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 Abstract - This paper proposes a novel control scheme for a 

group of quadrotors aircrafts that form a leader-follower 

configuration and are subjected to nonlinear behavior with 

lumped disturbances. For each aircraft, a distributed formation 

control law is designed. The desired geometrical pattern is 

achieved and the reference formation trajectory is tracked using 

the synthesized fixed-time position control robust law. 

Considering the overall feedback system, the presented work also 

presents a rigorous stability analysis of the system. Moreover, to 

characterize the control performance, simulations are conducted 

in a realistic ROS/Gazebo environment. Compared with the 

relevant literature, the proposed scheme demonstrates superior 

performance in practice because (i) convergence-time of the agents 

does not depend on their initial positions; (ii) chattering problem 

of switching control methods is avoided; (iii) zero error in steady-

state is obtained while ensuring robustness. 
 

 Index Terms – Continuous sliding mode control, Fixed-time 

control, Robust distributed formation control, Multi-agent system. 

I.  INTRODUCTION 

The formation control of quadrotors swarm is considered as 

one of the most interesting research problem in Unmanned 

Aerial Vehicles (UAV) community [1]. It has a large range of 

important applications including but not limited to; search and 

rescue, package delivery, and fire monitoring [2] [3] [4] [5]. A 

quadrotor aircraft is a six Degrees of Freedom (DoF) Multi-

Input Multi-Output (MIMO) underactuated system with highly 

nonlinear and strongly coupled dynamics [6]. The performance 

and operation of a quadrotor’s system is prone to serious effects 

as a result of disturbances [7]. Therefore, the control design for 

the formation of networked quadrotors is a complex task. The 

design of the formation control algorithm becomes more 

challenging since the distributed control relies only on the 

available information of the neighboring entities to achieve the 

desired behavior. 

The robust fixed-time distributed formation control of multi-

quadrotors is one of the persistent cooperative control problems 

in the related scientific community. Particularly, accuracy, 

strong robustness and fast convergence are prominent features 

of a formation control law. Therefore, a modern control 

technique is vital to design a reliable and robust distributed 

control scheme to achieve superior performance for the 

formation of the networked quadrotors. 

Scientific literature reports various studies that are focused 

on the formation control of the multi-quadrotor system. 

Compared with control methods providing asymptotic stability, 

the finite-time control exhibits better control performance, such 

as strong disturbance rejection capability, high precision and 

fast convergence rate [8]. Considering finite-time control 

approaches for formation control of multi-quadrotors, a 

distributed formation control method is addressed in [9] and 

[10]. Prospects of local communication for formation control is 

explored in [11].  

The key benefit of a finite-time stable system is its ability to 

demonstrate superior performance compared to an 

asymptotically stable system. However, the initial conditions 

deviating the system’s dynamics from the equilibrium point 

lead to increase the convergence time of finite-time control as 

discussed in [12]. One way of dealing this problem is to 

introduce an extension of finite-time stabilization [13]. Fixed-

time stability offers a provision of defining and adjusting a 

settling time that is uniformly bounded. Also, the states of the 

system can be stabilized in fixed-time regardless of the values 

of the initial conditions. These distinguishing features are 

instrumental in providing deep insight for formation control of 

multi-agent systems that require the agents to demonstrate 

fixed-time convergence to the desired trajectory. 

Another related avenue in formation control is stability 

analysis of fixed-time control laws. Research in [14] reports a 

formation of underwater Remotely Operated Vehicles (ROV) 

that autonomously work in leader-follower fashion. Work in 

[15] discusses a mobile robotic platform having nonholonomic 

constraints with a focus on design of a multivariable fixed-time 

control scheme for formation configuration. Another work 

involving nonholonomic constraints on multiple robots is 

reported in [16] where a fixed-time control for formatting 

tracking is investigated. For the multi-quadrotor formation 

control, a consensus algorithm and bi-limit homogeneity theory 

are exploited in [17] to develop a fixed-time formation control. 

Nevertheless, disturbances in the position subsystem are not 

taken into account and the presented disturbance observer 

limitedly considers estimated convergence time. Moreover, the 

control algorithm has not been verified through real hardware 

implementation.  

As per the authors’ knowledge, only a few reported works 

focus on the distributed fixed-time controller design of multi-

quadrotors formation. Therefore, a novel distributed control 

scheme is proposed in the present paper. The key contributions 

of this research can be summarized as: 

(i) Unlike asymptotic control, i.e., infinite-time convergent 

control, and finite-time convergent control methods, the 

tracking errors in the present work are shown to be stable in 

fixed-time regardless of the agents’ initial position. 



Moreover, the work thoroughly analyzes the stability of the 

closed-loop feedback control system.  

