gives68

dv
dx

=
κ+ 1

2µπ
h(x, a) =

κ+ 1

2µπ


0 for − b(a) < x < a,
−sgn(x)π√

(x− a)(x+ b)
otherwise . (6)

The Mossakovskii idea is then to replace the indenter by an infinite superposition of flat69

punches, so that70

p(x, a) =

ˆ a

0

F (s)m(x, s) ds, (7)
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Figure 2: The complete contact of a flat punch extending over (−b(a), a) and the associated contact pressure
m(x, a) given by (5).

where the aim is to relate the unknown function F (s) to the indenter geometry. By the71

previous analysis, we see that72

dv
dx

=
κ+ 1

2µπ

ˆ a

0

F (s)h(x, s) ds (8)

for all −b(a) < x < a. Hence, by (2), we must have73

2µg′(x)

κ+ 1
=

ˆ x

0

F (s)√
(x− s)(x+ b(s))

ds for 0 < x < a, (9)

and we obtain our solution provided that b(a) has been found from (3). Note that, without74

loss of generality, we could equivalently solve for F (s) on (−b(a), 0). The integral equation75

(9) is a non-symmetric Abel integral equation for F (s), which is, unfortunately, not readily76

analytically inverted in general, unlike in the symmetric problem, [11]. It is however relatively77

straightforward to deal with numerically, particularly as we have removed the singularity78

associated with the standard inversion procedure, [10]. We discuss such a procedure for a79

specific example in §4.2 and Appendix B.80

Once we have found F (s), the contact pressure is then given by81

p(x, a) =



ˆ a

x

F (s)√
(s− x)(x+ b(s))

ds for 0 < x < a,
ˆ a

b−1(−x)

F (s)√
(s− x)(x+ b(s))

ds for − b(a) < x < 0,

0 otherwise,

(10)

where b−1(·) denotes the inverse of b(·). To elucidate how the lower limit of the second integral82

has been obtained, we recall that since we have assumed b(·) is an increasing function, then83

for all −b(a) < x < 0, there exists a unique s ∈ (0, a) such that b(s) = −x. Then, for84

s < b−1(−x), by (5) the contribution of m(x, s) in the integrand is necessarily zero.85

3. General results86

3.1. Applied normal force87

We recall the vertical equilibrium condition (4). Upon substituting (7) into (4), we have88

P =

ˆ a

0

F (s)

ˆ a

−b(a)
m(x, s) dxds =

ˆ a

0

F (s)

ˆ s

−b(s)

1√
(s− x)(x+ b(s))

dxds. (11)
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Thus, changing variables in the inner integral by setting89

x =
s− b(s)

2
+

(s+ b(s))

2
X (12)

yields90

P = π

ˆ a

0

F (s) ds or, equivalently, F (a) =
1

π

dP
da

, (13)

as in the symmetric case, [11]. Thus, we can replace the unknown function F (·) by π−1P ′(·)91

everywhere it appears in the analysis, provided that the initial condition P (0) = 0 is applied92

where necessary (i.e., there is no contact unless a normal force is supplied). We do so93

henceforth, and in particular, the Abel equation (9) becomes94

2µπg′(x)

κ+ 1
=

ˆ x

0

P ′(s)√
(x− s)(x+ b(s))

ds for 0 < x < a, (14)

subject to P (0) = 0, where a prime denotes differentiation. We note that the inversion of95

(14) will give P (s) for 0 < s < a.96

3.2. Applied moment97

To find the applied moment, M , necessary to sustain the contact, we must have98

M =

ˆ a

−b(a)
sp(s) ds. (15)

After performing a similar analysis, we find that99

M =
1

2

ˆ a

0

(s− b(s))P ′(s) ds =
1

2

[
P (a)(a− b(a))−

ˆ a

0

P (s)(1− b′(s)) ds
]
, (16)

where we have integrated by parts to achieve the final equality.100

Hence, (14) and (16) give P and M as functions of the indenter geometry g(x). As we101

alluded to at the start of §2, the methodology has relied on the geometry being maintained as102

