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 Abstract - This research addresses the problem of robust 

attitude control for a quadrotor operating in an environment 

polluted with lumped disturbances. A new continuous terminal 

sliding mode-based active anti-disturbance control 

(CTSMBAADC) is proposed by innovatively introducing a finite-

time disturbance observer (FTDO) in homogeneous continuous 

nonsingular terminal sliding mode control (HCNTSMC) law. The 

HCNTSMC scheme drives the states of the system to the reference 

setpoint in finite-time. Rigorous stability analysis of the feedback 

loop system is based on input-to-state stability (ISS) concept and 

more importantly Lyapunov theory. Real-time experiments are 

performed to validate the designed control law. Results witness 

that the proposed control structure offers superior performance in 

terms of robustness and accuracy while avoiding the singularity 

problem and significantly alleviating the chattering phenomenon. 
 

Index Terms - Attitude control; Quadrotor aircraft;  Nonsingular 

terminal sliding mode; Finite-time stability; Pixhawk autopilot.   

I.  INTRODUCTION 

A. Context and Motivations  

Unmanned Aerial Vehicles (UAV) can be broadly classified 

as fixed-wing [1] or multirotor type. Quadrotor is the most 

popular kind of multirotor aircraft owing to its particular flight 

mode, variety of sizes, and excellent hovering capabilities. 

Quadrotor has been extensively used in many fields [2] [3] [4] 

[5]. However, despite its catching features, a quadrotor suffers 

from crucial challenges particularly in terms of its control. 

Autonomous flight of a quadrotor is essentially dependent on 

accurate and robust attitude control of the aircraft. 

Substantially, since the quadrotor has an under-actuated nature, 

its position control is achieved by controlling the attitude 

subsystem [6] [7]. A quadrotor being an inherently nonlinear 

system with highly coupled dynamics involves internal 

modeling errors, parametric uncertainities and external 

disturbances. The controller design for the attitude system 

becomes an extremely challenging task. Therefore, the 

autonomous flight of this aircraft requires a sophoisticated 

control scheme for meeting flight mission requirements. 

Moreover, robustness, high control precision, and fast 

convergence appear to be key factors in the controller design. 

B. Literature Review  

Modern control of the quadrotor aircrafts using robust 

control techniques including Sliding Mode Control (SMC) is an 

active topic in UAV community [8]. Such a method offers 

design simplicity and fast response; besides, it can compensate 

theoretically exactly, bounded matched perturbations.  

Several recently reported research works focused on using 

robust control laws based on SMC for disturbances handling in 

the quadrotor system. Research reported in [9] attempted to 

enhance stability of an underactuated quadcopter aircraft using 

integral SMC based scheme. Another interesting work [10] 

considered the quadrotor model with disturbances and proposed 

a robust backstepping SMC law. However, a linear switching 

manifold has been used and thus the states are ensured to 

converge only asymptotically to the origin. Moreover, Linear 

SMC (LSMC) exhibits chattering problem that can saturate the 

actuators and also suffers from low accuracy and depreciated 

performance issues. One way to overcome some of  these 

problems is to have a nonlinear sliding manifold and employ 

Terminal SMC (TSMC) based control law that is aimed at 

achieving the convergence in finite-time [11]. Compared with 

LSMC, TSMC offers faster convergent response, however, it 

suffers from singularity and chattering. A variant, nonsingular 

TSMC (NTSMC) addresses the singularity problem. Going 

beyond NTSMC, research reported in [12] proposed an 

adaptive nonsingular fast TSMC with the objective to 

accurately track the reference trajectory. However, the response 

may be subjected to chattering phenomenon due to the 

discontinuous control signal involved. This phenomenon has 

been mitigated in this work by replacing sign(⋅) function with 

tanh(⋅) function. In contrast, continuous SMC based control 

laws involving continuous signals are well known for their 

capability to eliminate chattering [2]. Continuous NTSMC 

(CNTSMC) offers improved precision and finite-time 

convergence. Considering a two links flexible arm, research in 

[13] proposed a CNTSMC based controller to realize robust 

control with uncertain conditions. 

To the best of authors’ knowledge, a small number of 

scientific contributions e.g. [2] and [14] investigate the 

continuous SMC based schemes for quadrotor aircrafts. A 

recently reported work [15] presents an adaptive SMC based 

disturbance observer for nonlinear system with uncertainities, 

However, the dynamics of the disturbance observer are not 

analyzed collectively with the stabilizing feedback controller. 

