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Abstract—Industrial robot manipulators must work as fast as 

possible in order to increase the productivity. This goal could be 

achieved by increasing robots speed or/and optimizing the 

trajectories followed by robots while performing assembly, 

welding or similar tasks. In our contribution, we focus on the 

second aspect and we target the shortening of paths between 

task-points. In other words, the goal is to find the shorter 

traveled distance between different configurations in the 

coordinate space. In addition to the short distance goal, we aim 

as well to impose both IKM (Inverse Kinematic Model) and the 

relative position and orientation of the manipulator regarding 

the task-points. To this end, we propose an optimization method 

based on Genetics Algorithms. The method is validated via 

numerical and graphical simulation, where, results show that the 

total cycle time required to perform a spot-welding task of an 

industrial car-body by a 6-DOFs (Degree Of Freedoms) 

industrial manipulator was drastically reduced. 

Keywords—Industrial manipulator, genetic algorithms, 

optimization 

I. INTRODUCTION (HEADING 1)

Nowadays, robot manipulators integrated into 
manufacturing systems must work as fast as possible in order 
to increase the productivity and decrease the production costs. 
The need of proper methods to define robotized tasks leads to 
develop various tools and methods to improve the quality of 
the final product. Moreover, several features such as 
manipulators flexibility, versatility and adaptability help to 
achieve many tasks within large environment variations [1][2]. 
Taking into consideration the complexity of the manipulators 
kinematics and the manufacturing system, a better exploitation 
may be achieved by involving optimization techniques and off-
line programming procedures [2]-[4], that drives the end 
product to have high quality and low cost.   

Usually, researches on robot manipulators trajectory 
optimization focus on repetitive tasks such as spot-welding, 
laser and water cutting handling parts, and many other 
applications [5]-[9], where the order of the task points’ does 
not affect the achievement of the task. However, to visit all 
these points, the total cycle time can be affected by the order of 
achievement, especially when the robot manipulator must 
return to its initial configuration. Namely, the task points order 

has an important effect on the cycle time execution; because 
the minimum cycle time is related to the minimum traveled 
displacement of the manipulator joints. Indeed, this problem is 
very similar to the Traveling Salesman Problem (TSP) [10], 
where a salesman has to visit a defined number of cities 
starting and ending by the same location. TSP’s objective is to 
find the minimum traveling tour varying the inter cities 
distances to reach all cities. For robotics tasks, the problem is 
more complex. Indeed, the traveling tour has to be performed 
in coordinate space rather than operational space with higher 
dimensionality (6 instead of 2 for the TSP planar case). 
Furthermore, many other factors can affect the task 
achievement and the cycle time such as the robot manipulator 
placement and orientation [11]. 

Lots of researches have inspired from TSP by 
implementing Genetic Algorithms (GAs) [8][12]. The 
weakness of these methods is the non-consideration of the 
multiplicity of the IKM configurations (Inverse Kinematic 
Model) of the manipulator: the fitness function is calculated 
according to the path traveled by the robot manipulator and the 
average speed of its joints. Authors argued that these methods 
have a good impact even with a large number of the task-
points. However, only 2-DOF (Degree Of Freedoms) or 3-DOF 
manipulators were considered. Considering point-to-point 
tasks, authors in [8] generalized existing methods to cover 
robots with more than 3 DOF. In addition, they included the 
order of the task-points and the multiplicity of the IKM 
configurations. Moreover, they added obstacle avoidance 
aspects in [13]. Another method using TSP considering 
continues trajectories were addressed in [14]. Nevertheless, for 
most of these methods, the robot manipulator placement and 
orientation was missing. In [15], authors tackled the problem of 
the task-point order and the multiplicity of IKM configurations 
by considering also the manipulator placement and achieved 
important results in line with the findings in [16][11] about that 
the influence of robot manipulator placement and orientation 
on the total cycle time.  

In this work we propose a method based on GAs that takes 
advantage of both CAD SolidWorks system to simulate and 
optimize the cycle time and the effectiveness of GAs based 
methods in solving TSP-like optimization problems 
[8][13][14]. Our method is dedicated to non-redundant 
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industrial robot manipulators and considers all the parameters 
mentioned previously. Thus, the developed algorithm handles a 
more challenging optimization problem in a high dimension 
space including four parts: 1) the chain of N task-points that the 
end-effector of the robot manipulator has to visit, 2) the robot’s 
IKM configurations, 3) the relative placement between the 
manipulator and the task-points, 4) the relative orientation 
between the manipulator and the task-points. Furthermore, we 
provide the statistics of the cross effects of parts (one by one, 
two by two, three by three and the last that combines all 
parameters together). This analysis allows showing the 
importance and the influence of each part on the algorithm's 
performances. It is worth to noting that the issues of obstacle 
avoidance in out method is resolved by intermediate points. 

The paper is organized as follows: the problem statement is 
given in the second section; the third section describes the 
proposed optimization approach; the fourth and the fifth 
sections present the simulation setup and discuss the obtained 
results respectively; the sixth section gives our conclusions. 