P varies, so that we have chosen the particular load path in (P,M) space where M is given103

by (16). While this is a constraint necessary for the approach to work, it is not necessarily104

over-restrictive, as the results are load-path independent.105

Hence, an algorithm for using the method for a general punch profile is as follows. Suppose106

we are given a symmetric indenter y = h(x) that we tilt by an angle of α to the horizontal. If107

we denote the tilted indenter shape by y = g(x;α) (the semicolon indicating that α is acting108

as a parameter, not a variable), then (14) and (16) can be used to find the P andM necessary109

to sustain a contact over (−b(a), a) with tilt α. We can then repeat the process varying the110

value of α, which populates the space P (a, α) and M(a, α). One can then consider a general111

loading curve in (P,M)-space and find the resulting values of α. We will illustrate this in the112

simple case of a tilted wedge in §4.1. Naturally, there may also be applications for problems113

in which the constancy of the tilted geometry is required, and this methodology thus gives114

the necessary applied moment (16) to provide this as P changes.115
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3.3. Application to asymptotic approaches116

Finally, we note that there has been a lot of recent work in the field of asymptotic methods117

for partial slip problems in which the stress-fields local to the edges of contact are crucial118

in understanding the onset of fretting fatigue in large industrial machinery, [1, 9, 12]. The119

idea is to consider the problem locally where the geometry may be simpler — for example,120

a flat-and-rounded punch may be taken as Hertzian near the edges of the contact — and121

use knowledge of the local form of the contact pressure (and shear traction q(x)) to set up a122

problem with suitably-chosen far-field bulk tensions and/or shear forces to obtain slip-zones123

of the same size. The simpler geometry is then easier to study in laboratory prototypes and124

numerical studies. Such methods may also be of use in problems where the slip zones have125

opposite signs and hence, the Ciavarella-Jäger theorem no longer applies, [2].126

In these cases, the punch geometry will be known (perhaps from finite element solutions127

or otherwise) for general input conditions P , M and applied shear forces and bulk tensions128

(usually denoted Q and σ). Given the geometry, one can use the Mossakovskii method to129

extract quickly the local coefficient of the contact pressure (and shear tractions, see §5) at130

the contact edges, Kn,a and Kn,b, without the difficulties associated with extracting them131

numerically. It is straightforward to perform an asymptotic expansion of the integral (7) as132

x approaches the edges of the contact to deduce133

p =
2

π

P ′(a)√
a+ b(a)

√
a− x+ o(

√
a− x) as x→ a−, so that Kn,a =

2

π

P ′(a)√
a+ b(a)

, (17)

while134

p =
2

π

P ′(a)

b′(a)
√
a+ b(a)

√
b(a) + x+o(

√
b(a) + x) as x→ −b(a)+, so that Kn,b =

2

π

P ′(a)

b′(a)
√
a+ b(a)

,

(18)
where we have relegated the details to Appendix A. In particular, we note that Kn,b =135

Kn,a/b
′(a).136

4. Application to specific geometries137

4.1. The tilted wedge138

Consider a large wedge of half-angle π/2−φ, where 0 < φ� 1, that is tilted at an angle139

α < φ measured clockwise from the unrotated state, see figure 3. Since we are assuming that140

the wedge half-angle is large enough that we can reasonably use a half-space approximation141

for the contact, the wedge profile is approximated by142

g(x) =

{
∆− (φ+ α)x for x < 0

∆ + (φ− α)x for x > 0
, (19)

where ∆ is a rigid-body translation.143

By the geometry of the problem, we expect there to be a similarity solution, so that144

b = γa for some γ ≥ 0. Upon evaluating (3), we find145

γ =

(
1− sin

(
πα

2φ

))(
1 + sin

(
πα

2φ

))−1
, (20)
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Figure 3: A large, almost flat tilted wedge of half-angle φ and tilt angle α. The normal force P is applied
through the wedge apex (i.e. at the coordinate origin), along with a moment M about the y-axis.

