
J Eng Math (2021) 129:6
https://doi.org/10.1007/s10665-021-10137-z

Introducing pre-impact air-cushioning effects into the
Wagner model of impact theory

Matthew R. Moore

Received: 30 August 2020 / Accepted: 24 April 2021 / Published online: 22 June 2021
© The Author(s) 2021

Abstract In this analysis, we consider the effects of non-quiescent initial conditions driven by pre-impact air–water
interactions on the classical Wagner model of impact theory. We consider the problem of a rigid, solid impactor
moving vertically towards a liquid pool. Prior to impact, viscous forces in the air act to deform the liquid free
surface, inducing a flow in the pool. These interactions are then incorporated as initial conditions in the post-impact
analysis. We derive expressions for the size of the effective contact set, the leading-order pressure and force on the
impactor, and the speed and thickness of the jet at its base. In all cases, we show that the effect of the pre-impact
behaviour is to cushion the impactor, reducing the size of the effective contact set and, hence, the force on the
impactor. Small- and large-time asymptotic solutions are derived for general power-law impactors, and we show
that the effects of the air die away as the impact progresses, so that we approach the classical Wagner solution.

Keywords Air cushioning · Ship slamming · Water entry

1 Introduction

Wagner theory is one of the success stories for practical asymptotics. Named after the author of the seminal paper
in the field, Wagner theory is an inviscid fluid model for the water entry of a rigid, solid body into a quiescent pool
of liquid, mimicking the landing of a sea plane or the slamming of a ship over a wave in an ocean [1]. Central to
both Wagner’s model and earlier work by von Kármán [2] is the idea that, since most impactor profiles relevant to
naval architecture are relatively flat, the penetration depth shortly after entry is much smaller than the horizontal
wetted length of the body. In technical terms, the impactor is assumed to have small deadrise angle. This allows the
modeller to approximate a two-dimensional cross section of the entering body as a flat plate. This, coupled with the
typically large Reynolds, Weber and Froude numbers involved in water entry, enables the use of powerful complex
analytical techniques to solve the resulting ideal fluid model.

What set Wagner’s model ahead of earlier work was his method for determining the size of the approximate
flat plate, which is not known at the outset—indeed, the linearized problem is an example of codimension-two
free boundary problem [3]. By conservation of mass, Wagner argued that the free surface of the liquid must rise
to meet the body profile at its edges, providing a condition that enables the size of the plate to be determined.
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This requirement—called the Wagner condition—can be rigorously derived as a matching condition between the
flat-plate model and the local Helmholtz flow close to the plate tips, where the free surface turns over into a splash
jet [4]. This has led to the term turnover points to describe the ends of the effective flat plate in Wagner theory.
Significant efforts have been made to formalize Wagner theory using an asymptotic treatment in terms of the small
deadrise angle (or equivalently, the small impact timescale), see, for example, [4–7].

The asymptotic predictions have been shown to be favourable when compared to experiments and simulations.
In [4], comparisons between the leading-order composite pressure profile at different points on the impactor and
experimental data from drop tests of a parabolic profile in [8] were shown to be in good qualitative agreement. The
comparison can be drastically improved by going to second order in the theory [9]. For a wedge-shaped body, the
error between the Wagner model and numerical data in [10] for the size of the effective wetted length of the wedge
(i.e. the flat-plate length) was less than 10% for bodies of deadrise angle as large as 30◦. For parabolic impactors,
[9] shows that the second-order theory increases the time over which Wagner theory is within 10% of experimental
data in [11] by two orders of magnitude.

Recently, models inspired by Wagner theory have also been used in problems of droplet impact, where, although
the scales involved are much smaller, the dimensionless numbers typically remain large, and the mathematics is
very similar. Droplet impacts have important applications in, for example, inkjet printing [12], soil erosion [13], and
droplet-size distribution in aerosols [14], the latter of which can be a crucial factor in understanding the transmission
of viral diseases [15,16], or even the dispersal of marine oil slicks due to breaking waves [17]. Inviscid Wagner
models have been shown to provide excellent predictions of general properties of the impact such as the effective
wetted region and the speed of the splash jet (or ejecta) [18,19], although they do not fare so well in capturing
the finer details of droplet impact, in particular regarding the evolution and eventual break-up of the ejecta, where
further physical effects become relevant [20–22].

These successes have inspired a number of extensions to the classical theory, including the effect of an oblique
component of impact velocity [23–26], droplet impact onto soft substrates [27] and porous media [28], or impacts
involving elastic bodies or plates [29–31].

However, of particular interest to the present study is the role of the surrounding air in an impact. While the
aforementioned comparisons between Wagner theory and experimental data in [4] were qualitatively very good,
there were certain discrepancies between the results, particularly close to the keel of the impactor. In the experimental
data of [8], oscillations were observed in the pressure on the impactor close to the keel. This is attributed to the
presence of an entrapped air bubble, which had been observed previously in experiments of the impact of flat-
bottomed bodies in [32,33]. The presence of the air layer can significantly reduce the loads on the impacting body
[32,34,35], which has lead to the term air cushioning to describe this effect.

In brief, the air bubble is entrapped as follows. Prior to impact, as the solid body approaches the liquid pool
(or vice versa), the air layer between the impactor and the pool is forced out of the way, which deforms the free
surface of the liquid and induces a liquid flow as a result. The free surface rises to meet the impactor, and the first
touchdown of the solid typically occurs away from the midline of the impactor, entrapping a volume of air. This
air then contracts into a bubble [36–38], which can be a major cause for concern in, for example, the printing of
polymetric circuits [39].

While the earliest attempts to model this effect considered an inviscid model for the air flow [40,41], it is clear that
the air layer becomes sufficiently thin for viscous forces to dominate. A number of recent studies have demonstrated
that a viscous air-inviscid fluid coupled model produces this air-cushioning effect [42–47], and recent comparisons
between the theoretical predictions and experimental results of the size of the entrapped air bubble have been shown
to be excellent [48,49].

However, attempts to incorporate air cushioning back into Wagner theory have been few and far between, with
the majority concentrating on the effect of air cushioning post-impact [46,50,51], rather than its much larger effect
before touchdown. An excellent recent study [52] considers the differences between a classical Wagner model in the
absence of air cushioning to the viscous air-inviscid liquid pre-impact model. At touchdown in the air-cushioning
model, there was broad qualitative agreement between the Wagner predictions for the free surface profile, the
velocity potential on the free surface and the turnover point location (equated to the point of minimum air layer
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thickness in the pre-impact regime), particularly when the effects of surface tension are negligible. While this is an
encouraging sign for the classical Wagner model, there were nonetheless differences between the two models, and
it is clear that the pre-impact air effects not only play a role on the force felt by the impactor—as evidenced also by
the aforementioned experiments—but also on the general post-impact dynamics. There is an induced flow in the
liquid, so the assumption of an initially quiescent liquid pool in the Wagner model is unrealistic, and it is not clear
how incorporating this effect alters the structure and the predictions of Wagner theory.

It is the goal of this analysis to investigate these effects in detail. We will build in the pre-impact model of [52] as
initial conditions to a Wagner model in which touchdown occurs away from the centreline of the impacting body.
Exploiting results of the air flow at touchdown and the relatively long timescale of bubble collapse, we will neglect
the collapse of the air pocket into numerous bubbles in modelling the post-impact dynamics. We will solve the
resulting model and extract crucial predictions of the post-impact dynamics, such as the location of the turnover
points and the slamming force on the impactor. Since it includes the pre-impact air behaviour, this model is a
significant step forward from classical Wagner theory and it will become clear that the air plays an important role
in the post-impact solution at early and intermediate times, although the effect dies away as we move further from
touchdown.

The structure of the analysis is as follows. In Sect. 2, we will formulate the problem and briefly outline the
pre-impact dynamics derived in [52], as they are central to the post-impact analysis we move onto in Sect. 3. We
will illustrate the results of the post-impact analysis in Sect. 4, in particular looking at the impact of a parabolic body
profile. Finally, we shall conclude by summarizing our results, discuss applications, and suggest future avenues of
investigation in Sect. 5.

2 Pre-impact model

We shall first consider the dynamics before impact in which a large, two-dimensional solid body hurtles towards an
initially quiescent liquid pool whose depth is sufficiently large that we can take to be infinite. The region that is not
occupied by the impactor or the liquid pool is filled with air. In what follows, we are following the analysis of [52],
and we shall only outline the key results here, with the reader directed to that paper for a more detailed discussion
of the coupling.