(ii) Owing to continuous nature of the control signal, the 

chattering phenomenon inherently found in discontinuous 

and switching control methods is avoided in this work. 

(iii) Extensive simulation experiments in a reliable and 

realistic ROS/Gazebo environment are conducted. A 

comparative study is exhaustively made to highlight the 

attained improvement. 
 

This paper is organized into five sections: Section II 

introduces fundamental concepts and formulates the control 

problem. Section III derives the design of the control law and 

analyzes stability of the system. Section IV presents results of 

simulation experiment with a critical discussion on the control 

performance achieved. Finally, conclusion and potential 

avenues of further research are discussed in Section V.  
 

Throughout this paper, the following notations are used. 

⌈𝑥⌋𝛼 is given by ⌈𝑥⌋𝛼 ≔ |𝑥|𝛼sign(𝑥) where 𝛼 ∈ ℝ+ and ∀𝑥 ∈
ℝ. The standard signum function is denoted by sign(⋅). For the 

sake of brevity, s𝑥 ∶=  sin 𝑥 and c𝑥 ∶=  cos 𝑥. 

II. PRELIMINARIES AND PROBLEM STATEMENT 

A. Preliminaries 

Consider a system given below with an initial condition 

𝑥(0) = 𝑥0, 

�̇�(𝑡) = 𝑓(𝑥), 𝑥 ∈ ℝ𝑛  (1) 

where the nonlinear function 𝑓: D × ℝ+ → ℝ𝑛 is continuous on 

an open neighborhood D ⊆ ℝ𝑛 of the origin. The equilibrium 

point of the system (1) is taken as the origin. 
 

Lemma 1. ( [18]). Let 𝑉(𝑥(𝑡)):ℝ𝑛 → ℝ is a positive definite 

and a continuous Lyapunov function with its derivative 

satisfying the condition �̇�(𝑥(𝑡)) ≤ −𝜆𝑉𝛼 − 𝜇𝑉𝛾 , where 

𝜆, 𝜇, 𝛼 > 1,  and 𝛾 < 1 are positive constants, then the origin of 

system represented in (1) demonstrate stability in fixed-time. 

Let 𝑇0 denotes the function corresponding to the settling-time. 

𝑇0 is uniform w.r.t the initial condition 𝑥(0) ∈ ℝ𝑛  and is 

bounded by 𝑇⋆  as 𝑇0 ≤ 𝑇
⋆(𝛼, 𝛾, 𝜆, 𝜇) ≔ (1 𝜆(𝛼 − 1)⁄ ) +

(1 𝜇(1 − 𝛾)⁄ ). 
 

Lemma 2. ( [18]). If the positive constants 𝑘𝑗 > 0, (𝑗 =

1, 𝑛̅̅ ̅̅̅)  make the 𝑛𝑡ℎ order polynomials 𝑠𝑛 + 𝑘𝑛𝑠
𝑛−1 +⋯+

𝑘2𝑠 + 𝑘1 and 𝑠𝑛 + 3𝑘𝑛𝑠
𝑛−1 +⋯+ 3𝑘2𝑠 + 3𝑘1 be Hurwitz in 

terms of Laplace operator (𝑠), the origin of the system (2) 

{
�̇�𝑖 =  𝑥𝑖+1,   𝑖 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                  

�̇�𝑛 = −∑ 𝑘𝑗
𝑛
𝑗=1 (⌈𝑥𝑗⌋

𝛼1,𝑗
+ ⌈𝑥𝑗⌋ + ⌈𝑥𝑗⌋

𝛼2,𝑗
).

  (2) 

is fixed-time stable equilibrium, where 𝛼1,𝑗 and 𝛼2,𝑗 are found 

based on the bi-limit homogeneity reasoning i.e.: 𝛼1,𝑛−𝑘 =
𝛼

(𝑘(1−𝛼)+1)
 and 𝛼2,𝑛−𝑘 =

(2−𝛼)

(𝑘(𝛼−1)+1)
, where 𝑘 = 0, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 

𝛼 ∈ (𝜖, 1), 𝜖 ∈ (
𝑛−2

𝑛−1
, 1).  

B. Problem Statement 

1). Quadrotor Dynamic Model  

The acceleration dynamics corresponding to each quadrotor 

agent subjected to disturbances is given as [2] [18] 

{
 
 

 
 �̈�𝑖 = −𝑚𝑖

−1 ((c𝛷𝑖s𝜃𝑖c𝜓𝑖 + s𝛷𝑖s𝜓𝑖)𝑢𝑖,𝑧 − 𝑘𝑖,𝑥�̇�𝑖 + 𝑑𝑖,𝑥
ext) ,

�̈�𝑖 = −𝑚𝑖
−1 ((c𝛷𝑖𝑠𝜃𝑖𝑠𝜓𝑖 − s𝛷𝑖c𝜓𝑖)𝑢𝑖,𝑧 − 𝑘𝑖,𝑦�̇�𝑖 + 𝑑𝑖,𝑦

ext) ,

�̈�𝑖 = −𝑚𝑖
−1 ((c𝛷𝑖c𝜃𝑖)𝑢𝑖,𝑧 − 𝑘𝑖,𝑧�̇�𝑖 + 𝑑𝑖,𝑧

ext) + g.                   