Inspired by [15], the primary focus of the present work is to 

present experimental results with an aim of bridging the gap 

between theoretical fronts and practical scenerios. 



C. Contributions 

The key scientific contributions of the present research can 

be summarized as: 

• Robust design of a nonlinear controller to control the attitude 

of a quadrotor aircraft operating in an environment polluted 

with various disturbances. Owing to continuous nature of the 

designed control algorithm, chattering is avoided which is 

inherently present in works (e.g. [9], [10]) based on 

discontinuous SMC based schemes. Moreover, the present 

work avoids the singularity issue which is present in the 

traditional TSMC. 

• In contrast to [15] the disturbance observer dynamics are 

analyzed jointly with the controller dynamics in the stability 

proof to ensure the boundedness of the error signlas. 

• Experimental comparative analysis using a real quadrotor 

platform is conducted. 
 

This paper is organized in five sections. Section II presents 

preliminaries and states the problem focused in the paper. The 

control algorithm is proposed in Section III with a rigorous 

mathematical treatment on stability. Section IV presents the 

experimental results with a critical discussions on the obtained 

results.  Finally, Section V concludes the paper and explores 

potential avenues for related research. 

II.  PRELIMINARIES AND PROBLEM STATEMENT 

A. Preliminaries 
 

Lemma 1. ( [16]). (Global finite-time stability (GFTS)). If the 

parameters 𝑏𝑖 > 0 , 𝑖 = 1,… , 𝑛    make the polynomial 𝑝𝑛 +
𝑏𝑛𝑝

𝑛−1 +⋯+ 𝑏2𝑝 + 𝑏1 be Hurwitz, i.e. all of its roots lie in 

the stable region (left half plane), the origin of the system given 

in (1) 

{
�̇�𝑖 = 𝑥𝑖+1,   𝑖 = 1, … , 𝑛 − 1                                          

�̇�𝑛 = −𝑏1|𝑥1|
𝛼1sign(𝑥1) − ⋯− 𝑏𝑛|𝑥𝑛|

𝛼𝑛sign(𝑥𝑛).
 (1) 

is in stable equilibrium in finite-time in global context, where 

𝛼𝑖  are determined as:  𝛼1 = 𝛼  for 𝑛 = 1, and 𝛼𝑖−1 =
𝛼𝑖𝛼𝑖+1

2𝛼𝑖+1−𝛼𝑖
 

for 𝑖 = 2,… , 𝑛   ∀𝑛 ≥ 2. 

 

Lemma 2. ( [15]). (Input-to-state stability (ISS)). Considering 

the system represented as �̇� = 𝐹(𝑥, 𝑣) = 𝑓(𝑥) + 𝑔(𝑥)𝑣 where 

𝐹: 𝐷 × 𝐷𝑣 → ℝ𝑛 is locally Lipschitz in 𝑥, the domain 𝐷 ∈ ℝ𝑛 

involves 𝑥 = 0, and the domain 𝐷𝑣 ∈ ℝ
𝑚  contains 𝑣 = 0. If 

origin of system �̇� = 𝑓(𝑥) is stable asymptotically and 𝑔(𝑥) is 

continuously differentiable, then �̇� = 𝐹(𝑥, 𝑣) is locally ISS.  

B. Problem Statement  
 

The differential equations governing the acceleration 

dynamics corresponding to rotational motion of the quadrotor 

(Fig. 1) subjected to disturbances is represented as [2] [16], 

{

�̈� = 𝐽𝑥𝑥
−1[(𝐽𝑦𝑦 − 𝐽𝑧𝑧)�̇��̇� + 𝑢𝛷 + 𝑑𝛷],                 

�̈� = 𝐽𝑦𝑦
−1[(𝐽𝑧𝑧 − 𝐽𝑥𝑥)�̇��̇� + 𝑢𝜃 + 𝑑𝜃],                  

�̈� = 𝐽𝑧𝑧
−1[ (𝐽𝑥𝑥 − 𝐽𝑦𝑦)�̇��̇� + 𝑢𝜓 + 𝑑𝜓].                

 (2) 

where 𝛷, 𝜃, 𝜓 ∈ ℝ  are the Euler angles, 𝐽𝑥𝑥 , 𝐽𝑦𝑦 , 𝐽𝑧𝑧 ∈ ℝ+ 

represent the moments of inertia, 𝑢𝛷 , 𝑢𝜃 , 𝑢𝜓 ∈ ℝ  are the 

control inputs and , 𝑑𝛷 , 𝑑𝜃 , 𝑑𝜓 ∈ ℝ  denote the lumped 

disturbances including parametric uncertainties, unmodeled 

dynamics and external disturbances.  