The body is assumed to be symmetric and, when it is sufficiently far from the liquid pool, the liquid-free surface is
flat. We shall take Cartesian axes (x∗, y∗) centred on the point where line of symmetry meets the initially flat liquid
surface. Here and hereafter, an asterisk denotes a dimensional variable. The body moves vertically downwards with
a constant velocity −V ∗j. We shall assume that the impactor has a small deadrise angle, which means that it is
essentially flat close to the region of impact. The body profile is taken to be

y∗ = ε2R∗ f
(

x∗

εR∗

)
− V ∗t∗, (1)

where 0 < ε � 1 and R∗ is a typical radius of curvature of the impactor.
Both the air and the liquid are taken to be Newtonian, incompressible fluids, with densities ρ∗

i and viscosities
μ∗
i , where i = a in the air and i = l in the liquid. The air–water surface tension coefficient is σ ∗ and acceleration

due to gravity is g∗. The pertinent physical parameters measuring the importance of surface tension and gravity are
the Weber and Froude numbers:

We = ρ∗
l R

∗V ∗2

σ ∗ , Fr2 = V ∗2

g∗R∗ . (2)

For typical solid–liquid impacts of interest, these numbers are very large, so for the rest of this analysis, we shall
neglect surface tension and gravity [4,52]. We shall denote the fluid velocities and pressures by u∗

i = (u∗
i , v

∗
i ) and

p∗
i respectively.

As shown by [52] and seen from (1), the body starts to interact with the pool when it is an O(ε2R∗) distance from
the free surface. Since the body has small deadrise angle, these air–liquid interactions take place over a horizontal
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lengthscale of O(εR∗) and a timescale of O(ε2R∗/V ∗). The impactor displaces the air in the region between itself
and the liquid, inducing a vertical velocity of O(V ∗) and, by conservation of mass, a horizontal velocity of O(V ∗/ε).
The air motion displaces the liquid-free surface by a distance of O(ε2R∗), which in turn induces a velocity within
the liquid pool of O(V ∗).

Since we shall assume that the Reynolds number

Re = ρ∗
l R

∗V ∗

μ∗
l

(3)

in the liquid pool is large, to maintain a balance in the momentum equations, the liquid pressure is perturbed by
O(ρ∗

l V
∗2/ε). Hence, to retain a balance in the normal stress condition on the free surface, the air pressure is also

perturbed by O(ρ∗
l V

∗2/ε). Thus, finally, to retain a balance in the horizontal momentum equation in the air layer,
we find that interactions occur over the lengthscale

ε2R∗ =
(

μ∗
a

ρ∗
l R

∗V ∗

)2/3

R∗, (4)

as in [52].
Hence, we may nondimensionalize the problem by setting

(
x∗, y∗, h∗, t∗, u∗

a, v
∗
a , p

∗
a

) =
(
εR∗x, ε2R∗ ȳ, ε2R∗h, ε2R∗t/V ∗, V ∗ua/ε, V ∗va, ρ∗

l V
∗2 pa/ε

)
(5)

in the air, and
(
x∗, y∗, h∗, t∗, u∗

l , v
∗
l , p

∗
l

) =
(
εR∗x, εR∗y, ε2R∗h, ε2R∗t/V ∗, V ∗ul , V ∗vl , ρ∗

l V
∗2 pl/ε

)
(6)

in the liquid, where h∗ denotes the air–liquid interface. Then, under the assumptions that

ρ∗
a

ρ∗
l

� ε,
1

Re
� 1,

μ∗
a

μ∗
l

� ε2, (7)

we are able to neglect, respectively, inertia in the air, viscosity in the liquid, and air shear on the free surface. These
are all reasonable assumptions in typical impact problems, [47,52], and we shall neglect these forthwith.

The leading-order problem in the air is, thus, given by

∂ua
∂x

+ ∂va

∂ ȳ
= 0, 0 = −∂pa

∂x
+ ∂2ua

∂ ȳ2 , 0 = −∂pa
∂ ȳ

, (8a, b, c)

while in the liquid, we must have

∂ul
∂x

+ ∂vl

∂y
= 0,

∂ul
∂t

= −∂pl
∂x

,
∂vl

∂t
= −∂pl

∂y
. (9a, b, c)

On the solid body, the no-slip, no-flux conditions reduce to

ua = 0, va = −1 on ȳ = f (x) − t, (10a, b)

while on the air–liquid interface, we have continuity of velocity, the kinematic condition, and continuity of normal
stress, which respectively reduce to

ua = 0, va = vl(x, εh, t), va = ∂h

∂t
, pa = pl(x, εh, t) on ȳ = h. (11a, b, c, d)
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Far from the impact, the flow in both fluids dies away, so we must have

ua → 0 as |x | → ∞, ul → 0 as x2 + y2 → ∞, h → 0 as |x | → ∞. (12a, b, c)

Finally, we shall assume that initially the free surface is flat and the fluids are undisturbed, so that

ua → 0 as t → −∞ for ȳ = O(1), ul → 0 as t → −∞, h → 0 as t → −∞. (13a, b, c)

From (8c) and (11d), it is clear that to leading order pa = pl(x, 0, t) := P(x, t) throughout the air layer. Thus,
from (8b), (10a) and (11a), the leading-order air velocity has the Poiseuille profile

ua = 1

2

∂P

∂x

[
(ȳ − h)2 − ( f − t − h)(ȳ − h)

]
(14)

so that integrating the continuity equation (8a) across the layer and applying the no-flux condition (10b) and
kinematic condition (11c) yields the thin-film equation

0 = ∂

∂t
( f − t − h) − 1

12

∂

∂x

(
Q( f − t − h)3

)
(15)

as in [52]. We note that here, we have introduced the notation Q(x, t) = Px (x, t) for convenience, and we shall
retain this henceforth.

In the liquid, we shall assume that the flow is initially irrotational; as it is quiescent as t → −∞, this is eminently
sensible. Thus, by Kelvin’s theorem, we have ul = ∇φ, such that φ satisfies ∇2φ = 0 in y < 0. Moreover,
the velocity potential and pressure are related by the linearized Bernoulli equation pl = −∂φl/∂t . Thence, after
linearizing the boundary conditions (11) onto the undisturbed waterline, the pressure satisfies the half-plane Laplace
problem:

∇2 pl = 0 in y < 0, pl = P(x, t) on y = 0,
∂pl
∂y

= −∂2h

∂t2 on y = 0. (16a, b, c)

The appropriate Dirichlet-to-Neumann map relating the free surface profile, h(x, t), and the liquid pressure
gradient on the interface, Q(x, t), is then found to be

∂2h

∂t2 = 1

π
−
∫ ∞

−∞
Q(ξ, t)

ξ − x
dξ (17)

for −∞ < x < ∞.
Hence, the pre-impact dynamics are described by the coupled singular integro-differential system (15), (17)

subject to suitable initial and far-field conditions. The system is readily solved numerically by adapting the method-
ology of [28], in which Q and h are represented by complex Fourier series, which allows (17) to be solved as a
system of ordinary differential equations for the time-dependent Fourier coefficients. The lubrication equation (15)
can then be solved as an ordinary differential equation for Q given h. This process is iterated at each time station
until a desired convergence is achieved. The code terminates when the minimum thickness between the body and
the pool reaches a certain tolerance to indicate touchdown. There is a delicate balance between the convergence rate
of the iterative procedure and the closeness to touchdown: for the simulations presented in this paper, since we are
concentrating on the post-impact behaviour rather than a detailed analysis of touchdown, we terminated the code
once this thickness was less than 10−2 dimensionless units.
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Fig. 1 Numerical solution of (15), (17) for a parabolic impactor, f (x) = x2/2. a The touchdown-free surface profile, hc(x), indicated
by the blue line. We have also included the body profile for reference in black. For this example, the touchdown time is tc ≈ 8.279 and
location is dc ≈ 4.985. b The free surface velocity, vc(x). While there is of course some deviation, we see that the assumption (19) is
not unreasonable at touchdown, with the air approximately moving down at the same velocity as the impactor. (Color figure online)

Since the time domain extends to −∞, the numerical methodology is quite sensitive to the correct early-time
behaviour when the impactor is far from the pool, so knowledge of the asymptotic solution for large negative time
is necessary to retain good accuracy in the simulations, and we discuss this in Sect. 2.1.

As shown in detail in [52], as time increases and the impactor approaches the free surface, there is a build up of
pressure in the air layer, which leads to symmetric deformation of the free surface. When the body is sufficiently
smooth (i.e. smoother than a wedge), the free surface depresses about x = 0, and rises up at x = ±d(t), which leads
to a further increase in pressure at these rises, where the air layer is thinnest. In the limit in which surface tension is
negligible, the solution breaks down at a time t = tc, when there is simultaneous touchdown at x = ±dc = ±d(tc).
The free surface, its velocity vc(x), and the velocity potential on y = 0 at touchdown are then given by

hc(x) = h(x, tc), vc(x) = ∂φc

∂y
(x, 0, tc), φc(x, y) = φ(x, y, tc), (18)

where the velocity potential is calculated from Bernoulli’s equation subject to the initial condition that φ → 0 as
t → −∞.