 (3) 

where 𝑖 = 0, 𝑁̅̅ ̅̅ ̅, 𝑚𝑖 is the quadrotor’s net mass,  g = 9.81m/s2 

is the gravity constant, 𝑘𝑖,𝑥, 𝑘𝑖,𝑦, 𝑘𝑖,𝑧 are aerodynamic drag 

coefficients,  �̇�𝑖 ≔ [�̇�𝑖 , �̇�𝑖 , �̇�𝑖]
𝑇 , and �̇�𝑖 ≔ 𝛶𝑖 = [𝜈𝑖,𝑥 , 𝜈𝑖,𝑦 , 𝜈𝑖,𝑧]

𝑇
, 

where 𝛶𝑖  is the translational speed. The terms 𝑑𝑖,𝜂
ext ≔

[𝑑𝑖,𝛷
ext, 𝑑𝑖,𝜃

ext, 𝑑𝑖,𝜓
ext]

𝑇
and 𝑑𝑖,𝑃

ext ≔ [𝑑𝑖,𝑥
ext, 𝑑𝑖,𝑦

ext, 𝑑𝑖,𝑧
ext]

𝑇
 denote the 

external time-varying disturbances acting on the rotational and 

translational accelerations of the quadrotor. 
 

Assumption 1. Owing to practical difficulties in identification 

of the aerodynamic coefficients 𝐾𝑖,𝑎 = diag(𝑘𝑖,𝑥 , 𝑘𝑖,𝑦 , 𝑘𝑖,𝑧), the 

unmodeled dynamics is the drag force 𝐹𝑖,𝑎 which is defined as 

𝑑𝑖,𝑃
unc ≔ [

𝑑𝑖,𝑥
unc

𝑑𝑖,𝑦
unc

𝑑𝑖,𝑧
unc

] = 𝐹𝑖,𝑎 = [

−𝑘𝑖,𝑥𝜈𝑖,𝑥 𝑚𝑖⁄

−𝑘𝑖,𝑦𝜈𝑖,𝑦 𝑚𝑖⁄

−𝑘𝑖,𝑧𝜈𝑖,𝑧 𝑚𝑖⁄

]. (4) 

 

Thus, from (3), the following second-order system with 

disturbances can be assigned to the translational dynamics of 

the leader and follower quadrotors as 

{

�̇�𝑖,3(𝑡) = 𝑋𝑖,4(𝑡),                                                    

�̇�𝑖,4(𝑡) = 𝑓𝑖,𝑃(𝑋𝑖,4, 𝑡) + 𝐹𝑖,𝑃(𝑋𝑖,1, 𝑡) + 𝑑𝑖,𝑃(𝑡),

𝒴𝑖,2(𝑡) = 𝑋𝑖,4(𝑡).                                                    

 (5) 

Here 𝑖 = 0, 𝑁̅̅ ̅̅ ̅ , where 𝑋𝑖,𝑃 ≔ [𝑋𝑖,3, 𝑋𝑖,4]
𝑇
∈  ℝ3×2  is the states 

vector, 𝑋𝑖,3 ≔ 𝑃𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]
𝑇 ∈  ℝ3, 𝑋𝑖,4 ≔ �̇�𝑖 = 𝛶𝑖 =

[�̇�𝑖 , �̇�𝑖 , �̇�𝑖]
𝑇 = [𝜈𝑖,𝑥 , 𝜈𝑖,𝑦 , 𝜈𝑖,𝑧]

𝑇
∈  ℝ3 . The controlled outputs 

vector is 𝒴𝑖,2 ≔ [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]
𝑇 ∈  ℝ3 . The uncertain function 

𝑑𝑖,𝑃(𝑡) ≔ [𝑑𝑖,𝑥, 𝑑𝑖,𝑦 , 𝑑𝑖,𝑧]
𝑇
= 𝑑𝑖,𝑃

ext + 𝑑𝑖,𝑃
unc ∈  ℝ3  summarizes 

the total lumped disturbances, where ‖�̇�𝑖,𝑃(𝑡)‖ ≤ 𝑙𝑃  and 0 <

𝑙𝑃 < ∞. The functions 𝑓𝑖,𝑃 and 𝐹𝑖,𝑃 are defined as: 