For the sake of generalization, the model given in (2) can 

consider the attitude synamics as a 2nd order perturbed nonlinear 

system. Hence, the model used in the design of control law can 

be written as 

{
�̇�1(𝑡) = 𝑥2(𝑡),                                                     

�̇�2(𝑡) = 𝑓𝜂(x, 𝑡) + 𝑔𝜂(x, 𝑡)𝑢𝜂(𝑡) + 𝑑𝜂(x, 𝑡).
 (3) 

here  x ≝ [𝑥1, 𝑥2]
𝑇 ∈  ℝ2  is the state vector, where 𝑥1 ≝ 𝜂 =

[𝛷, 𝜃, 𝜓]𝑇 ∈  ℝ3 ,  𝑥2 ≝ �̇� = [�̇�, �̇�, �̇�]
𝑇
∈  ℝ3 , and 𝑑𝜂(x, 𝑡) ≝

[𝑑𝛷, 𝑑𝜃, 𝑑𝜓]
𝑇
∈  ℝ3 is the overall lumped disturbance satisfying 

‖�̇�𝜂‖ ≤ 𝐿𝑑𝜂  for a bounded Lipschitz constant 𝐿𝑑𝜂 < ∞, 𝑢𝜂 ≝

[𝑢𝛷 , 𝑢𝜃 , 𝑢𝜓]
𝑇

is the control input vector. 𝑓𝜂(x, 𝑡), 𝑔𝜂(x, 𝑡) ≠ 0 

are nonlinear differentiable functions defined as 

{

𝑓𝛷(x, 𝑡)≝  𝐽𝑥𝑥
−1(𝐽𝑦𝑦 − 𝐽𝑧𝑧)�̇��̇�, 𝑔𝛷 ≝ 𝐽𝑥𝑥

−1,   

𝑓𝜃(x, 𝑡)≝   𝐽𝑦𝑦
−1(𝐽𝑧𝑧 − 𝐽𝑥𝑥)�̇��̇�, 𝑔𝜃 ≝ 𝐽𝑦𝑦

−1,   

𝑓𝜓(x, 𝑡)≝   𝐽𝑧𝑧
−1(𝐽𝑥𝑥 − 𝐽𝑦𝑦)�̇��̇�, 𝑔𝜓 ≝ 𝐽𝑧𝑧

−1.  

 (4) 

 

Remark 1. The unmodeled dynamics in the present work 

include aerodynamical and gyroscopic effect moments. These 

are not taken into account in the design of the control law. 

Therefore, they will be considered as disturbances. 
 

 
Fig. 1. Experiment setup for the quadrotor’s attitude control. 

 

Definition 1. The considered control problem comprises of 

design of a finite-time robust control law 𝑢𝜂 = [𝑢𝛷, 𝑢𝜃 , 𝑢𝜓]
𝑇
for 

the attitude system subjected to perturbations in (3), such that 

• Errors in tracking the attitude reference approach to the 

origin in a finite-time 𝑇𝑐 ,i.e., 𝜂(𝑡) − 𝜂𝑑(𝑡) ≡ 0, ∀ 𝑡 ≥ 𝑇𝑐. 
• The designed control law should demonstarte good robust 

response against lumped disturbances and non-linearities. 

• The control signal is continuous, nonsingular and is free 

from chattering issues. 

III.  CONTROL DESIGN AND STABILITY ANALYSIS 

A. Finite-Time Disturbance Observer (FTDO) Design 
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visualization 
and C++ code 
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RC-controller 
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Metallic structure 
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Quadrotor with onboard 
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Considering the model given in (3) under the influence of 

external disturbances, design of a FTDO can be given as 

{
 
 
 

 
 
 
�̇�0 = ʌ0 + 𝑓𝜂 + 𝑔𝜂𝑢𝜂 ,                                

ʌ0 =  −𝜌1𝐿𝑑𝜂
1 3⁄ sign2 3⁄ (𝛾0 − �̇�) + 𝛾1,      

�̇�1 =  ʌ1,                                                         

ʌ1 = −𝜌2𝐿𝑑𝜂
1 2⁄ sign1 2⁄ (𝛾1 − ʌ0) + 𝛾2,    

�̇�2 = −𝜌3𝐿𝑑𝜂sign(𝛾2 − ʌ1).                     
                 

 (5) 

in which 𝜌1, 𝜌2, 𝜌3  and 𝐿𝑑𝜂  are constants, where 𝐿𝑑𝜂 > 0  and 

𝜌1, 𝜌2, 𝜌3 > 0. Besides, 𝛾0, 𝛾1 and 𝛾2 are estimates of �̇�, 𝑑𝜂 and 

�̇�𝜂, respectively. 