We show example touchdown profiles of hc(x) and vc(x) for the impact of the parabola f (x) = x2/2 in Fig.
1. By symmetry, we just consider x > 0. For this body, touchdown occurs at tc ≈ 8.279 with dc ≈ 4.985. In Fig.
1a, we can clearly see the entrapped air bubble at touchdown alongside the corresponding deformation of the free
surface. The free surface velocity at touchdown, vc(x), is shown in Fig. 1b. Between the contact points, we see that,
as reported in [52], the air that is trapped between the body and the liquid is moving down almost uniformly with
the impact velocity, so in effect, it is an extension of the solid body itself. This inspires our modelling assumption
for the post-impact analysis, where we take

vc(x) = −1 for − dc < x < dc. (19)

going forward. In practice and as seen in Fig. 1b, this limit is not identically realized. As discussed above, the
numerical pre-impact solution will need to be cut off at some point when the gap between the free surface and the
solid body reaches a certain height, and so there are limitations in terms of convergence of the code. Moreover, the
free surface velocity will not be identically −1, particularly near the peaks, where the rapid changes in free surface
just before touchdown mean that vc > 0 close to ±dc. However, for the majority of the interval −dc < x < dc, (19)
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is a good approximation, and it allows us to readily adapt the classical Wagner post-impact model to incorporate
these crucial pre-impact air interactions.

After touchdown, the air pocket pinches off, and it retracts and collapses into one or many bubbles [36,38]. For
the purposes of our post-impact analysis, we will neglect the effects of this process on the fluid flow, assuming that
it has a lower-order effect on the resulting impact problem. For this to be a reasonable assumption, the timescale
for the collapse of the bubble needs to be longer than that for the Wagner interactions that we discuss in Sect. 3. A
simple model for the collapse of an air bubble proposed by [36,37,53] is

dR∗
bub

dt∗
= −C

√
σ ∗

ρ∗
l V

∗
bub

R∗
bub (20)

where R∗
bub is the radius of the bubble, V ∗

bub is the initial bubble volume, and C is a constant. Experimental analysis
of solid spheres impacting onto a liquid pool in [36] show that C ∝ Oh−1/2 where Oh = μ∗

l /
√

ρ∗
l σ ∗R∗ is the

Ohnesorge number. Hence, if we approximate the volume of the entrapped bubble by V ∗
bub ∼ ε3R∗3, the timescale

for bubble collapse is given by

t∗bub = Oh1/2

√
ρ∗
l ε3R∗3

σ ∗ . (21)

On the other hand, as we shall see shortly, the Wagner timescale is the same as that for the pre-impact air–water
interactions and is thus given by

t∗Wagner = ε2R∗

V ∗ , (22)

so that our condition for neglecting the collapse of the entrapped air bubble in our analysis reduces to

t∗Wagner � t∗bub �⇒ ε � OhWe. (23)

To see whether this assumption is reasonable, let us consider an illustrative example of an impactor of typical
radius of curvature R∗ = 1m impacting a deep water pool at speed V ∗ = 1ms−1. By (4), we find that ε ≈ 2.5×10−3,
while OhWe ≈ 1.7, so that the timescale for bubble collapse is much longer than that for the post-impact Wagner
interactions. We shall neglect the bubble henceforth.

Finally, we shall assume that φc, hc, and vc all admit Taylor series at each x . This is certainly reasonable in terms
of the velocity potential, which [52] show is smooth along the liquid-free surface for a range of different impactors.
For hc and vc, the only points that may present an issue are ±dc, at which the free surface becomes quite sharply
peaked (cf. Fig. 1). However, for all practical applications, the code must be terminated when the minimum air gap
is small but finite, so that the free surface is still smooth. Moreover, other physical effects such as surface tension
will smooth out any local peaks, so again, our assumptions are reasonable.

2.1 Key asymptotic results

Before proceeding to the post-impact analysis, however, we note some important asymptotic behaviours of the
solution of (15), (17) that are of relevance in both the numerical methodology and in our analysis of the post-impact
behaviour in Sect. 3–4.

2.1.1 ‘Far-away’ solution, t → −∞

In order to initiate our numerical solutions, we need to choose a time station when the impactor is far from the fluid,
so that t is large and negative. We shall assume that the impactor has a power-law profile f (x) = a|x |n , where
n ≥ 1 to retain convexity of the impactor and a > 0.
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Then, from (15), it is clear there are two distinct spatial regimes. When x = O(1), assuming that h decays at
infinity—which is physically desirable—we find the pressure gradient is given by

Q = 1

(−t)3 (−12x) + o((−t)−3) as t → −∞. (24)

However, far from the line of symmetry, when x = x̂(−t)1/n , we now have

Q = 1

(−t)3−1/n

( −12x̂

(a|x̂ |n + 1)3

)
+ o((−t)−3+1/n) as t → −∞. (25)

Thus,

Q = −12x

(a|x |n − t)3 + o

(
1

(−t)3

)
(26)

is a consistent leading-order solution for Q valid for all x as t → −∞.
Having determined Q, we can find the leading-order form of the free surface by considering (17), yielding

h = 6

π
−
∫ ∞

−∞
s

(a|s|n − t)

ds

x − s
+ o(1) (27)

as t → −∞. This is again valid for all x . In particular, we note that, at the line of symmetry, we have

h(0, t) = −12

a1/nn
cosec

(π

n

)
(−t)−1/n + o

(
(−t)−1/n

)
(28)

as t → −∞.
The form of (27) has important consequences for our numerical methodology. For a fixed given initial time,

−T , it is not sufficient to simply start with no air flow and a flat-free surface, particularly as n gets larger. Indeed,
unless we were to pick T to be extremely large, the error introduced by ignoring the far-away asymptotic behaviour
would dominate any introduced by a reasonable discretization of (15), (17). In fact, depending on the choice of T ,
it may be necessary to obtain the second-order term for h to achieve reasonable accuracy in the numerical solution.
While this analysis is fairly straightforward, we omit it here since the algebra becomes somewhat complicated and
uninformative for general n.

2.1.2 Large-|x | solution

When we consider the behaviour a long time after touchdown in Sect. 4, it is necessary to know the asymptotic
form of the touchdown free surface profile hc(x) and its velocity vc(x) for large |x |.

Let us suppose that t = O(1) and that x → ∞; we shall consider positive x without less of generality by the
symmetry of the problem. Then, for the same power-law body considered in the previous section, it is immediate
from (15) that the pressure gradient has the form:

Q = 1

x3n−1

(−12

a3n

)
+ o(x−3n+1) as x → ∞. (29)

We note that the requirement of convexity is important here, as it leads to the pressure decaying in the far field,
since 3n − 1 > 0.

Upon expanding the right-hand side of (17), we find that the contributions from the singular part of the integral
are lower order, so that

−
∫ ∞

−∞
Q(ξ, t)

ξ − x
dξ = − 1

x

∫ ∞

−∞
Q(s, t) ds − 1

x2

∫ ∞

−∞
sQ(s, t) ds + o(x−2) as x → ∞. (30)

Therefore, after recalling that Q(s, t) is an odd function so that the first term vanishes, we see that

hc = A(t)

x2 + o(x−2), vc = Ȧ(t)

x2 + o(x−2) as x → ∞, (31)

where A(t) depends on the pressure gradient across the whole of the domain. This ellipticity leads to the interesting
result that the free surface decays quadratically in x irrespective of the value of n ≥ 1.
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2d(t)

2c(t)

Fluid

y = ε(f(x)− t)

y = εh(x, t)

−j

Fig. 2 The post-impact configuration. Both the entrapped air bubble and the air ahead of the turnover points, x = ±d(t), are neglected.
The liquid-free surface is violently disturbed by the impacting body, forcing liquid into two splash jets that are attached to the impactor.
The wetted extent of the body, between the tips of these jets, is 2c(t)

3 Post-impact model: Wagner theory

At t = tc, since we ignore the role of the entrapped gas bubble, the solid body is assumed to be wetted over the
region |x | < dc, while the remainder of the body is not in contact with the liquid. As time progresses further, the
free surface is violently displaced into two high-speed, thin jets of liquid that shoot along the impacting body. For
t > tc, the picture is as in Fig. 2, in which x = ±d(t) now denote the turnover points where the free surface becomes
vertical and x = ±c(t) denote the tips of the jets (hence the extent of wetted region). For the remainder of this
analysis, we shall assume that the air layers between the jets/impactor and the liquid pool play a lower-order role in
the evolution of the impact. Hence, in particular, the jets are assumed to remain attached to the solid body and the
air between the body and ahead of the wetted region is essentially quiescent. The reader is directed to [46,50,51]
for a detailed investigation into the effect of these air regions after impact.

To investigate the post-impact behaviour, we shall follow the ideas of Wagner theory [1,4]. On the lengthscale
O(εR∗), which we recall was the appropriate lengthscale in the liquid for the pre-impact dynamics discussed in
Sect. 2, the boundary conditions linearize onto the undisturbed waterline, and the effect of the jets can be neglected.
Then, for t > tc, to leading order, the liquid velocity potential must, therefore, satisfy the mixed boundary value
problem:

∇2φ = 0,
∂φ

∂t
= −p in y < 0, (32a, b)

such that

∂φ

∂y
= −1 on y = 0, |x | < d(t) (33)

on the solid body, and

p = 0,
∂φ

∂y
= ∂h

∂t
on y = 0, |x | > d(t) (34a, b)

on the free surface. Far from the impact, the fluid is still quiescent, so that

∇φ → 0 as x2 + y2 → ∞, h → 0 as |x | → ∞, (35)

while the initial conditions at t = tc are given by (18) and d(tc) = dc.
By using the linearized Bernoulli equation (32b), we can integrate the dynamic boundary condition (34a), to

deduce that φ = φc(x, 0) on y = 0, |x | > d(t). Then, writing Φ = −φc(x, y) + φ, we transform (32)–(35) to the
mixed boundary value problem depicted in Fig. 3. In particular, we note that the Laplace equation is unchanged
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Fig. 3 The leading-order mixed boundary value problem for the Φ. A local analysis reveals that Φ ∼ S(t)
√

(x + iy)2 − d(t)2 as
|x + iy ∓ d(t)| → 0

since φc(x, y) must be harmonic in the lower half-plane. Moreover, the far-field condition is also unchanged by this
transformation.