𝑓𝑖,𝑃 ≔ 𝐹𝑖,𝑎 = −𝐾𝑎𝑋𝑖,4. (6) 

𝐹𝑖,𝑃 ≔ [

𝐹𝑖,𝑥
𝐹𝑖,𝑦
𝐹𝑖,𝑧

] = [

−𝑢𝑖,𝑧𝑚𝑖
−1(c𝛷𝑖s𝜃𝑖c𝜓𝑖 + s𝛷𝑖s𝜓𝑖)

−𝑢𝑖,𝑧𝑚𝑖
−1(c𝛷𝑖s𝜃𝑖s𝜓𝑖 − s𝛷𝑖c𝜓𝑖)

−𝑢𝑖,𝑧𝑚𝑖
−1(c𝛷𝑖c𝜃𝑖) + g

]. (7) 

 

The control formulation in the present research involves 

designing a robust distributed nonlinear law for multiple 

quadrotors with a leader-follower structure. The formation 

pattern is determined by the desired relative position from the 

𝑖𝑡ℎ follower quadrotor to the leader quadrotor 0, where ∆𝑖0,𝑃 ≔

[∆𝑖0,𝑥, ∆𝑖0,𝑦 , ∆𝑖0,𝑧]
𝑇
, 𝑖 = 1,𝑁̅̅ ̅̅ ̅. 

 

Definition 1. Considering a multi-quadrotor system consisting 

of 𝑁 + 1  agents; 𝑁  followers 𝑖 ∈ {1, … , 𝑁}  with one leader 

labeled as 0. The dynamics expressing position of the agents is 

given in (5). Let the formation tracking errors along the 𝑥, 𝑦 and 

𝑧 axes be defined as 



𝑒𝑖,0
𝑃 (𝑡) ≔ 𝑃𝑖 − 𝑃0 − ∆𝑖0,𝑃. (8) 

where 𝑒𝑖,0
𝑃 (𝑡)  ≔ [𝑒𝑖,0

𝑥 , 𝑒𝑖,0
𝑦
, 𝑒𝑖,0
𝑧 ]

𝑇
∈  ℝ3, 𝑖 = 1, 𝑁̅̅ ̅̅ ̅ . The control 

problem is to design a distributed formation law 𝑢𝑖,𝑃 ≔

[𝑢𝑖,𝑥, 𝑢𝑖,𝑦, 𝑢𝑖,𝑧]
𝑇
∈  ℝ3 to ensure the following features: 

(i) Fast convergence to the desired formation pattern 

(ii) Robustness against lumped disturbances  

(iii) The tracking error of formation lead to the origin in a fixed-

time, i.e., for ∀𝑒𝑖,0
𝑃 (𝑡), ∀𝑖 = 1, 𝑁̅̅ ̅̅ ̅, ∃𝑇𝑓 > 0, such that 

lim
𝑡→𝑇𝑓

𝑒𝑖,0
𝑃 (𝑡) = 0,     ∀𝑡 > 𝑇𝑓 or lim

𝑡→𝑇𝑓
𝑃𝑖 − 𝑃0 = ∆𝑖0,𝑃 (9) 

 

 
Fig. 1. Quadrotor aircraft. Two identical experimental platforms are established 

and other platforms are being set-up to further conduct real outdoor flight 

experiments of the formation control.  

III. CONTROL DESIGN AND STABILITY ANALYSIS 

 The control of formation in a multi-agent system can be 

realized by robustly tracking the position references and 

stabilizing the attitude for each quadrotor. The present research 

exploits hierarchical control by adopting an inner-outer loop 

structure. The inner-loop is based on a PID controller while the 

outer-loop implements a distributed control law for robust 

tracking of the position. The inputs to the outer-loop are the 

states of the leader quadrotor and the relative position 

deviations between the leader and each follower ∆𝑖0,𝑃 . The 

outputs of the outer-loop are the velocities’ setpoints which are 

sent to the Pixhawk autopilot in ‘offboard mode’.  

A. Position Control Design  

The overall disturbances that affect the position subsystem 

are attenuated by the finite-time observer (FTO) designed in our 

previous work [2]. From (8), the formation tracking error and 

its dynamics are obtained as 

{
𝑒𝑖,0
𝑃 ≔ 𝑃𝑖 − 𝑃0 − ∆𝑖0,𝑃 ,

𝜖𝑖,0
𝑃 ≔ �̇�𝑖,0

𝑃 .                     
     ,    𝑖 = 1, 𝑁̅̅ ̅̅ ̅ (10) 

where 𝑃0 = [𝑥0, 𝑦0, 𝑧0]
𝑇 denotes the position of the leader and 

𝑃𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]
𝑇  refers to the position of followers. 𝜖𝑖,0