B. Homogeneous Continuous Nonsingular Terminal Sliding 

Mode Control Design 

Defining the attitude tracking error and its dynamics as 

{
𝑒𝜂 ≝ 𝜂 − 𝜂𝑑 ,

𝜚𝜂 ≝ �̇� − �̇�𝑑,
 (6) 

The derivative of (6) w.r.t. yields to 

{
�̇�𝜂 = 𝜚𝜂 ,        

�̇�𝜂 = �̈� − �̈�𝑑 .
 (7) 

HCNTSMC manifold for ensuring accurate performance of the 

attitude control system is defined as, 

𝑠𝜂 ≝ �̇�𝜂 + 𝑘𝜂1|𝑒𝜂|
𝛼1
sign(𝑒𝜂) + 𝑘𝜂2|𝜚𝜂|

𝛼2
sign(𝜚𝜂). 

(8) 

where 𝑘𝜂1 ≔ [𝑘𝛷1 , 𝑘𝜃1 , 𝑘𝜓1]
𝑇
, 𝑘𝜂2 ≔ [𝑘𝛷2 , 𝑘𝜃2 , 𝑘𝜓2]

𝑇
∈

ℝ+
3  and 𝛼1, 𝛼2 ∈  ℝ+  are some constants. The control input 

required to demonstrate the reaching phase of the manifold 𝑠𝜂 

and sliding motion on 𝑠𝜂 = 0 is designed as, 

𝑢𝜂 ≝ 𝑢𝑒𝑞𝜂 + 𝑔𝜂
−1𝑢𝑛𝜂 . 

(9) 

The sliding motion 𝑠𝜂 = 0 is used to obtain 𝑢𝑒𝑞𝜂  (equivalent 

control term). The dynamics of the sliding manifold when the 

feedback-loop system is approaching to the sliding surface 

𝑠𝜂 = 0 can be written as 

�̈� − �̈�𝑑 + 𝑘𝜂1|𝑒𝜂|
𝛼1
sign(𝑒𝜂) + 𝑘𝜂2|𝜚𝜂|

𝛼2
sign(𝜚𝜂) = 0, 

(10) 

Substituting �̈� by its expression from (3) into (10), and after 

some manipulations, 𝑢𝑒𝑞𝜂  can be obtained 

𝑢𝑒𝑞𝜂 ≝ 𝑔𝜂
−1(−𝑓𝜂 − 𝑘𝜂1|𝑒𝜂|

𝛼1
sign(𝑒𝜂)

− 𝑘𝜂2| 𝜚𝜂|
𝛼2
sign( 𝜚𝜂) − �̂�𝜂 + �̈�𝑑). 

(11) 

The reaching control term  𝑢𝑛𝜂 ensures reaching of the sliding 

manifold in finite-time and is proposed as  

{
�̇�𝑛𝜂 + 𝜇𝜂𝑢𝑛𝜂 = 𝑢𝑠𝜂 , 𝑢𝑛𝜂(0) = 0

𝑢𝑠𝜂 = −(𝜐𝜂 + 𝜇𝜂 |𝑢𝑛𝜂|) sign(𝑠𝜂).    
 (12) 

 

where 𝜇𝜂, 𝜐𝜂  ∈ ℝ+ are positive constants. 

 

C. Stability Analysis for the Feedback-Loop System 

Theorem 1. For the nonlinear rotational system (3) with total 

disturbances 𝑑𝜂 , under the terminal sliding mode surface 

𝑠𝜂  given by (8), and the HCNTSMC control law 𝑢𝜂 (9) together 

with the FTDO dynamics (5) can guarantee that all signals in 

the feedback-loop system are bounded and ensure that the 

tracking errors are GFTS. 
 

Proof. The proof is given in three consecutive steps. 