The problem in Fig. 3 is codimension two in the sense that d(t) must be determined as part of the solution [3].
The region −d(t) < x < d(t) is often referred to as the effective contact set in impact literature, as it is the pressure
in this region that provides the dominant contribution to the slamming force. In particular, the change in boundary
condition type from the effective contact set |x | < d(t) to the non-contact set |x | > d(t) drives a singularity in the
flow. Since φc(x, 0) is assumed to have a valid Taylor expansion as x → ±d(t), it is readily shown that the local
analysis in [54] can be extended to the present case and that the least singular solution must be such that

Φ = O
(√

z2 − d(t)2
)

as |z ∓ d(t)| → 0, (36)

where we have introduced the complex number z = x + iy for convenience.
In essence, therefore, we have transformed the leading-order post-impact problem to the traditional Wagner

‘outer’ flat-plate problem [1,4], with an appropriate choice of impact velocity given by

V = −1 − ∂φc

∂y
(x, 0) = −1 − vc(x). (37)

By considering the function

G = i
√
z2 − d(t)2 dW

dz
, (38)

where W = Φ + iΨ is the complex potential and Ψ (x, y, t) the streamfunction, we transform the problem in Fig. 3
to a Dirichlet problem for Im(G). The branch cut for the square-root function is taken along the real axis between the
turnover points and is such that the function is real and positive for x > d(t). After solving the Dirichlet problem,
we find that the complex velocity is, thus, given by

dW

dz
= i

(
1 − z√

z2 − d(t)2

)
+ i

π
√
z2 − d(t)2

∫ d(t)

−d(t)

√
d(t)2 − s2

s − z
vc(s) ds. (39)

In (39), the first term is simply the classical Wagner solution for the constant-speed impact of a rigid body with
no air cushioning, while the integral term is the correction due to the pre-impact behaviour.

Applying the kinematic condition on the free surface (34b) and integrating with respect to time, we find that the
free surface profile is given by

h = − (1 − vc) (t − tc) +
∫ t

tc

x√
x2 − d(τ )2

dτ + hc(x) − 1

π

∫ t

tc

1√
x2 − d(τ )2

∫ d(τ )

−d(τ )

√
d(τ )2 − s2

s − x
vc(s) ds dτ

(40)

for x > d(t), and we can recover h for x < −d(t) by symmetry.
It remains to determine the evolution of the turnover point, d(t). Since the velocity and pressure are both singular

at x = ±d(t) (cf. (39)), the ‘outer’ solution breaks down, and we need to consider an ‘inner’ region in which the
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free surface turns over and fluid is forced into the high-speed, thin liquid jet. As discussed in detail in Appendix
A, these local regions centred on x = ±d(t), y = ε( f (d(t)) − t) have a typical lengthscale that is two orders of
magnitude smaller than that in the outer region, so that x ∓ d(t) = O(ε2) and y − ε( f (d(t)) − t) = O(ε2). In
this region, the leading-order problem is a quasi-steady Helmholtz flow and, in particular, matching between the
leading-order-outer and leading-order-inner free surface profiles necessitates that the so-called Wagner condition
must hold:

h(d(t), t) = f (d(t)) − t for t > tc. (41)

In essence, this is simply a statement of conservation of mass, in that it enforces the outer free surface profile to
meet the impacting body at the turnover point in this outer region [1,4].

By performing an asymptotic expansion of (40) close to the turnover point x = d(t), we find that

h = hc(d(t)) − (1 − vc(d(t))) (t − tc) +
∫ t

tc

d(t)√
d(t)2 − d(τ )2

dτ

− 1

π

∫ t

tc

d(τ )2√
d(t)2 − d(τ )2

∫ 1

−1

√
1 − S2

d(τ )S − d(t)
vc(d(τ )S) dS dτ

+
[√

2d(t)

ḋ(t)

(
1 + 1

π

∫ 1

−1

√
1 + S

1 − S
vc(d(t)S)

)
dS

] √
x − d(t) + o

(√
x − d(t)

)
(42)

as x − d(t) → 0+. Hence, the Wagner condition (41) gives

f (d(t)) − t = hc(d(t)) − (1 − vc(d(t))) (t − tc) +
∫ t

tc

d(t)√
d(t)2 − d(τ )2

dτ

− 1

π

∫ t

tc

d(τ )2√
d(t)2 − d(τ )2

∫ 1

−1

√
1 − S2

d(τ )S − d(t)
vc(d(τ )S) dS dτ. (43)

Typically, this must be inverted numerically, although we shall discuss some asymptotic sub-limits shortly.

3.1 Force on the impactor

The force per unit length on the impactor post-impact, F∗, is dominated by the contribution from this outer region
in which (x∗, y∗) = O(εR∗) and p∗

l = O(ρ∗
l V

∗2/ε), so that F∗ is O(ρ∗
l R

∗V ∗2). Even though the pressure in
the inner region is an order of magnitude larger than the pressure in the outer (see Appendix A) since the jet-root
region is two orders of magnitude smaller than the outer, the force contributions are lower. The contribution from
the jet itself is even smaller, as described in detail in [4]. By expanding the force per unit length on the impactor in
an asymptotic series of the form:

F∗ = ρ∗
l R

∗V ∗2 (F0 + O(ε)) , (44)

we can utilize the linearized Bernoulli equation (32b) to deduce that

F0 = −
∫ d

−d

∂

∂t
φ(x, 0, t) dx = −

∫ d

−d

∂

∂t
Φ(x, 0, t) dx = − d

dt

∫ d

−d
Φ(x, 0, t) dx (45)

where the final equality follows from Leibniz’s rule and the fact that the velocity potential is bounded at the turnover
points, x = ±d(t).

Now, we can evaluate (39) on x − i0, |x | < d(t) and take real parts to isolate Φx . Then, after integrating with
respect to x and recalling that Φx is square root bounded at x = −d(t), we see that

Φ(x, 0, t) = −
√
d(t)2 − x2 − 1

π

∫ x

−d(t)

1√
d(t)2 − ξ2

−
∫ d(t)

−d(t)

√
d(t)2 − s2

s − ξ
vc(s) ds dξ (46)

123



6 Page 12 of 23 M. R. Moore

for |x | < d(t). Therefore, substituting into the leading-order force expression (45), we have

F0 = πd(t)ḋ(t) + 1

π

d

dt

∫ d(t)

−d(t)

∫ x

−d(t)

1√
d(t)2 − ξ2

−
∫ d(t)

−d(t)

√
d(t)2 − s2

s − ξ
vc(s) ds dξ dx . (47)

The first term is the leading-order force predicted by traditional Wagner theory in the absence of air cushioning
[4], while the second term is the correction due to the pre-impact dynamics. We can simplify this by first switching
the order of the outer two integrals, and integrating the result with respect to x , yielding

F0 = πd(t)ḋ(t) + 1

π

d

dt

∫ d(t)

−d(t)

√
d(t) − ξ

d(t) + ξ
−
∫ d(t)

−d(t)

√
d(t)2 − s2

s − ξ
vc(s) ds dξ. (48)

Finally, we can switch the order of integration again and evaluate the principal value integral, leaving us with
the expression

F0 = πd(t)ḋ(t)

(
1 + 1

π

∫ d(t)

−d(t)

1√
d(t)2 − s2

vc(s) ds

)
(49)

for the leading-order force.
It is worth noting that, since the free surface velocity just prior to touchdown is negative between the pressure

peaks (see Fig. 1), we expect the air effects to reduce the force per unit length on the impactor from the classical
Wagner prediction, at least initially. It is in this sense that the air ‘cushions’ the impact. Note that, in particular,
since we assume vc = −1 between the free surface maxima at touchdown, at t = tc, the term in brackets in (49)
vanishes, so that F0(tc) = 0. In practice, at touchdown the air bubble between the solid and the liquid covers the
whole of the region between ±dc, so that we would need to consider the air pressure contributions to the slamming
force.