𝑃 ≔

�̇�𝑖,0
𝑃 = [𝜖𝑖,0

𝑥 , 𝜖𝑖,0
𝑦
, 𝜖𝑖,0
𝑧 ]

𝑇
 . By differentiating (10), we get 

{
𝜖𝑖,0
𝑃 = �̇�𝑖,0

𝑃 ,                  

𝜖�̇�,0
𝑃 = �̈�𝑖,0

𝑃 = �̈�𝑖−�̈�0.
 (11) 

To improve the tracking performance of the position system, 

this work proposes the following continuous nonsingular 

terminal sliding manifold for the position of each follower (5) 

𝑠𝑖
𝑃(𝑡) ≔ 𝜖�̇�,0

𝑃 (𝑡) + ∑ 𝑘𝑗
𝑃𝑛

𝑗=1 (⌈𝑒𝑖,𝑗
𝑃 (𝑡)⌋

𝛼1,𝑗
+ ⌈𝑒𝑖,𝑗

𝑃 (𝑡)⌋ +

⌈𝑒𝑖,𝑗
𝑃 (𝑡)⌋

𝛼2,𝑗
). 

(12) 

where the nonnegative parameters 𝑘𝑗
𝑃 , 𝛼1,𝑗 and 𝛼2,𝑗 are chosen 

based on Lemma 2. Besides, since the position system in (5) is 

a second-order system, we have 𝑛 = 2 , hence  𝑗 = 1,2  . 

Therefore, for 𝑗 = 1, 𝑒𝑖,1
𝑃 ≔ 𝑒𝑖,0

𝑃  and for 𝑗 = 2,  𝑒𝑖,2
𝑃 ≔ 𝜖𝑖,0

𝑃 . The 

control input needed to ensure the reaching phase of 𝑠𝑖
𝑃 and the 

sliding motion on 𝑠𝑖
𝑃 = 0 is designed as 

𝐹𝑖,𝑃 ≔ 𝑢𝑖,𝑒𝑞 + 𝑢𝑖,𝑟 (13) 

where 𝑢𝑖,𝑒𝑞  and 𝑢𝑖,𝑟  are parts corresponding to equivalent 

control and reaching control respectively. The 𝑢𝑖,𝑒𝑞  control 

keeps the variables on the sliding manifold whereas the 

𝑢𝑖,𝑟 control ensures the fast fixed-time convergence. 𝑢𝑖,𝑒𝑞  can 

be determined from the sliding motion 𝑠𝑖
𝑃 = 0 . Therefore, 

when 𝑠𝑖
𝑃 = 0, the sliding surface becomes as 

𝑠𝑖
𝑃 = 𝜖�̇�,0

𝑃 + ∑ 𝑘𝑗
𝑃𝑛

𝑗=1 (⌈𝑒𝑖,𝑗
𝑃 ⌋

𝛼1,𝑗 + ⌈𝑒𝑖,𝑗
𝑃 ⌋ + ⌈𝑒𝑖,𝑗

𝑃 ⌋
𝛼2,𝑗) = 0. (14) 

Thus, the equivalent control can be obtained as 

𝑢𝑖,𝑒𝑞 ≔ −𝑓𝑖,𝑃 − 𝑑𝑖,𝑃 + �̈�0 − ∑ 𝑘𝑗
𝑃𝑛

𝑗=1 (⌈𝑒𝑖,𝑗
𝑃 ⌋

𝛼1,𝑗
+ ⌈𝑒𝑖,𝑗

𝑃 ⌋ +

⌈𝑒𝑖,𝑗
𝑃 ⌋

𝛼2,𝑗
). 

(15) 

The 𝑢𝑖,𝑟  control is selected to make sure that the states’ 

trajectories reach the sliding manifold in fixed-time. The 𝑢𝑖,𝑟 

control is proposed as 

�̇�𝑖,𝑟 ≔ −𝑘𝑖
𝑃(⌈𝑠𝑖

𝑃⌋𝜉 + ⌈𝑠𝑖
𝑃⌋𝜀).  (16) 

where 𝑘𝑖
𝑃 , 𝜉, 𝜀 ∈ ℝ+ are positive constants. Finally, using (15), 

(16), and considering Assumption 1 (𝑓𝑖,𝑃 = 0), the required 

virtual control protocol 𝐹𝑖,𝑃
𝑑  is given as 

𝐹𝑖,𝑃
𝑑 ≔ −�̂�𝑖,𝑃 + �̈�0 −∑ 𝑘𝑗

𝑃𝑛
𝑗=1 (⌈𝑒𝑖,𝑗

𝑃 ⌋
𝛼1,𝑗

+ ⌈𝑒𝑖,𝑗
𝑃 ⌋ +

⌈𝑒𝑖,𝑗
𝑃 ⌋

𝛼2,𝑗
) − 𝑢𝑖,𝑟. 