as in [19].146

Similarly, seeking a solution of the form P (a) = P0a, we can invert (14) to find that147

P0 =
4µφ

κ+ 1

√
γ, (21)

which we note is again consistent with [19]. Note that the corresponding contact pressure is148

given by149

p(x) =
−4µφ

π(κ+ 1)
log

∣∣∣∣∣
√

1/γ −
√

(a− x)/(x+ γa)√
1/γ +

√
(a− x)/(x+ γa)

∣∣∣∣∣ . (22)

Finally, we can utilise (16) to show that150

M(a) =
P0

4
(1− γ)a2, (23)

is the moment necessary to maintain such a contact. Noting that there is a sign error in151

equation (27) of [19], one can in fact also show that (23) is consistent with their result once152

the corrected algebra is performed.153

We can now manipulate (21), (23) to find the dependence of a and α on P , M . Hence if154

P,M are given, we can find α from155

(κ+ 1)

16µφ

P 2

M
=

√
γ

1− γ , (24)

which, utilising (20), yields156

α =
2φ

π
arcsin

(
8µφM√

64µ2φ2M2 + (κ+ 1)2P 4

)
, (25)

where we have assumed α > 0 without loss of generality due to the symmetry of the indenter.157

Note that for fixed P , as M → 0, we see that α→ 0 as expected.158
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Figure 4: (Colour online.) A flat-and-rounded punch with flat section of size 2t, rounded radius of curvature,
R, and tilt angle α to the horizontal. The coordinate axes (x′, y′) and (x, y), and their respective associated
applied normal forces and moments (P,M ′) and (P,M) are discussed in detail in the text.

In a similar manner, a is given as a function of P and M by159

a =
(κ+ 1)2P 3

4µφ

1

−8µφM +
√

64µ2φ2M2 + (κ+ 1)2P 4
. (26)

where the negative root has been discounted as that gives a < 0. We should note the limit160

in which M = 0 returns the expected relation between a and P , while the limit in which161

P → 0 and M is finite is singular in the sense that both the numerator and denominator162

vanish simultaneously. Again, this is as expected, since the limit in which there is no applied163

normal force but merely a moment makes no sense physically in this problem.164

Hence for the wedge, we are able to invert the problem to one of finding a and α when165

given M and P . We are able to do this so simply for a wedge since the geometry is such166

that as P and M change, the body rotates but the minimum remains fixed.167

Finally, we note that Kn,a(a), the coefficient of the square-root term in the pressure168

expansion at the right-hand contact edge is given by (17) to be169

Kn,a =
8µφ

π(κ+ 1)

√
γ

a(1 + γ)
. (27)

and hence, at the left-hand contact point, by (18) we simply have170

Kn,b =
Kn,a

γ
. (28)

4.2. The tilted flat-and-rounded punch171

The flat-and-rounded punch is a geometry that is of great interest in industrial applica-172

tions. Here we consider a punch whose flat length is 2t that is rotated by a small angle α173

clockwise. Since the Mossakovskii approach requires the approximation of the indenter by a174

series of rectangular punches, we must consider the coordinate frame fixed with the minimum175

of the punch. Thus, if in the frame fixed with the line of symmetry of the unrotated punch,176
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we have177

y′ =


∆− αx′ + (x′ − t)2

2R
for x′ > t

∆− αx′ for − t < x′ < t

∆− αx′ + (x′ + t)2

2R
for x′ < −t

, (29)

we make the change of variables178

x′ = Rα + t+ x, y′ = ∆− α2R

2
− αt+ y, (30)

so that the punch is now given by y = g(x) where179

g(x) =


−α

2R

2
− αx+

(Rα + x)2

2R
for x > −Rα

−α
2R

2
− αx for −Rα− 2t < x < −Rα

−α
2R

2
− αx+

(Rα + 2t+ x)2

2R
for x < −Rα− 2t

. (31)