Step 1. We prove here that the sliding surface 𝑠𝜂 demonstrate 

finite-time convergence to the equilibrium. Putting �̈� from (3) 

into the sliding manifold 𝑠𝜂 in (8), we get 

𝑠𝜂 = 𝑓𝜂 + 𝑔𝜂𝑢𝜂 + 𝑑𝜂 − �̈�𝑑 + 𝑘𝜂1|𝑒𝜂|
𝛼1
sign(𝑒𝜂)

+ 𝑘𝜂2|𝜚𝜂|
𝛼2
sign(𝜚𝜂), 

(13) 

By putting the control law 𝑢𝜂 (9)  into 𝑠𝜂 (13), the dynamics of 

the sliding manifold can be written as 

𝑠𝜂 = 𝑢𝑛𝜂 + 𝑑𝜂 − �̂�𝜂, 
(14) 

Furthermore, according to the preceding analysis, the 

disturbances 𝑑𝜂 can be estimated by the FTDO observer, hence 

𝑑𝜂 ≡ d̂𝜂 , and thereby 

𝑠𝜂 = 𝑢𝑛𝜂, 
(15) 

By differentiating (15) and substituting (12), one achieves 

�̇�𝜂 = �̇�𝑛𝜂 = −(𝜐𝜂 + 𝜇𝜂 |𝑢𝑛𝜂|) sign(𝑠𝜂) − 𝜇𝜂𝑢𝑛𝜂 . 
(16) 

Selecting the positive-definite Lyapunov function as 

𝑉𝜂 ≝ 𝑠𝜂
2 2⁄ , (17) 

By differentiating 𝑉𝜂 and then substituting (16), we get 

�̇�𝜂 = 𝑠𝜂�̇�𝜂 = 𝑠𝜂 [− (𝜐𝜂 + 𝜇𝜂 |𝑢𝑛𝜂|) sign(𝑠𝜂) − 𝜇𝜂𝑢𝑛𝜂], 

     ≤ −𝜐𝜂|𝑠𝜂| ≤ 0. 

(18) 

Then, it has 𝜐𝜂 > 0. Hence, this proves that the sliding manifold 

converges to zero 𝑠𝜂 = 0 in finite-time. 
 

Step 2. We show that the dynamics of the sliding mode variable 

𝑠𝜂  and disturbance estimation error 𝑒𝑜𝑏2 ≝ 𝛾1 − 𝑑𝜂 will not 

drive the error variables (𝑒𝜂 , �̇�𝜂) to infinity. Recalling the errors 

dynamics from (6). Let us define �̅�1 ≝ 𝑒𝜂, �̅�2 ≝ �̇�𝜂 = 𝜚𝜂  and 

�̅� ≝ [�̅�1, �̅�2]
𝑇. Then, the dynamics of the feedback-loop system 

(6) are rewritten as 

{
�̇̅�1 = �̅�2,                                   

�̇̅�2 = 𝑓𝜂 + 𝑔𝜂𝑢𝜂 + 𝑑𝜂 − �̈�𝑑,
 (19) 

Considering 𝑠𝜂 designed in (8), the dynamics of the perturbated 

system given in (19) are written as 

{
�̇̅�1 = �̅�2,                                                                                              

�̇̅�2 = −𝑘𝜂1|�̅�1|
𝛼1sign(�̅�1) − 𝑘𝜂2|�̅�2|

𝛼2sign(�̅�2) + 𝑠𝜂 − 𝑒𝑜𝑏2 .
                                                       

 (20) 

From (20), we can see that the sliding surface 𝑠𝜂  and the 

observation error 𝑒𝑜𝑏2  are included in the �̇̅�2 dynamics. Now, 

let us define the following finite-time bounded function for the 

closed loop-system (20) including sliding surface dynamics and 

tracking error dynamics 



𝑉(𝑠𝜂 , �̅�1, �̅�2) ≝ (𝑠𝜂
2 + �̅�1

2 + �̅�2
2) 2⁄ , (21) 

Note that |�̅�1|
𝛼1 ≤ 1 + |�̅�1|  and |�̅�2|

𝛼2 ≤ 1 + |�̅�2|  for 0 <
𝛼1, 𝛼2 < 1 . Differentiating 𝑉 along the system (20), one gets 