3.2 Outer pressure

Finally, both for completeness and for calculating composite pressure readings on different parts of the impactor in
Sect. 4, we state that the leading-order-outer pressure on the impactor is

p(x, t) = d(t)ḋ(t)√
d(t)2 − x2

− 1

π

d

dt

∫ x

−d(t)

1√
d(t)2 − ξ2

−
∫ d(t)

−d(t)

√
d(t)2 − s2

s − ξ
vc(s) ds dξ (50)

for |x | < d(t). To construct the composite pressure profile, we will need the local expansion of the pressure close
to the turnover point, which is given by

p(x, t) ∼ ḋ(t)
√
d(t)√

2

(
1 + 1

πd(t)

∫ d(t)

−d(t)

√
d(t) + s

d(t) − s
vc(s) ds

)
1√

d(t) − x
(51)

as d(t) − x → 0+. Note, again, for times just after touchdown, since vc(x) is predominantly negative for −d(t) <

x < d(t), the second term in (51) reduces the coefficient of the square-root singularity from the classical Wagner
solution, which is simply the first term in (50).

3.3 Jet thickness

While we relegate a detailed discussion of the inner region local to the jet roots to Appendix A, an important
prediction from the local analysis is the asymptotic jet thickness at its base, denoted by J (t). Fluid is ejected into
the splash jets from the inner region at speed U (t) = 2ḋ(t), so that U (t)J (t) gives the leading-order dimensionless
mass of fluid ejected in the splash. In Appendix A, we show that

J (t) = πd(t)

8ḋ(t)2

(
1 + 1

π

∫ 1

−1

√
1 + S

1 − S
vc(d(t)S) dS

)2

. (52)
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As with the slamming force, by the assumption that vc = −1 for −dc < x < dc, at t = 0, we have J (t) = 0.
Moreover, since the integral is negative, at least for small times, the jet thickness is reduced from the classical
Wagner solution, which is simply given by the first term in the brackets on the right-hand side of (52) (see, for
example, [4]).

4 Post-impact results for a power-law body profile

Let us consider the post-impact behaviour for an impactor that has a power-law profile of the form:

f (x) = a|x |n (53)

where n ≥ 1 and a > 0. In the absence of air cushioning, Wagner theory gives the leading-order location of the
turnover point to be

dWagner(t) =
(

π

2naB((n + 1)/2, (n + 1)/2)

)1/n

t1/n, (54)

where B(·, ·) is the Beta function, and the leading-order force on the impactor is

FWagner(t) = πdWagner(t)ḋWagner(t), (55)

as shown by [55]. In this section, we will investigate the influence of pre-impact cushioning on these results, and,
in particular, consider the dynamics just after and a long time after touchdown.

4.1 Small-time solution

We shall begin by considering the behaviour just after touchdown, so that t − tc → 0. We seek a solution for the
turnover point location by considering the asymptotic expansion

d(t) = dc + d̃1(t − tc)
β + o((t − tc)

β) as t − tc → 0, (56)

where β, d̃1 > 0. Upon substituting this expansion into the Wagner condition (43) and recalling that, by definition
of touchdown, adnc − tc − hc(dc) = 0, we see that

(
nadn−1

c − h′
c(dc)

)
d̃1(t − tc)

β − vc(dc)(t − tc) + o((t − tc))

=
√

2dc
d̃1β

(
1 + 1

π

∫ 1

−1

√
1 + s

1 − s
vc(dcs) ds

)
(t − tc)

1−β/2 + o((t − tc)
1−β/2) (57)

as t − tc → 0, where a prime indicates differentiation with respect to argument. Clearly, to retain a dominant
balance, we must take β = 2/3, with the coefficient of the correction to the location of the turnover point then given
by

d̃1 =
[

3
√
dcπ

4
√

2(nadn−1
c − h′

c(dc))

(
1 + 1

π

∫ 1

−1

√
1 + s

1 − s
vc(dcs) ds

)]2/3

. (58)

In the interests of considering the force on the impactor, it is relatively straightforward to show that the correct
form for the next term in the asymptotic expansion for the turnover point location is d̃2(t − tc)4/3, but given the
algebraic complication, we do not solve for d̃2 here.

Clearly, this behaviour is somewhat different to the classical Wagner solution (54). Naturally, this is due to the
fact that the initial contact set has non-zero measure, and indeed, the 2/3-scaling also occurs in the water entry of
a flat-bottomed wedge in the absence of air cushioning [56].
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We can use this knowledge of the early-time turnover point behaviour to investigate the leading-order force on
the impactor. Expanding (49) as t − tc → 0, we find that

F(t) = F̃0(t − tc)
−1/3 + F̃1(t − tc)

1/3 + o
(
(t − tc)

1/3
)

, (59)

where

F̃0 = 2πdcα

3

(
1 + 1

π

∫ 1

−1

vc(dcs)√
1 − s2

ds

)
, F̃1 = F̃0

αdc

(
α2 + 2dcd2

)
+ 2πdcα2

3

∫ 1

−1

sv′
c(dcs)√
1 − s2

ds. (60a, b)

We have included both of these terms to stress an important point when using numerical data of the pre-impact
behaviour. In the context of the model, in which we have assumed that (19) holds, the integral in (60a) is identically
−π so that F̃0 = 0, and hence, the force on the impactor is bounded as we approach touchdown. This is expected
in the post-impact model, which essentially does not see the air bubble at all. However, in practice, when using
simulation data, (19) will only be approximately true, so that when using numerical data, we would expect the
predicted post-impact force to be singular just after touchdown.

This is certainly a drawback of using the new model with real numerical data, but it is not a major concern. The
model is not valid for small scales just after touchdown in general, since the air bubble would still be expected to
cover a significant portion of the impactor between ±d(t). We expect that there is a transition from the viscous
air-cushioning forces on the impactor just before touchdown to the Wagner force just after touchdown, in which the
presence of the entrapped air makes an important contribution. We also note that this drawback is also true when
using classical Wagner theory itself; at small times just after touchdown, there will always be discrepancies between
these inviscid models and real-world data. While our current model with its appreciation of the air cushioning before
touchdown shares these problems at t − tc = 0+, it is a more realistic description of the flow for later times.

Here, we also note that in his model of the impact of a flat-bottomed wedge [56] finds contributions to the
leading-order force from both the inner and outer Wagner regions, rather than just the outer contribution here. This
is due to the fact that the pre-impact flow is neglected in [56], a somewhat unrealistic assumption, particularly
as air-cushioning effects are likely to be most crucial for body shapes of zero deadrise angle, [41]. In [56], the
velocity potential expansion includes a Heaviside function in time to account for this sudden change after impact,
which produces a leading-order force on the body comparable to that contributed by the inner region. Here, as we
include the effects of the pre-impact flow and free surface deformation, the contribution to the leading-order force
is dominated by the outer region, as is consistent with classical Wagner theory [4].

4.2 Large-time behaviour

We now consider the opposite extreme, a long time after touchdown as t → ∞. We assume that d(t) ∼ d̊1tγ as
t → ∞, where d̊1 > 0. Returning to the Wagner condition (43), the dominant term on the left-hand side is simply
the f (d(t)) term, which is of O(tγ n) as t → ∞. On the right-hand side, some careful analysis of the integrals
reveals that∫ t

tc

d(t)√
d(t)2 − d(τ )2

dτ = O(t),

∫ t

tc

d(τ )2√
d(t)2 − d(τ )2

∫ 1

−1

√
1 − S2

d(τ )S − d(t)
vc(d(τ )S, 0) dS dτ = O(t1−γ ) (61)

as t → ∞. Hence, the dominant balance enforces that γ = 1/n, and we retrieve the classical Wagner solution in
the absence of air at leading order with,

d̊1 =
(

π

2naB((n + 1)/2, (n + 1)/2)

)1/n

, (62)
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Fig. 4 The leading-order turnover point location, x = d(t), for the impact of the parabola f (x) = x2/2 (solid line). In this plot,
touchdown occurs at dc ≈ 4.985 at time tc ≈ 8.279. The red-dashed curve is the equivalent turnover point location in the absence of
air cushioning, that is d(t) = 2

√
t . Note that as time increases, we converge (slowly) onto this line. The inset displays a log–log plot

of the behaviour just after touchdown, with the blue-dashed line indicating the asymptotic limit (58). (Color figure online)

as in (54).
Therefore, for large times, the effect of the air cushioning is lower order, and the dominant behaviour is again

due to the inertia of the liquid alone. This is consistent with the comparisons of Wagner theory in the absence
of air cushioning with direct numerical simulations in, for example [18,19], where the Wagner prediction of the
turnover point location is shown to be remarkably accurate once the effect of the entrapped air is accounted for in
the numerical results.

The large-time solution for the force behaves similarly. It is straightforward to show that

F = π d̊2
1

n
t2/n−1 + O(t1/n−1) as t → ∞, (63)

which is precisely that predicted by classical Wagner theory in (55). While the air-cushioning effects come in at
O(t1/n−1), it is clear that sufficiently long after the initial touchdown, Wagner theory in the absence of air cushioning
provides a reasonable estimate of the leading-order force on the impactor.

4.3 Results for a parabolic impactor when t = O(1)

When t = O(1), we in general must proceed numerically. For this reason, we shall focus our investigation on
the impact of the parabola for which f (x) = x2/2. We recall that, as discussed in Sect. 2, for this body profile,
tc ≈ 8.279 and dc ≈ 4.985, and hc(x) and vc(x) are depicted in Fig. 1.