The indenter is depicted in figure 4, with the original (x′, y′)-frame shown in red and the180

shifted (x, y)-frame shown in black. We note that, in this analysis, the applied normal force181

and applied moment (P,M) are measured with respect to the (x, y)-frame. If we wish to182

relate back to problems in which these are applied at the original line of symmetry, (P,M ′)183

(depicted in red in figure 4), we must account for the origin shift in the applied moment,184

namely M ′ = M + P (t+Rα), where M ′ is the moment applied at the origin in the (x′, y′)-185

plane.186

For small enough normal force, only the right-hand rounded part of the punch is in187

contact, so that the consistency condition (3) simply gives188

b(a) = a, (32)

which is valid for 0 < a < a1 = αR.189

As the normal force increases further, the left-hand contact point moves onto the flat190

part of the punch. Hence, b(a) now satisfies191

απR =
√

(a1 + a)(b− a1) +
π

4
(2a1 + a− b) +

(2a1 + a− b)
2

arcsin
(

2a1 + a− b
a+ b

)
(33)

for a1 < a < a2, where the parameter a2 is given by the solution to the equation192

b(a2) = αR + 2t. (34)

When the applied normal force increases even further and a > a2, the left-hand contact193

edge moves onto the left-hand rounded part of the punch. Hence, b(a) then satisfies194

απR =
(2a1 + a− b)

2
arcsin

(
2a1 + a− b

a+ b

)
− (2b(a2) + a− b)

2
arcsin

(
2b(a2) + a− b

a+ b

)
+

π

2
(a1 + b(a2) + a− b) +

√
(a1 + a)(b− a1)−

√
(a+ b(a2))(b− b(a2)). (35)
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Figure 5: The left-hand contact point b(a) as a function of a for a flat-and-rounded punch at various tilt
angles, α. For the purposes of the plot, we have taken t = 1 and R = 2 and we have included the Hertzian
case where b(a) = a for reference. The filled circles indicate αR, the value of a for which b(a) moves onto
the flat part of the punch and the filled squares represent a2, where b(a) moves onto the left-hand rounded
part of the punch.

for a > a2.195

We plot a profile of b(a) as a function of a for different tilts in figure 5. The filled196

circles indicate the first transition from rounded to flat, while the filled squares indicate the197

second transition from flat to the other rounded part of the punch. Note that b(a) cannot198

be differentiable at a1 or a2, so that Kn,b is not defined there, see (18).199

To find the applied normal force necessary to sustain such a contact, we return to (14),200

which we must invert for P (s) where 0 < s < a. If 0 < a < a1, then, since b(a) = a, (14) is201

a standard Abel integral equation, which is readily inverted to show that202

P (s) =
πµ

(κ+ 1)R
s2, (36)

for 0 < s < a, which is simply the solution for a Hertzian contact [11].203

If a > a1, since (14) must hold for all 0 < x < a, it is still true that P (s) is given by (36)204

for 0 < s < a1. However, for a1 < x < a we have205

2πµ

(κ+ 1)R

√
x2 − a21 =

ˆ x

a1

P ′(s)√
(x− s)(x+ b(s))

ds for a1 < x < a, (37)

10



0 1 2

0

0.5

1

1.5

2

2.5

3

0 1 2

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure 6: The (a) applied normal force and (b) applied moment necessary to sustain the contact as a function
of a for a flat-and-rounded punch at various tilt angles, α. For the purposes of the plot, we have taken t = 1
and R = 2. The filled circles and squares perform the same function as in figure 5. For reference we have
also included the equivalent curves for the Hertzian contact of a cylinder of radius R.

which we must invert for P (s), a1 < s < a. In general, we must do this numerically.206

Fortunately, this is a relatively straightforward process, which we describe in Appendix B.207