�̇� = 𝑠𝜂 �̇�𝜂 + �̅�1�̇̅�1 + �̅�2 �̇̅�2, 

    = 𝑠𝜂 [− (𝜐𝜂 + 𝜇𝜂 |𝑢𝑛𝜂|) sign(𝑠𝜂) − 𝜇𝜂𝑢𝑛𝜂] + �̅�1�̅�2 +

�̅�2(−𝑘𝜂1|�̅�1|
𝛼1sign(�̅�1) − 𝑘𝜂2|�̅�2|

𝛼2sign(�̅�2) + 𝑠𝜂 − 𝑒𝑜𝑏2),  

    ≤ −𝜐𝜂|𝑠𝜂| − 𝜇𝜂|𝑠𝜂| |𝑢𝑛𝜂| + 𝜇𝜂|𝑠𝜂| |𝑢𝑛𝜂| + �̅�1�̅�2 +

�̅�2[−𝑘𝜂1(1 + |�̅�1|) − 𝑘𝜂2(1 + |�̅�2|) + 𝑠𝜂 − 𝑒𝑜𝑏2],  

    ≤ −𝜐𝜂|𝑠𝜂| + |�̅�1�̅�2| + 𝑘𝜂1|�̅�1�̅�2| + (𝑘𝜂1 + 𝑘𝜂2)|�̅�2| +

𝑘𝜂2|�̅�2�̅�2| + |�̅�2𝑠𝜂| + |�̅�2𝑒𝑜𝑏2|,  

    ≤ −𝜐𝜂
1+𝑠𝜂

2

2
+

�̅�1
2+�̅�2

2

2
+ 𝑘𝜂1

�̅�1
2+�̅�2

2

2
+ (𝑘𝜂1 + 𝑘𝜂2)

1+�̅�2
2

2
+

𝑘𝜂2
�̅�2
2+�̅�2

2

2
+

�̅�2
2+𝑠𝜂

2

2
+

�̅�2
2+𝑒𝑜𝑏2

2

2
,  

    ≤ 𝐾𝑉𝑉 + 𝐿𝑉. 

 (22) 

where 𝐾𝑉 ≝ max{1 − 𝜐𝜂, 1 + 𝑘𝜂1 , 2𝑘𝜂1 + 3𝑘𝜂2 + 3} , and 

𝐿𝑉 ≝ max {−𝜐𝜂 + 𝑘𝜂1 + 𝑘𝜂2 +
𝑒𝑜𝑏2
2

2
}  are bounded constants. 

Thus, it can be concluded from (22) that 𝑉(𝑠𝜂 , �̅�1, �̅�2) and so 

𝑠𝜂 , �̅�1 = 𝑒𝜂, �̅�2 = �̇�𝜂 will not lead to ∞ in finite-time. 
 

Step 3. This step shows the finite-time convergence of tracking 

error  𝑒𝜂  to the origin along with the surface 𝑠𝜂 = 0  after 

reaching the sliding manifold. With 𝑠𝜂 = 0 , using (10) and 

taking �̅�1 = 𝑒𝜂, �̅�2 = 𝜚𝜂, one has 

�̈� = �̈�𝑑 − 𝑘𝜂1|�̅�1|
𝛼1sign(�̅�1) − 𝑘𝜂2|�̅�2|

𝛼2sign(�̅�2) (23) 

Recalling the errors dynamics from (6) with �̅� = [�̅�1, �̅�2]
𝑇 

{
�̇̅�1 = �̅�2,                                  

�̇̅�2 = �̈� − �̈�𝑑 ,                          
 (24) 

Substituting (23) into error dynamics’ expressions, one gets 

{
�̇̅�1 = �̅�2,                                                                       

�̇̅�2 = −𝑘𝜂1|�̅�1|
𝛼1sign(�̅�1) − 𝑘𝜂2|�̅�2|

𝛼2sign(�̅�2).
 (25) 

The stabilization of the tracking error  (𝑒𝜂, 𝜚𝜂) to zero along 

𝑠𝜂 = 0 follows from Lemma 1. Thus, they are guaranteed to be 

GFTS. Henc e, this proves the finite-time stability of the 

attitude control system. 

 

Theorem 2. The perturbated system given in (3) can be 

controlled by applying the designed law 𝑢𝜂  (9), which 

guarantees ISS of the feedback-loop attitude system inspite of 

the presence of disturbances. 
 

Proof. The dynamics of the feedback-loop system after 

application of the control input (9) to the system (3) can be 

written as 

{
�̇�1(𝑡) = 𝜒2(𝑡),                                           

�̇�2(𝑡) = 𝐹𝜂 (𝑋, 𝑢𝑛𝜂, 𝑡).                             
 (26) 

where 𝐹𝜂 is defined as  

𝐹𝜂 ≝ −𝑘𝜂1|�̅�1|
𝛼1sign(�̅�1) − 𝑘𝜂2|�̅�2|

𝛼2sign(�̅�2) + 𝑢𝑛𝜂
+ 𝑑𝜂 − �̂�𝜂 + �̈�𝑑. 