Given the presence of the air-cushioning terms, inverting the integral equation (43) is non-trivial, and must in
general be performed numerically, and we describe our methodology in detail in Appendix B. The results for the
parabola are presented as the solid grey line in Fig. 4 alongside the corresponding solution from classical Wagner
theory in the absence of air cushioning, for which tc = dc = 0 and d(t) = 2

√
t , which is depicted as the red-dashed

line. It is clear that the pre-impact dynamics inhibit the growth of d(t): as the body enters the liquid, the air has
cushioned the impact, delaying the growth of the effective contact set. As the impact progresses, however, the effect
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Fig. 5 The leading-order force F(t) on an impacting parabola scaled by πd(t)ḋ(t). When there is no pre-impact air cushioning, the
scaled force is simply 1, as indicated by the dashed red line. The inset shows a log–log plot of the scaled force just after touchdown
alongside the asymptotic solution (60) as a dashed blue line. (Color figure online)

of the air and the pre-impact dynamics fades, and we slowly converge on the Wagner solution as we found in Sect.
4.2. In the inset of the figure, we also see the behaviour just after touchdown, where there is excellent agreement
between the asymptotic solution (58) and the numerical solution over several decades. We note that, although their
results only go up to touchdown, these results compare favourably with the results in Fig. 4 of [52], in which the
Wagner solution over-predicts the location of the turnover curve in neglecting the effect of the air before touchdown.

We can use this numerical solution for d(t) to evaluate the scaled leading-order force on the impactor
F(t)/πd(t)ḋ(t) using (49), which we plot in Fig. 5. Note that, in the absence of air cushioning, this should simply
be unity for all t , which is included as the red-dashed line in Fig. 5 and, as expected from the far-field analysis of
Sect. 4.2, we approach this limit from below as t → ∞. However, it is clear that the air has significantly reduced
the slamming force when t = O(1). In the inset, we compare the scaled leading-order force to the asymptotic
expansion (60), showing excellent agreement. It is worth noting that, for this example, the numerical data for vc(x)
for −dc < x < dc is such that

1 + 1

π

∫ 1

−1

vc(dcs)√
1 − s2

ds ≈ 0.026, (64)

so that the force is singular at touchdown. Note that this singularity is not as apparent as it might be in Fig. 5
since, for t − tc = O(10−6), F̃0 given in (60a) is only O(1) by virtue of (64). Naturally, improved fidelity of the
pre-impact simulations would reduce this contribution even further but comes with associated additional costs to
computational time. Moreover, the points discussed previously in regard to the assumption (19) still stand.

Throughout the impact, the effect of the air is to reduce the scaled force on the impactor compared to the classical
Wagner prediction. We illustrate this in Fig. 6. The effect is most stark just after touchdown, where the reduction
is ≈ 97.4%, but this has decreased to a ≈ 2.5% reduction of the Wagner force at 10 dimensionless time units after
touchdown. For reference, considering an example of a cylindrical body of radius 1m impacting at 1 m/s into a pool
of water, the impact timescale ε2R∗/V ∗ ≈ 6.9 × 10−6s. Touchdown occurs at t∗c = ε2R∗tc/V ∗ = 5.7 × 10−5s,
and we reach the final point in Fig. 6 at t∗ = 1.3 × 10−4s. Therefore, the time period over which air cushioning has
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Fig. 6 The percentage
reduction of the scaled force
on the body F(t)/πd(t)ḋ(t)
from the classical Wagner
solution due to the
pre-impact air cushioning
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Fig. 7 Composite pressure
profiles on an impacting
parabola at (from top to
bottom)
x = 1.01dc, 2dc, 4dc. In
each plot, the solid black
line gives the composite
pressure including the
pre-impact air effects, while
the red-dashed line gives the
equivalent composite
pressure in the classical
Wagner problem (when
touchdown occurs at t = 0
at x = 0). (Color figure
online)
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an appreciable effect on the (scaled) force is significant. However, we note that the ratio of the penetration depth to
the radius of the cylinder at this time is, thus, O(10−4), so this is still the early stage of entry.

In Fig. 7, we plot time series of the composite pressure profile at different points on the body. Using van Dyke’s
matching rule [57], the composite pressure is given by

pcomp = p(x, t) + 1

ε
p̂((x − d(t))/ε2, t) − poverlap(x, t), (65)

where p(x, t) is given by (50), the jet-root pressure p̂(x̂, t) is given by (77) and poverlap(x, t) is given by (51). In
Fig. 7, we have chosen three stations ahead of the initial touchdown point, x = 1.01dc, 2dc, 4dc, and we show the
evolution of the pressure on the impactor at each point. After impact, initially the pressure felt on that part of the
body is very low, as its sole contribution would be from the splash jet, which is orders of magnitude smaller than
the pressures in the outer and inner regions [4]. Once the jet-root region reaches the station, there is a rapid increase
in pressure, the well-known Wagner pressure peak [8], and then a slow fall as the jet root moves further along the
body. Clearly, at stations further from the keel of the impactor, this pressure peak is much lower, as the violence of
the impact has diminished.
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Fig. 8 The reduction of the asymptotic jet thickness, J (t), from the classical Wagner solution, JWagner(t) = πd(t)/8ḋ(t)2 as a function
of time. Similar to the slamming force, at early times, there is a significant reduction in the amount of fluid entering the jet, but this
converges to the classical solution as the impact progresses. (Color figure online)

To compare to the classical theory, we also plot the equivalent composite pressure profiles at the same time
stations in the absence of any pre-impact air effects as the red-dashed curves in Fig. 7. The pressure profiles with
and without air cushioning are remarkably similar at each station, although the air introduces a pronounced shift to
later times. This suggests that the primary effect of air cushioning ahead of the touchdown point is simply to delay
the pressure response at a given location on the impactor, although as is clearly seen from the profile at x = 4dc,
this delay rapidly diminishes as we move further from the keel.

We note that we have not, however, said anything about the pressure profiles closer to the keel than the initial
point of touchdown. At these points, the largest pressures will be felt prior to touchdown, as the peaks in the free
surface profile induced by the air–water interactions governed by (15), (17) lead to large air pressures, and hence,
a significant contribution to the force felt by the impacting body. Since it is the goal of the present analysis to
concentrate on the role of the pre-impact air effects in the post-impact dynamics, we do not pursue this any further
here, but this is likely to be the reason that classical Wagner theory significantly overestimates the pressure peaks
very close to the keel of impacting bodies, but does extremely well at capturing the pressure further away, [4].

Finally, we consider the evolution of the jet thickness, J (t), given by (52). In Fig. 8, we show J (t) scaled by the
Wagner jet thickness, JWagner(t) = πd(t)/8ḋ(t)2 to illustrate the role of the pre-impact air effects. On trend with the
other impact properties, we see that at times just after touchdown, the jet thickness is substantially diminished from
the Wagner solution, but as the impact progresses, we converge back to the classical solution. At early stages of the
impact, this implies that the mass of fluid lost to the splash is, thus, smaller than the classical Wagner prediction,
which may have direct relevance in applications where reducing fluid losses is important.

5 Summary and discussion

In this analysis, we have adapted Wagner theory for water-entry problems to account for the well-known effects
of air cushioning before impact. Utilizing the analysis of [52], we showed that the air–water interactions that take
place when the air gap between the solid impactor and the liquid pool is sufficiently thin can be incorporated into
a Wagner-type theory post touchdown by neglecting the collapse and break-up of the entrapped air bubble. This
assumption is justified in the sense that the air bubble is, to a reasonable approximation, moving down vertically at
the same speed of the impactor close to touchdown and the timescale for bubble retraction and break-up is much
longer than the impact timescale.

Under this assumption, we formulated the post-impact problem as an adapted Wagner model in which the pre-
impact air effects enter as initial conditions. We were able to derive expressions for the location of the jet roots,
x = ±d(t), which give the size of the effective flat plate of the Wagner outer region, and the leading-order slamming
force on the impactor. In each case, the effect of the air is to cushion the impact in comparison to the model in
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which the air is neglected, namely by slowing the growth of d(t), reducing the force on the impactor and reducing
the amount of fluid lost into the splash jets.

However, we were able to show asymptotically that the effects of the pre-impact free surface deformation and the
resulting induced liquid flow become less important as the impact progresses, with the values of the turnover point
location, the force on the impactor, and the jet thickness at its base approaching the Wagner solution as t → ∞.
This partly explains the success of Wagner theory in predicting elements of droplet impact, as discussed by, for
example [18,19], despite the absence of the air-cushioning behaviour in the classical model.

We also considered the role of the pre-impact dynamics on the pressure history at points on an impacting
parabolic profile ahead of the initial point of touchdown. While the air cushioning delays the pressure response felt
at a particular location, the actual pressure profiles are remarkably similar to the classical Wagner model. Moreover,
the delay decreases rapidly as we move further from the keel of the impactor, indicating, again, that as the impact
progresses the effect of the air cushioning dies away, and the Wagner solution does admirably in capturing the
later-stage impact dynamics.