We plot the resulting curve of P (a) for various tilt angles in figure 6a. Note that P (a) is208

differentiable everywhere even though b(a) is not.209

Having determined P (a), we can utilise (16) to calculate the applied moment necessary210

to maintain the tilt angle α as P varies. Again, when 0 < a < a1, we can evaluate this211

explicitly, finding that M = 0, as expected (as the contact is essentially Hertzian). For212

a > a1, we see that213

M(a) =
1

2

[
P (a)(a− b(a))−

ˆ a

a1

P (s)(1− b′(s)) ds
]
, (38)

which we can evaluate numerically using our known solutions for P (a) and b(a). Note that214

even though b′(s) is not defined when s = a2, as it is defined everywhere else, we can still215

perform the integration in (38). We plot the results in figure 6b. We note that this moment216

needs to be taken in context. This is the moment about the minimum of the tilted punch217

that needs to be supplied to maintain the contact. We also note that this is an illustration218

of how we can sweep over values of α to fill out the (a, α)-space for M and P , which enables219

us to ‘invert’ the problem and seek a and α for a given (P,M) combination, as discussed in220

§3.2; however, we will not pursue this any further in this paper.221

Finally, we plot the Kn-coefficients (17)–(18) as functions of a for various tilt angles in222

figure 7. For the left-hand coefficient, the change in behaviour b(a) as the applied normal223

force increases is clear: when the left-hand contact point progresses onto the flat part of224

the indenter, there is a sharp increase in b′(a), as evidenced in figure 5. This causes Kn,b to225

decrease until b(a) progresses to the second rounded part of the punch.226
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Figure 7: The (a) right-hand and (b) left-hand coefficients of the square-root expansion of the contact
pressure at the contact edges as a function of a for a flat-and-rounded punch at various tilt angles, α. For
the purposes of the plot, we have taken t = 1 and R = 2. The filled circles and squares perform the same
function as in figure 5. For reference we have also included the equivalent curves for the Hertzian contact of
a cylinder of radius R. The change in behaviour of Kn,b is due to the rapid change in b′(a) as the left-hand
contact point progresses from rounded to flat (circles) and then from flat to the other round part of the
punch (squares).

5. The tangential problem227

To conclude, we briefly return to the tangential problem, that we have thus far set aside.228

As discussed in section 1, for elastically-similar materials, the normal and tangential problems229

decouple. Indeed, the relation between the tangential displacement gradient u′(x) = u′1(x)−230

u′2(x) and the shear tractions q(x) is exactly the same as (1) with v replaced by u and p231

replaced by q.232

Hence, in the case where there is purely a shear force, Q, applied in the contact (i.e. shear233

tractions are not excited by differential bulk tensions), and if we assume that the normal234

load is a monotonically increasing function of time and that friction is large enough for slip235

to be prohibited along the whole of the contact patch, one can follow the same argument as236

[11] in the non-symmetric problem to conclude that the shear traction is given by237

q(x, a) =



ˆ a

x

G(s)√
(s− x)(x+ b(s))

ds for 0 < x < a,
ˆ a

b−1(−x)

G(s)√
(s− x)(x+ b(s))

ds for − b(a) < x < 0,

0 otherwise

, (39)

where238

Q(a) = π

ˆ a

0

G(s) ds or, equivalently, G(a) =
1

π

dQ
da

. (40)

When there is a differential bulk tension σ = σ1−σ2, we must introduce a second auxiliary239

function to replace (5) to find its influence on the shear traction. Extending the argument240
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of [11], we define:241

n(x, a) =


x√

(a− x)(x+ b(a))
for − b(a) < x < a

0 otherwise
, (41)

which, upon substituting into the tangential form of (1), induces a relative surface strain of242

u′(x) =
(κ+ 1)

2µπ
l(x, a) where l(x, a) =


π for − b(a) < x < a,

π

(
1− |x|√

(a− x)(x+ b(a))

)
otherwise

.