(17) 

 

From the control point of view, 𝐹𝑖,𝑃
𝑑  are the velocities’ setpoints 

to be sent to the Pixhawk autopilot. 
 

Theorem 1. Considering the feedback-loop system comprising 

of (5) and the distributed control laws (17), the formation 

tracking errors are guaranteed to demonstrate fixed-time 

stabilization to the origin. 
 

Proof. Firstly, we investigate the fixed-time reaching of the 

sliding manifold. Secondly, convergence of the tracking errors 

along the sliding surface in fixed-time is proved. 
 

Step 1. By substituting 𝜖�̇�,0
𝑃  by its expression into the sliding 

surface 𝑠𝑖
𝑃(𝑡) in (12), we get 

𝑠𝑖
𝑃 = 𝑓𝑖,𝑃 + 𝐹𝑖,𝑃 + 𝑑𝑖,𝑃 − �̈�0 +∑ 𝑘𝑗

𝑃𝑛
𝑗=1 (⌈𝑒𝑖,𝑗

𝑃 ⌋
𝛼1,𝑗 +

⌈𝑒𝑖,𝑗
𝑃 ⌋ + ⌈𝑒𝑖,𝑗

𝑃 ⌋
𝛼2,𝑗) = 0. 

(18) 

Then, by substituting (17) into 𝑠𝑖
𝑃(18), we get 

𝑠𝑖
𝑃 = 𝑢𝑖,𝑟 + 𝑑𝑖,𝑃 − �̂�𝑖,𝑃, (19) 

Moreover, the FTO estimates the disturbances in finite-time 𝑇0, 

hence 𝑑𝑖,𝑃 ≡ �̂�𝑖,𝑃, and thereby 

𝑠𝑖
𝑃 = 𝑢𝑖,𝑟 ,           for 𝑡 ≥  𝑇0  (20) 

Quadrotor frame 
(DJI F450) 

XBee 
communication 

device 

Onboard PC  
(NVIDIA Jetson 

Nano) connected to 
Pixhawk autopilot 

Radio controller 



 
Fig. 2. Proposed control scheme for each follower quadrotor - Block diagram showing the integration of controller with quadrotor dynamics 

 

By differentiating (20) and using (16), we get 

�̇�𝑖
𝑃 = �̇�𝑖,𝑟 = −𝑘𝑖

𝑃(⌈𝑠𝑖
𝑃⌋𝜉 + ⌈𝑠𝑖

𝑃⌋𝜀) (21) 

Consider the candidate Lyapunov function given in (22) 

𝑉 ≔ ∑ |𝑠𝑖
𝑃|𝑁

𝑖=1 , (22) 

where |𝑠𝑖
𝑃| ≔ 𝑠𝑖

𝑃sign(𝑠𝑖
𝑃). The derivative of (22) w.r.t. time is  

�̇� = ∑ sign(𝑠𝑖
𝑃)�̇�𝑖

𝑃𝑁
𝑖=1 , 

    ≤ −∑ 𝑘𝑖
𝑃𝑁

𝑖=1 (⌈𝑠𝑖
𝑃⌋𝜉 + ⌈𝑠𝑖

𝑃⌋𝜀)  
(23) 

Then, we can get 

�̇� ≤ −𝑁1−𝜉𝑘(∑ |𝑠𝑖
𝑃|𝑁

𝑖=1 )𝜉 − 𝑘(∑ |𝑠𝑖
𝑃|𝑁

𝑖=1 )𝜀, 

    ≤ −𝑁1−𝜉𝑘 𝑉𝜉 − 𝑘𝑉𝜀   
(24) 

where 𝑘 > 0 and 𝑘 ≔ min{𝑘1
𝑃, 𝑘2

𝑃 , ⋯ , 𝑘𝑁
𝑃}. Let 𝑁1−𝜉𝑘, �̅� ≔ 𝑘. 

Thus, it follows from Lemma 1 that the settling time to 

guarantee the fixed-time reaching of the sliding manifold 𝑠𝑖
𝑥 =

0 is 𝑇𝑟 ≤ 𝑇max ≔
1

𝑁1−𝜉𝑘(𝜉−1)
+

1

𝑘(1−𝜀)
, which is not a function 

of the initial conditions. 