Hence, in all of our analysis, we have shown that pre-impact air cushioning has an important influence just after
touchdown, but that this influence diminishes as time increases. These findings may be of significance in industries
where the primary interest is in effects very close to touchdown/entry, for example, in ship-slamming or wave
impacts on coastal structures, where the peak stresses are of interest [58,59]. Our analysis has shown that classical
Wagner theory significantly overestimates, for example, the extent of the effective contact set and the slamming
force at these times. However, if the important effects are after the initial stage of slamming has died away, our
results show that neglecting the effect of the pre-impact air cushioning is a reasonable assumption.

It would be an interesting extension of the current analysis to include a model for the entrapped air bubble
after touchdown in the post-impact dynamics in order to rigorously scrutinize the assumption made in the present
analysis that its effect is small. One possible avenue for this may be to model the bubble as a patch cavity, as in
for example [25,60,61]. The slow timescale of bubble retraction may aid such an analysis, although care must be
taken in specifying suitable conditions at the trailing edges of the bubble.

Finally, we note that the post-impact methodology does not require the use of the pre-impact results of the reduced
coupled air–water model as described in Sect. 2 as the initial conditions for the post-impact model. Indeed, given
the power of direct numerical simulations (DNS) of the full Navier–Stokes equations in studying impact dynamics,
[18,22], one could readily take data from DNS of a given water-entry problem to find the time and location of
touchdown and the appropriate initial profiles for the free surface, free surface velocity and velocity potential. This
would also offer the exciting possibility of extensively comparing DNS to the predictions of the adapted Wagner
model to study the importance of pre-impact air effects in predicting properties of the post-impact dynamics, such
as the location of the jet root and the jet speed and thickness along its entire length.
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Appendix A: Jet-root region

The leading-order linearized post-impact problem in Fig. 3 predicts velocities and pressures that are square-root
singular as x → ±d(t). Naturally, the asymptotic model breaks down close to these points, and there is an inner
region in which nonlinear terms in the free surface boundary conditions become important. Returning to φ rather
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than Φ, the full outer region problem is given by

∇2φ = 0,
∂φ

∂t
+ p + ε

2
|∇φ|2 = 0 in the fluid (66a, b)

subject to

∂φ

∂y
= −1 − ε f ′(x)∂φ

∂x
(67)

on y = ε( f (x) − t), |x | < d(t), and

p = 0,
∂φ

∂y
= ∂h

∂t
+ ε

∂φ

∂x

∂h

∂x
(68a, b)

on y = εh(x, t), |x | > d(t). Thus, in order to bring in the nonlinearities local to the turnover points, the inner or
jet-root region is two orders of magnitude smaller than the linearized region [4], so that the pertinent scalings are

x = d(t) + ε2 x̂, y = ε ( f (d(t)) − t) + ε2 ŷ, h = f (d(t)) − t + εĥ, φ = ε
(
ḋ(t)x̂ + φ̂

)
, p = p̂

ε
. (69)

Under these scalings, the jet-root problem is, thus, given by

∇2φ̂ = 0, p̂ − ḋ(t)2

2
+ 1

2
|∇φ̂|2 = ε

d

dt
( f (d(t)) − t)

∂φ̂

∂ ŷ
− ε2

(
d̈(t) + ∂φ̂

∂t

)
in the fluid (70a, b)

subject to

∂φ̂

∂ ŷ
= ε

(
−1 − f ′(d(t) + ε2 x̂)

) (
ḋ(t) + ∂φ̂

∂ x̂

)
(71)

on the body, which is locally given by ŷ = ε f ′(d(t))x̂ + O(ε2), and

p̂ = 0,
∂φ̂

∂ ŷ
= ∂ ĥ

∂ x̂

∂φ̂

∂ x̂
+ ε

d

dt
( f (d(t)) − t) + ε2 ∂ ĥ

∂t
(72a, b)

on ŷ = ĥ. This is supplemented by the matching condition in the far field,

∂φ̂

∂ x̂
− i

∂φ̂

∂ ŷ
∼ −ḋ(t) + S(t)√

x̂2 + ŷ2
as x̂2 + ŷ2 → ∞, (73)

where S(t) is the coefficient of the inverse square-root singularity in the leading-order-outer velocity.
It is clear that, to leading order in ε, the inner problem (70)–(72) is unchanged from the standard Wagner inner

region [4]. Thus, the leading-order-inner solution is given parametrically by

φ̂ + iψ̂ = C(t) +
˙d(t)J (t)

π
(ζ − log ζ ) , x̂ + iŷ = − J (t)

π

(
1 + ζ + 4

√
ζ + log ζ

)
, (74)

where the fluid domain is in Im(ζ ) > 0, the branch cuts are taken along the negative real-ζ axis and the free surface
lies on ζ = ξ + i0, ξ < 0 [1]. The unknown function C(t) may only be determined by proceeding to higher order
in the asymptotic analysis, but it is not required for any of the predictions we make in the leading-order model. The
function J (t) gives the leading-order jet thickness as we move out of the inner region, and is found by matching
the inner and outer fluid velocities to be

J (t) = π S(t)2

16ḋ(t)2
. (75)
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Note that the jet thickness at the jet root depends on the pre-impact air-cushioning model through both d(t),
which satisfies the Wagner condition (43) and through S(t). By expanding (39) close to the contact point, we deduce
that

J (t) = πd(t)

8ḋ(t)2

(
1 + 1

π

∫ 1

−1

√
1 + S

1 − S
vc(d(t)S) dS

)2

. (76)

Finally, the leading-order-inner pressure on the impactor is given parametrically by

x̂ = −J (t)

π

(
1 + ξ + 4

√
ξ + log ξ

)
, p̂(ξ) = ḋ(t)2

2

(
1 −

(
1 − √

ξ

1 + √
ξ

)2
)

, (77)

where ξ > 0.

Appendix B: Numerical methodology for inverting the Wagner condition

It is most straightforward to invert the Wagner condition (43) by making the assumption that x = d(t) is invertible,
and we define

x = d(t) ⇐⇒ t = ω(x). (78)

Note that this assumption is valid provided ḋ(t) > 0, which is also a necessary condition for stability of the
classical Wagner problem [4] and is typically reasonable for problems in which the impact velocity is vertical and
uniform but may need closer investigation if the impact velocity is oblique [25], or if the solid body is taken as
deformable [31]. While the methodology is readily generalized, we shall present it for the case of an impacting
parabola as this is most relevant to the current study.

If we substitute t = ω(x) into (43), we find

x2

2
− tc − hc(x) − vc(x)(ω − tc) =

∫ x

dc

ω′(σ )x√
x2 − σ 2

dσ

− 1

π

∫ x

dc

ω′(σ )σ 2

√
x2 − σ 2

∫ 1

−1

√
1 − ξ2

σξ − x
vc(σξ) dξ dσ. (79)

Then, starting with the small-time asymptotic solution (58), we can solve for ω(x) by marching forward in x as
follows. Suppose that we know the solution up to a station x = x† − Δx . Then, at x†, we have

∫ x†

x†−Δx
ω′(σ )

(
x†

√
x†2−σ 2

− 1

π

σ 2

√
x†2−σ 2

∫ 1

−1

√
1−ξ2

σξ − x† vc(σξ) dξ

)
dσ +vc(x

†)w(x†)= x†2

2
−tc−hc(x

†)+

vc(x
†)tc−

∫ x†−Δx

dc
ω′(σ )

(
x†

√
x†2 − σ 2

− 1

π

σ 2

√
x†2 − σ 2

∫ 1

−1

√
1 − ξ2

σξ − x† vc(σξ) dξ

)
dσ

(80)

Everything on the right-hand side is known, while the first integral on the left-hand side can be approximated
asymptotically as follows:

∫ x†

x†−Δx
ω′(σ )

(
x†

√
x†2 − σ 2

− 1

π

σ 2

√
x†2 − σ 2

∫ 1

−1

√
1 − ξ2

σξ − x† vc(σξ) dξ

)
dσ

= ω′(x†)
√

2x†

(
1 + 1

π

∫ 1

−1

√
1 + ξ

1 − ξ
vc(x

†ξ) dξ

)√
Δx − ω′(x†)vc(x

†)Δx + o(Δx). (81)
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It is then straightforward to solve for ω(x†).

References

1. Wagner H (1932) Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten. Z Angew Math Mech 12:193–215
2. von Kármán T (1929) The impact of seaplane floats during landing. NACA TN 321
3. Howison SD, Morgan JD, Ockendon JR (1997) A class of codimension-two free boundary problems. SIAM Rev 39(2):221–253
4. Howison SD, Ockendon JR, Wilson SK (1991) Incompressible water-entry problems at small deadrise angles. J Fluid Mech

222:215–230
5. Armand JL, Cointe R (1987) Hydrodynamic impact analysis of a cylinder. ASME J Offshore Mech 111:109–114
6. Korobkin AA, Pukhnachov VV (1985) Initial asymptotics in contact hydrodynamics problems. In: Proceedings of 4th International

Conference on Numerical Ship Hydrodynamics, pp 138–151
7. Puknachov VV, Korobkin AA (1981) Initial asymptotics in problem of blunt body entrance into liquid. In: Proceedings of 3rd

International Conference on Numerical Ship Hydrodynamics, pp 579–591
8. Nethercote WC, MacKay M, Menon B (1986) Some warship slamming investigations. DREA Tech. Mem. 86/206
9. Oliver JM (2007) Second-order Wagner theory for two-dimensional water-entry problems at small deadrise angles. J Fluid Mech

572:59–85
10. Zhao R, Faltinsen O (1993) Water entry of two-dimensional bodies. J Fluid Mech 246:593–612
11. Campbell I, Weynberg P (1980) Measurement of parameters affecting slamming. Rep. 440, Wolfson Unit of Marine Technology.