(42)
Then, assuming the bodies remain fully adhered in the contact region, we must find a function243

H(·) that satisfies244

∂

∂a
(ε(x, a)) =

∂

∂a

(
(κ+ 1)σ(a)

8µ
+

ˆ a

0

H(s)l(x, s) ds
)

(43)

in the contact patch, where ε(x, a) is the relative surface strain, [11]. Thus,245

H(a) = −1

4

dσ
da
. (44)

Therefore, in the general case, the shearing traction has a contribution from both the246

traction induced by the applied tangential force, Q, and a contribution from the differential247

bulk tension, σ, so that248

q(x, a) =



ˆ a

x

G(s)√
(s− x)(x+ b(s))

ds+

ˆ a

x

H(s)x√
(s− x)(x+ b(s))

ds for 0 < x < a
ˆ a

b−1(−x)

G(s)√
(s− x)(x+ b(s))

ds+

ˆ a

b−1(−x)

H(s)x√
(s− x)(x+ b(s))

ds for− b(a) < x < 0,

0 otherwise

,

(45)
where G(·) and H(·) are given by (40) and (44) respectively. We note that we can expand249

(45) at each end of the contact patch to find the coefficient of the square-root terms in the250

shear traction there, we find that251

q(x, a) =
2

π

1√
a+ b(a)

(
Q′(a)− πaσ′(a)

4

)√
a− x+ o

(√
a− x

)
as x→ a−, (46)

and252

q(x, a) =
2

πb′(a)

1√
a+ b(a)

(
Q′(a) +

πb(a)σ′(a)

4

)√
x+ b(a)+o

(√
x+ b(a)

)
as x→ −b(a)+,

(47)
which, again, may have applications in asymptotic methods for studying partial-slip prob-253

lems.254
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6. Summary and discussion255

In this analysis, we have demonstrated how to extend the Mossakovskii method to non-256

symmetric contacts in which a moment is present. The central idea is to utilise the consis-257

tency condition from the usual inversion of the Cauchy principal value integral relating the258

contact pressure and the indenter geometry as a tool to find the left-hand contact point as259

a function of the right (note this was arbitrarily chosen, we could have chosen to find a(b)260

as readily as b(a)). One can then use the Mossakovskii flat-punch superposition as in the261

symmetric problem to derive a non-symmetric Abel integral relating the applied normal force262

to the punch geometry. This is a similar idea to the use of distributions of climb dislocations263

as Green’s functions for the contact problem as demonstrated in [15].264

The Abel integral formulation allows us to derive a simple relation for the necessary265

applied moment to sustain the contact in terms of the the contact patch size and the applied266

normal force, as well as straightforward expressions for the coefficients of the square-root267

term in the pressure expansion local to each edge of the contact, which may be of use in268

asymptotic methods for studying fretting fatigue in partial-slip problems [1, 9, 12].269

We have demonstrated the methodology for two particular examples. The first example270

was the tilted wedge, for which analytic solutions for the applied normal force, the applied271

moment and the pressure coefficients can be found, and were shown to match the closed-form272

solutions found through an alternative route by [19]. The second, more industrially-relevant273

problem was that of a tilted flat-and-rounded punch. After noting that the necessity of the274

coordinate frame being centred at the minimum of the indenter introduced three distinct275

regimes in the problem, we were able to derive numerical solutions for the contact patch276

size, the applied normal force and the pressure coefficients, as well as the moment necessary277

to sustain the contact.278

One feature of the Mossakovskii method for a general indenter when there is a moment is279

that one must assume that the tilt is fixed and solve the problem, which fixes the load-path280

in (P,M)-space that one must take to apply the method. If we do not follow this path, the281

minimum of the indenter changes as it rotates, which leads to issues in the formulation, as it282

is a history-dependent problem in the sense that it builds up the punch geometry through a283

series of flat punches. If one allows the indenter to rotate and the minimum to move slightly,284

there is part of the punch which is now not captured by the superposition of flat punches285

given in (7). However, since the results are load-path independent, this is only a minor point.286