Step 2. When the sliding motion occurs (i.e., 𝑠𝑖
𝑃 ≡ 0), it yields 

�̈�𝑖 = �̈�0 −∑ 𝑘𝑗
𝑃𝑛

𝑗=1 (⌈𝑒𝑖,𝑗
𝑃 ⌋

𝛼1,𝑗 + ⌈𝑒𝑖,𝑗
𝑃 ⌋ + ⌈𝑒𝑖,𝑗

𝑃 ⌋
𝛼2,𝑗) .  (25) 

Recalling the formation errors’ dynamics from (11) 

{
�̇�𝑖,0
𝑃 = 𝜖𝑖,0

𝑃 ,     

𝜖�̇�,0
𝑃 = �̈�𝑖−�̈�0,

 (26) 

Substituting (25) into the errors’ dynamics, one gets 

{
�̇�𝑖,0
𝑃 = 𝜖𝑖,0

𝑃 ,                                                                    

𝜖�̇�,0
𝑃 = −∑ 𝑘𝑗

𝑃𝑛
𝑗=1 (⌈𝑒𝑖,𝑗

𝑃 ⌋
𝛼1,𝑗 + ⌈𝑒𝑖,𝑗

𝑃 ⌋ + ⌈𝑒𝑖,𝑗
𝑃 ⌋

𝛼2,𝑗).
   (27) 

From Lemma 2, we can conclude that the tracking error 

dynamics given in (27) can be stabilized to zero in fixed-time 

during the sliding motion 𝑠𝑖
𝑥 = 0. Hence, there exists a constant 

𝑇𝑠  independent of initial conditions such that 𝑒𝑖,0
𝑃 → 0  and 

𝜖𝑖,0
𝑃 → 0 for all 𝑡 ≥ 𝑇𝑓 ≔ 𝑇0 + 𝑇𝑟 + 𝑇𝑠. Finally, since 𝑒𝑖,0

𝑃 → 0, 

so, we obtain  𝑃𝑖 → 𝑃0 − ∆𝑖0,𝑥 thus concluding the proof.  

IV. SIMULATION RESULTS AND DISCUSSIONS 

 Numerical simulations are conducted to characterize the 

control performance. A comparative study is performed to 

quantify the relative effectiveness of the presented control 

scheme. A pseudo-real world scenario is selected based on a  

realistic environment in Gazebo connected with ROS. The 

controller has been implemented in ROS using C++ code. 

 The parameters corresponding to a physical quadrotor 

system include: 𝑚𝑖 = 1.70 kg,  𝐽𝑖,𝑥𝑥 = 0.0232 kg m
2, 𝐽𝑖,𝑦𝑦 =

0.0249 kg m2, 𝐽𝑖,𝑧𝑧 = 0.0342 kg m
2, 𝑙 = 0.225 m . The 

formation consists of four followers marked as ‘Follower 1-4’ 

lead by a leader named as ‘Leader 0’. A directed connected 

graph is used to describe the communication paradigm among 

the agents. The desired formation pattern in the 𝑥𝑦 plane and 

the communication topology are illustrated in Fig. 3. The 

reference formation shape is set to be a pentagon in the 𝑥𝑦 

plane. The relative position deviations between the leader 0 and 

the followers 1-4 are: ∆10= [−3,3,0]
𝑇 , ∆20= [−3,−3,0]

𝑇 , ∆20=
[−3,−3,0]𝑇 , ∆30= [−6,−3,0]

𝑇 , ∆40= [−6,3,0]𝑇 . The leader is 

subject to tracking a circular reference trajectory given by 

[𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑]
𝑇 = [2sin(0.05𝑡), 2cos(0.05𝑡), 2.8]𝑇 (28) 

The selected parameters of the position controller are: 𝑘1
𝑥 =

𝑘2
𝑥 = 2, 𝑘1

𝑦
= 𝑘2

𝑦
= 1.4, 𝑘1

𝑦
= 𝑘2

𝑦
= 1.2,  𝑘𝑖

𝑥 = 𝑘𝑖
𝑦
= 𝑘𝑖

𝑧 = 0.2. 

A value of 𝛼 = 0.85  is taken to tune the exponents of the 

position controller. 

 
Fig. 3. Desired formation pattern and communication topology graph among 
the networked quadrotor system. 
 

The formation control is analyzed in simulation to investigate 

the effect of internal model uncertainties, parametric variations 

and time-varying externally applied wind disturbances. These 

disturbances are defined as follows. Uncertainties of +50% and 

+30% are introduced in 𝐽𝑖,𝑥𝑥 , 𝐽𝑖,𝑦𝑦, 𝐽𝑖,𝑧𝑧(moments of inertia) and 

𝑚𝑖 (total mass) respectively. According to Assumption 1, the 

unmodeled dynamics in the control law are present as 

disturbances. The wind model provided by Gazebo is used to 

simulate external disturbances.  
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A. Results of the Proposed Robust Formation Controller  