Tech. Rep. Centre No. OT-R-8042, Southampton
12. Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution.

Annu Rev Mater Res 40:395–414
13. Smith HJC, Levy GJ, Shainberg I (1990) Water-droplet energy and soil amendments: effect on infiltration and erosion. Soil Sci

Soc Am J 54(4):1084–1087
14. Moreira ALN, Moita AS, Panao MR (2010) Advances and challenges in explaining fuel spray impingement: how much of single

droplet impact research is useful? Prog Energy Combust Sci 36(5):554–580
15. Morawska L (2005) Droplet fate in indoor environments, or can we prevent the spread of infection? In: Proceedings of 10th

International Conference of Indoor Air Quality and Climate, pp. 9–23
16. Yang S, Lee GWM, Chen CM, Wu CC, Yu KP (2007) The size and concentration of droplets generated by coughing in human

subjects. J Aerosol Med 20(4):484–494
17. Murphy DW, Li C, d’Albignac V, Morra D, Katz J (2015) Splash behaviour and oily marine aerosol production by raindrops

impacting oil slicks. J Fluid Mech 780:536–577
18. Cimpeanu R, Moore MR (2018) Early-time jet formation in liquid–liquid impact problems: theory and simulations. J Fluid Mech

856:764–796
19. Philippi J, Lagrée PY, Antkowiak A (2016) Drop impact on a solid surface: short time self-similarity. J Fluid Mech 795:96–135
20. Moore M, Whiteley JP, Oliver J (2018) On the deflection of a liquid jet by an air-cushioning layer. J Fluid Mech 846:711–751
21. Riboux G, Gordillo JM (2015) The diameters and velocities of the droplets ejected after splashing. J Fluid Mech 772:630–648
22. Thoraval MJ, Takehara K, Etoh TG, Popinet S, Ray P, Josserand C, Zaleski S, Thoroddsen ST (2012) von Kármán vortex street

within an impacting drop. Phys Rev Lett 108(26):264506
23. Judge C, Troesch A, Perlin M (2004) Initial water impact of a wedge at vertical and oblique angles. J Eng Math 48(3–4):279–303
24. Korobkin AA (1988) Inclined entry of a blunt profile into an ideal fluid. Fluid Dyn 23(3):443–447
25. Moore MR, Howison SD, Ockendon JR, Oliver JM (2012) Three-dimensional oblique water-entry problems at small deadrise

angles. J Fluid Mech 711:259–280
26. Moore MR, Howison SD, Ockendon JR, Oliver JM (2013) A note on oblique water entry. J Eng Math 81(1):67–74
27. Howland CJ, Antkowiak A, Castrejón-Pita JR, Howison SD, Oliver JM, Style RW, Castrejón-Pita AA (2016) It’s harder to splash

on soft solids. Phys Rev Lett 117(18):184502
28. Hicks PD, Purvis R (2017) Gas-cushioned droplet impacts with a thin layer of porous media. J Eng Math 102(1):65–87
29. Khabakhpasheva TI, Korobkin AA (2003) Approximate models of elastic wedge impact. In: Proceedings of 18th international

Workshop on Water waves and Floating Bodies
30. Korobkin AA, Khabakhpasheva TI (2006) Regular wave impact onto an elastic plate. J Eng Math 55(1–4):127–150
31. Pegg M, Purvis R, Korobkin AA (2018) Droplet impact onto an elastic plate: a new mechanism for splashing. J Fluid Mech

839:561–593
32. Chuang SL (1966) Experiments on flat-bottom slamming. J Ship Res 10(01):10–17
33. Fujita Y (1954) On the impulsive pressure of circular plate falling upon a water-surface (the 2nd report). J Zosen Kiokai

1954(94):105–110
34. Hagiwara K, Yuhara T (1974) Fundamental study of wave impact load on ship bow (1st report). J Soc Naval Arch Jpn 135:181–189
35. Huera-Huarte FJ, Jeon D, Gharib M (2011) Experimental investigation of water slamming loads on panels. Ocean Eng 38(11–

12):1347–1355

123



Introducing pre-impact air-cushioning effects... Page 23 of 23 6

36. Marston JO, Vakarelski IU, Thoroddsen ST (2011) Bubble entrapment during sphere impact onto quiescent liquid surfaces. J Fluid
Mech 680:660–670

37. Thoroddsen ST, Etoh TG, Takehara K, Ootsuka N, Hatsuki Y (2005) The air bubble entrapped under a drop impacting on a solid
surface. J Fluid Mech 545:203–212

38. Thoroddsen ST, Takehara K, Etoh TG (2010) Bubble entrapment through topological change. Phys Fluids 22(5):051701
39. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of

all-polymer transistor circuits. Science 290(5499):2123–2126
40. Verhagen JHG (1967) The impact of a flat plate on a water surface. J Ship Res 11(04):211–223
41. Wilson SK (1991) A mathematical model for the initial stages of fluid impact in the presence of a cushioning fluid layer. J Eng

Math 25(3):265–285
42. Hicks PD, Purvis R (2010) Air cushioning and bubble entrapment in three-dimensional droplet impacts. J Fluid Mech 649:135–163
43. Hicks PD, Purvis R (2013) Liquid-solid impacts with compressible gas cushioning. J Fluid Mech 735:120–149
44. Mandre S, Mani M, Brenner MP (2009) Precursors to splashing of liquid droplets on a solid surface. Phys Rev Lett 102(13):134502
45. Mani M, Mandre S, Brenner MP (2010) Events before droplet splashing on a solid surface. J Fluid Mech 647(1):163–185
46. Purvis R, Smith FT (2004) Air-water interactions near droplet impact. Eur J Appl Math 15(6):853–871
47. Smith FT, Li L, Wu GX (2003) Air cushioning with a lubrication/inviscid balance. J Fluid Mech 482:291–318
48. Bouwhuis W, Hendrix MHW, van der Meer D, Snoeijer JH (2015) Initial surface deformations during impact on a liquid pool. J

Fluid Mech 771:503–519
49. Hicks PD, Ermanyuk EV, Gavrilov NV, Purvis R (2012) Air trapping at impact of a rigid sphere onto a liquid. J Fluid Mech

695:310–320
50. Moore MR, Ockendon JR, Oliver JM (2013) Air-cushioning in impact problems. IMA J Appl Math 78(4):818–838
51. Moore MR, Oliver JM (2014) On air cushioning in axisymmetric impacts. IMA J Appl Math 79(4):661–680
52. Ross S, Hicks PD (2019) A comparison of pre-impact gas cushioning and Wagner theory for liquid-solid impacts. Phys Fluids

31(4):042101
53. Oguz HN, Prosperetti A (1989) Surface-tension effects in the contact of liquid surfaces. J Fluid Mech 203:149–171
54. Gillow KA (1998) Codimension-two free boundary problems. DPhil thesis
55. Moore MR (2014) New mathematical models for splash dynamics. DPhil thesis
56. Oliver JM (2002) Water entry and related problems. DPhil thesis
57. Van Dyke M (1964) Perturbation methods in fluid mechanics. Academic Press, New York
58. Ghadirian A, Bredmose H (2019) Pressure impulse theory for a slamming wave on a vertical circular cylinder. J Fluid Mech 867:R1
59. Wang S, Soares CG (2017) Review of ship slamming loads and responses. J Marine Sci Appl 16(4):427–445
60. Howison S, Morgan J, Ockendon JR (1994) Patch cavitation in flow past a rigid body. In: Proceedings of an IUTAM Symposium

held in Birmingham. Bubble Dynamics and Interface Phenomena pp 219–226
61. Korobkin AA (2003) Cavitation in liquid impact problems. In: Proceedings of 5th International Congress on Cavitation

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

123


	Introducing pre-impact air-cushioning effects into the  Wagner model of impact theory
	Abstract
	1 Introduction
	2 Pre-impact model
	2.1 Key asymptotic results
	2.1.1 `Far-away' solution, trightarrow-infty
	2.1.2 Large-|x| solution


	3 Post-impact model: Wagner theory
	3.1 Force on the impactor
	3.2 Outer pressure
	3.3 Jet thickness

	4 Post-impact results for a power-law body profile
	4.1 Small-time solution
	4.2 Large-time behaviour
	4.3 Results for a parabolic impactor when t = O(1)

	5 Summary and discussion
	Acknowledgements
	Appendix A: Jet-root region
	Appendix B: Numerical methodology for inverting the Wagner condition
	References