(27) 

Using the errors dynamics from (24) and then substituting (3), 

the following feedback-loop system with disturbances input is 

obtained 

{
�̇̅�1 = �̅�2,                                                                                  

�̇̅�2 = −𝑘𝜂1|�̅�1|
𝛼1sign(�̅�1) − 𝑘𝜂2|�̅�2|

𝛼2sign(�̅�2) + �̅�𝜂,
 (28) 

The above system (28) can be formulated as  

�̇̅� ≝ 𝒶𝜂(�̅�) + 𝒷𝜂�̅�𝜂, (29) 

where 𝒶𝜂(�̅�), 𝒷𝜂 and the input �̅�𝜂 are defined as  

𝒶𝜂(�̅�)≝ [
�̅�2

−𝑘𝜂1|�̅�1|
𝛼1sign(�̅�1) − 𝑘𝜂2|�̅�2|

𝛼2sign(�̅�2)
], (30) 

𝒷𝜂 ≝ [0 1]𝑇 , �̅�𝜂 ≝ 𝑢𝑛𝜂 + 𝑑𝜂 − �̂�𝜂.  
(31) 

where 𝑢𝑛𝜂 is the control input. The disturbances input and its 

estimate are denoted by 𝑑𝜂  and �̂�𝜂  respectively. Since the 

observation error 𝑒𝑜𝑏2  is bounded, it can be shown that 𝑢𝑛𝜂 is 

bounded as in [15]: |𝑢𝑛𝜂 + 𝑑𝜂 − �̂�𝜂| ≤ |𝑢𝑛𝜂| + |𝑑𝜂 − �̂�𝜂| ≤

2|𝑒𝑜𝑏2|. It follows from Lemma 1 that the autonomous system 

�̇̅� = 𝒶𝜂(�̅�)  demonstrates finite-time stability and hence the 

system is asymptotically stable. Furthermore, the system �̇̅� =
𝒶𝜂(�̅�) + 𝒷𝜂�̅�𝜂 given by (30) satisfies the conditions of Lemma 

2, thus it is locally ISS w.r.t the input signal despite the 

disturbances. Thereby, the angular signals remain bounded 

while the bounded input signal �̅�𝜂  is applied to the attitude 

system, which completes the proof. 

IV.  EXPERIMENT RESULTS AND DISCUSSIONS 

A. Software and Hardware Configuration 

The theoretical design has been validated by conducting 

experiments on a quadrotor aircraft platform illustrated in Fig. 

1. The proposed control law is realized on an onboard flight 

controller Pixhawk®. Considering the physical parameters of 

the aircraft as: 𝑚 = 1.636 kg, , 𝑙 = 0.225 m, 𝐽𝑥𝑥 =
0.0232 kg m2, 𝐽𝑦𝑦 = 0.0249 kg m

2, 𝐽𝑧𝑧 = 0.0342 kg m
2 . 

Table I lists the control parameters. 
 

TABLE I 

PARAMETERS OF CONTROLLER AND OBSERVER. 
Parameter Value Parameter Value 

𝑘𝛷1 40 𝜐𝜂 0.001 

𝑘𝜃1 = 𝑘𝜓1 30 𝜇𝜂  0.1 

𝑘𝛷2 23 𝜌1 2 

𝑘𝜃2 = 𝑘𝜓2 16.5 𝜌2 4.5 

𝛼1 0.5385 𝜌3 2 

𝛼2 0.70 𝐿𝑑𝜂  1.2 

 

B. Stabilization Experiment  

The purpose of this experiment is to demonstrate that the 

designed control algorithm can stabilize the attitude to the 

origin, i.e., 𝜂𝑑 = [0,0,0]
𝑇  deg, from a random given initial 

position of 𝜂0 = [𝛷0, 𝜃0, 𝜓0]
𝑇 = [20,−20,15]𝑇  deg. This 

situation resembles a flight hovery in reality. The attitude 

response is illustrated in Fig. 2. It is observed that the proposed 



control law can drive the attitude states (𝛷, 𝜃, 𝜓) from initial 

angles that are far from zero to the origin in finite-time for all 

the variables. 
 

 
Fig. 2. Convergence of the states (𝛷, 𝜃, 𝜓) to the origin. 

C. Tracking Experiment 

The attitude reference trajectory is given as 
[𝛷𝑑 , 𝜃𝑑 , 𝜓𝑑]

𝑇 ≝ [−10sin(0.1𝜋𝑡), 10sin(0.1𝜋𝑡), 15cos(0.1𝜋𝑡)]𝑇. 

Fig. 3 shows the actual and reference tracking states while Fig. 

4 presents the corresponding tracking errors. As illustrated, the 

proposed CTSMBAADC law permits accurate and robust 

tracking of the reference trajectory. 
 