We have shown that for certain geometries such as the tilted wedge, since the minimum287

does not change as the normal force increases, the method can be inverted to consider the288

more general problem: ‘what are α and a for given values of M and P?’. Moreover, even for289

geometries that do not meet this condition, we can still use the given geometry found from290

full finite element simulations or analytic solutions as a starting point for the method, which291

is then able to determine the coefficients of the contact pressure at the contact edges very292

quickly.293

We concluded our discussion by highlighting that, provided the contact ends both mono-294

tonically increasing in with the normal force and that friction is large enough to prohibit295

slip at all points, the methodology can readily be extended to the tangential problem in296

which an applied shear force and/or differential bulk tensions excite shear tractions within297

the contact.298
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Appendix A. Integral expansions299

We shall illustrate the methodology by considering the contact pressure expansion close300

to the right-hand contact point. Recall that the contact pressure for 0 < x < a is given by301

p(x, a) =
1

π

ˆ a

x

P ′(s)√
(s− x)(x+ b(s))

ds. (A.1)

If x = a− δ where 0 < δ � 1, we set s = a− δS in the integral, which yields302

p =

√
δ

π

ˆ 1

0

P ′(a− δS)√
(1− S)(a− δ + b(a− δS))

dS. (A.2)

We can then expand the integrand as δ → 0 as a regular perturbation, which yields303

p =

√
δ

π

P ′(a)√
a+ b(a)

ˆ 1

0

1√
1− S dS +O

(
δ3/2
)
, (A.3)

which can be evaluated and thus gives304

Kn,a =
2

π

P ′(a)√
a+ b(a)

. (A.4)

The procedure at the left-hand contact point follows a similar argument.305

Appendix B. Numerical solution of the non-symmetric Abel equation for the306

flat-and-rounded punch307

For ease of notation, we shall set P(s) = P ′(s) throughout. We wish to invert the integral308

equation309

2πµ

(κ+ 1)R

√
x2 − a21 =

ˆ x

a1

P ′(s)√
(x− s)(x+ b(s))

ds for a1 < x < a (B.1)

to find P(s) for a1 < s < a.310

We consider a finite set of points from the range of a1 < x < a over which the integral311

equation is valid, defined by Xj = a1 + jε, where ε = (a − a1)/N and j = 1, 2, . . . , N . We312

take N to be sufficiently large so that 0 < ε� 1.313

At the first point, X1 = a1 + ε, the range of the integral in (B.1) is very small, so that314

the integral can be asymptotically approximated to be315

ˆ X1

X1−ε

P(s)√
(X1 − s)(X1 + b(s))

ds =
2P(X1)√
X1 + b(X1)

√
X1 − a1 +O(ε3/2). (B.2)

We can then simply rearrange (B.1) to find P(X1).316

At the next point X2, we now know P for 0 < s < X1. On that interval we can find the317

interpolant of P , which we shall denote Pint. Hence, (B.1) can now be expressed as318

2πµ

(κ+ 1)R

√
X2

2 − a21 −
ˆ X1

a1

Pint(s)√
(X2 − s)(X2 + b(s))

ds =

ˆ X2

X1

P(s)√
(X2 − s)(X2 + b(s))

ds.

(B.3)
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As before, we can then asymptotically approximate the integral on the right-hand side,319

finding now that320

ˆ X2

X2−ε

P(s)√
(X2 − s)(X2 + b(s))

ds =
2P(X2)√
X2 + b(X2)

√
X2 −X1 +O(ε3/2), (B.4)

and we then rearrange accordingly to find P(X2).321

This process can be iterated to find P(a1 + jε) for j = 1, 2, . . . , N , and we can integrate322

to find P (a1 + jε) utilising the known boundary condition P (a1) = µπa21/(R(κ + 1)). We323

can then check convergence of the method by varying N .324
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