The formation tracking results of our proposed controller are 

presented in Fig. 4-7. The way in which the quadrotors’ swarm 

form the 3D pattern and follow the reference flight trajectory is 

presented in the 3D state-space in Fig. 4. It is evident from the 

figure that the formation is well maintained with accurate 

trajectory tracking. Moreover, no collision happened between 

the agents. Fig. 5 shows the translational position of all 

quadrotors while Fig. 6 displays the evolution of the tracking 

errors. As illustrated in Fig. 5-6 that the presented distributed 

control law allows to achieve the required formation pattern in 

a short time. This pattern is then maintained in the presence of 

disturbances while robustly tracking the desired time-varying 

Cartesian trajectory. The tracking errors are found to be 

converging to the origin where they steadily maintain their 

values in the close vicinity. The profiles of the velocities of the 

quadrotors are illustrated in Fig. 7. A consensus between the 

velocities of the followers and the leader is shown in the figure, 

hence the formation can be maintained. 
 

 

 
Fig. 4. 3D formation tracking of the quadrotors. 

B. Results of the Distributed PID Controller  

The 3D formation tracking of the quadrotors is depicted in 

Fig. 8. The formation tracking errors can be seen in Fig. 9, 

which shows the inability of the PID controller in terms of 

accurate tracking of the position trajectory, where the follower 

quadrotors are significantly affected by the disturbances. Fig. 9 

shows that the tracking error can reach almost 0.2 m for the 

followers on the 𝑦  axis for instance, which is very large 

compared to our proposed robust controller.  

For the sake of quantitatively comparing the results 

obtained, Integral Square Error (ISE) index is used, i.e., ISE ≔

∫ 𝑒𝑖,0
𝑃 (𝜏)2

𝑡𝑓
𝑡0

 𝑑𝜏, where 𝑡0 and 𝑡𝑓 represent the initial and the final 

time instants respectively, 𝑖 = 1,3̅̅ ̅̅ . The ISE is calculated and is 

presented in Table I where the bold text indicates the best 

performances. It is clear from the table that the presented 

controller demonstrates the smallest ISE value for all position 

states of the four followers. It is apparent that the PID law, being 

a linear control strategy, shows high sensitivity to disturbances 

and shows an inadequate response with large tracking errors. 
  

Remark 1. We have conducted further comparative 

simulations which are not depicted here for the sake of brevity. 

It is observed that the settling-time of the finite-time convergent 

controller proposed in [19] increases with the increase in the 

values of the initial conditions. In contrast to that, in the present 

work, the formation errors reach the origin in the same settling-

time for different initial positions of the quadrotors as 

evidenced by the proposed fixed-time convergent controller. 

Additionally, the authors of [20] have shown that their fixed-

time controller can guarantee a settling-time of 12s which is 

larger than the settling-time of our controller (11.53 s). 
 

TABLE 1 

ISE PERFORMANCE INDEX FOR THE FORMATION TRACKING CONTROL 
Agent Control  

technique 

Performance index 

ISE 

𝑥𝑖 𝑦𝑖 𝑧𝑖 

Follower 1 
PID 10.08 29.30 1.76 

Proposed 0.07 0.03 0.03 

Follower 2 
PID 5.88 12.20 2.76 

Proposed 0.29 0.07 0.09 

Follower 3 
PID 10.35 13.03 1.39 

Proposed 0.12 0.08 0.10 

Follower 4 
PID 11.08 13.20 2.17 

Proposed 0.18 0.11 0.08 
 

 

 
Fig. 5. Profiles of the position of the quadrotors (𝑥𝑖 , 𝑦𝑖  , 𝑧𝑖  ). 

 
 

 
Fig. 6. Evolution of the formation tracking errors (𝑒𝑖,1

𝑥  , 𝑒𝑖,1
𝑦
 , 𝑒𝑖,1

𝑧  ). 
 

V. CONCLUSION 

This research presents the robust formation tracking control 

scheme for a team of quadrotors subjected to disturbances. A 

distributed control protocol has been designed. The proposed 

flight control system demonstrated formation tracking in the 

presence of lumped disturbances in a fixed-time. Smooth nature 

of the control signal permits avoiding chattering phenomenon. 

Lyapunov theorem has been applied for rigorous stability 

analysis of the feedback loop system. Numerical simulations 

have demonstrated the superiority of the designed formation 

control algorithm. Potential future work includes addressing 
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communication delays. Also, a real outdoor flight experiment 

is anticipated to be conducted in near future. 
 

 
Fig. 7. Profiles of the velocities of the quadrotors (𝜈𝑖,𝑥, 𝜈𝑖,𝑦, 𝜈𝑖,𝑧). 

 
 

 
Fig. 8. 3D formation tracking of the quadrotors: PID. 

 
 

 
Fig. 9. Evolution of the formation tracking errors (𝑒𝑖,1

𝑥  , 𝑒𝑖,1
𝑦
 , 𝑒𝑖,1

𝑧  ): PID. 
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