 
Fig. 3. Orientation (𝛷, 𝜃,𝜓) for the tracking task. 

 

 

Fig. 4. Tracking error signals (𝑒𝛷 , 𝑒𝜃 , 𝑒𝜓). 

D. Robustness and Disturbance Rejection Experiments 

To quantify the superior performance achieved by the 

presented control law, series of experiments comparing various 

robust controllers are conducted. The controllers include; 

CTSMBAADC, backstepping sliding mode controller 

(BSSMC) [10],  twisting controller (TC) [14], and ANFTSMC 

[12]. A load of 117gm is attached to the edge of the arm of the 

quadrotor. Comparative results are provided in Fig. 5 where 

robust response offered by all the control techniques is evident. 

The techniques converge the orientation variables to the 

reference with the application of sustained load disturbance and 

abrupt variations in the reference setpoints. The preliminary 

analysis of orientation’s signals can show the high coupling of 

the attitude dynamics notably in the presence of disturbances. 

Since each degree of freedom is affected by the change of the 

other states. Hence, the peaks can be seen in the plots at the time 

one variable tracks a given set-point. The orientation errors are 

depicted in Fig. 6. This figure confirms that the null steady-state 

error is achieved for the attitude states. 
 

 

Fig. 5. Orientation (𝛷, 𝜃,𝜓): Comparison under load disturbance. 
 

Various standard performance indexes are used to 

characterize the comparison of the results achieved. These 

include Integral of the Absolute value of the Derivative of the 

input 𝑢  (IADU) and Integral of Square Error (ISE). These 

criteria are defined as  ISE ≝ ∫ 𝑒𝜂(𝜏)
2𝑡𝑓

𝑡𝑖
 𝑑𝜏,   IADU ≝

∫ |
𝑑𝑢𝜂(𝜏)

𝑑𝜏
|  𝑑𝜏

𝑡𝑓
𝑡𝑖

. TABLE II presents the calculated values 

corresponding to these indexes. 
 

TABLE II 

ISE AND IADU PERFORMANCE INDEXES FOR ATTITUDE CONTROL. 

Control strategy Performance index 

ISE IADU 

𝛷 𝜃 𝜓 𝛷 𝜃 𝜓 

TC  0.089 0.076 0.04527 3.290 3.394 3.116 

BSSMC  0.109 0.092 0.04537 7.921 3.183 1.209 

ANFTSMC 0.097 0.068 0.02768 3.028 2.694 1.182 

CTSMBAADC 0.066 0.064 0.02512 1.425 1.610 0.535 

 

It is clear from the Table that CTSMBAADC improves the 

accuracy in all the states. It can also be observed that 

ANFTSMC and TC controllers offer acceptable performance. 

Moreover, CTSMBAADC based law offers smoother response 

compared to the other controllers under discussion. Meanwhile, 

TC [14] and ANFTSMC [12] also allow mitigation of the 

chattering effect shown by BSSMC [10] approach by providing 

smoother control signals. Finally, the identified disturbances 

and control signals are shown in Fig. 7 and Fig. 8 respectively. 

V. CONCLUSION  

Considering a quadrotor system, this research proposed a 

CTSMBAADC approach to design an accurate and robust 

attitude control law. A control strategy has been designed while 

considering model uncertainties and disturbances externally 

acting on the rotational system. The control structure has been 

developed by combining an FTDO observer for unknown 

disturbances canceling and a HCNTSMC scheme to ensure 

finite-time convergence and singularity-free continuous 

control. Also, the stability of the feedback-loop system has been 

rigorously discussed and proved. Results based on  the 

experimental trials on a quadrotor aircraft are found to be 

consistent with the theoretical foundations. To thoroughly 

investigate the capabilities of the designed control law, a 
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comparative analysis based on various performance indexes is 

carried out. Results witness the effectiveness and superiority of 

the proposed control law in terms of robustness, accuracy and 

elimination of chattering phenomenon. Further studies will 

concentrate on the cartesian trajectory tracking with a real 

outdoor flight experiment. 
 

 

Fig. 6. Orientation errors (𝑒𝛷 , 𝑒𝜃 , 𝑒𝜓): Comparison under load disturbance. 
 

 

Fig. 7. Disturbance identification (�̂�𝛷 , �̂�𝜃, �̂�𝜓): Sustained load disturbance. 
 

 

Fig. 8. Control signals (𝒖𝜱, 𝒖𝜽, 𝒖𝝍): Comparison under load disturbance. 
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