II. PROBLEM STATEMENT 

In robotized manufacturing plants, the time required to 
perform a given task (cycle time) depends on the traveled 
distance by the manipulator, which is related to the sequence of 
the task-points visited by the end-effector (task-points order). 
On the other hand, the manipulator executes the task in the 
operational space and performs the motion in the coordinate 
space, which makes the traveled distance depending from the 
manipulator’s IKM. Thus, the optimization problem is 
concerned with finding the minimum distance between each 
two consecutive ordered task-points. Moreover, the IKM is 
strongly affected by the placement and the orientation of the 
manipulator. Hence, the cycle time needed by the manipulator 
to perform a given task is a function of the order of 
achievement of the task-points, the IKM at each task-point, the 
manipulator placement and orientation. Some previous works 
considered, only, the order of visiting and the multiplicity of 
the IKM such as in [8], while, in [15] authors considered the 
manipulator placement, in addition. In this work, our objective 
function incorporates the orientation of the manipulator, in 
addition to these tree parameters. Similarly to [15] and [8] we 
compute the cycle time based on the displacement of the 
manipulator joints between each consecutive pair of points and 
the average velocity of the corresponding joint. 

Let us consider a 6-DOFs manipulator (Fig.1); that has to 
visit N points, which represent the required task in 6 
dimensional space (3 positions and 3 orientations) and return 
back to its initial configuration. The relation between the 
coordinate space and the operational space is given bellow: 

 )()( tqftP                                                                    (1) 

Where nRtq )( is the vector of joint coordinates in the 

coordinate space, n is the number of DOFs of the 

manipulator, NRtP )( is the path to be performed in the 

operational space, and f denotes the IKM of the manipulator 
[17]. It is worth to mention that the solution of the IKM at a 
given task-point i  exists if P , where  represents the 

workspace of the manipulator. The manipulator can reach each 

point of the task with m different IKM configurations, and it 
can be located into a certain position and orientation zones (a 
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Where, mk ,...,2,1 is the IKM configuration used at the 

task-point i and ml ,...,2,1  is the IKM configuration at the 

task-point 1i . Consequently,  k

jiq  is the displacement of the 

joint j  at the task-point i , that is associated to the position and 

the orientation of the manipulator . Whereas
jq

 is the 
thj  

manipulator average joint's velocity. It is worth mentioning that 
the maximum used in equation (2) is over the time spent by n-
joints to travel between the points i-1 and i. The total cycle 

time of a given task 
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Where 1N represents the number of distances traveled 

between each two successive configurations plus the return to 
the initial configuration. To this end, the overall formulation 
function of the optimized task's time can be written as follows:  
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In order to find the minimum cycle time, we must probe all 
the possible solutions given by (4), which is an intractable 
issue compared to the problem tackled in [8] and [17]. For 
instance, the number of IKM configurations of a manipulator 
of 6 DOFs is 2

8
 [18]; and this number can be reduced to 2

4
 in 

the case the manipulator has the last three axes intersected. 
Therefore, the number of the possible IKM configurations at 
each point of the task can be expressed as 2

d
 where 4,3,2,1d ; 

and (2
d
)

N
 for the total task-points number. 

Additionally, the possible number of the task-points order 
is defined by N!, this number can be reduced to the half 
because of the symmetry (e.g., the visiting order of a given 
points 1-2-3 in this sequence is the same as 3-2-1). While, the 

 

Fig. 1. A schema of a manipulator with n-DOFs and visit N points 



number of placements and orientations of the manipulator, with 
respect to the task-points, is related to the number of grids that 

construct the placement and orientation zones , which are 
calculated using the 3D models of the task-points and the 
manipulator as described in [11]. Let us define

1  and 
2  

positive numbers related to the placement and the orientation 
zone respectively. The possible placement number is: 

 
nodenodenode zyx 1  

                                                (5) 

where xnode, ynode and znode are the integer placements' 
number on x, y and z axes respectively. Similarly, the number 
of orientation is:
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                         (6) 

The whole number of possible solutions is related to all 
cited parameters, including the placement (5) and the 
orientations  (6), which can be summarized as: 
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In our problem, the search space is significantly high. 
Taking an example of 6-DOFs manipulator that has to perform 
10 points with d=3 and with ɛ1= 10e3 is 2.8002e+09min. 

III. GAS OPTIMIZATION APPROACH 

Genetic algorithms are stochastic optimization methods 
introduced by John Holland based on the Darwinian evolution 
theory [19]. A genetic algorithm is a sort of artificial evolution 
of a population of chromosomes, which represent the possible 
solutions to the concrete problem. First, the initial population is 
generated randomly, and then it is evolved through several 
operations within a number of generations. At every 
generation, the fitness (objective function) of each 
chromosome is evaluated with respect to specific conditions, 
and then the best chromosomes are selected in order to be 
reproduced within the next generation. The reproduction 
procedure generates new offspring based on the genetic 
material of two parent chromosomes, by applying the crossover 
and mutation operations with a certain selection probability.  

Each chromosome is composed of four parts: the visiting 
order of the task-points (first part), the manipulator IKM 
configurations in each point (second part), the manipulator 
relative placements (third part) and the manipulator relative 
orientations (fourth part). The best solution is selected based on 
the fitness function, which is calculated based on (4). 

A. Coding Process 

The first issue of any method based on genetic algorithm is 
the proposition of an adequate representation to encode the 
objective function of the optimization problem. This encoding 
can be implemented either by natural or by binary alphabets on 
which originally the theoretical foundation of GAs are 
implemented. In our case, the first part of the chromosome 
must be encoded by integer values, since the random selection 
process (in the crossover and mutation operations) may provide 
the same alphabet, which creates serious conflict phenomena in 
the case of binary encoding. Consequently, we developed a 
specific algorithm to correct bits that lead to the same genes; in 
order to avoid the redundancy of the visited point part. For the 
second, third and forth parts we implemente binary encoding.  

Fig. 2 shows the chromosome form of the problem tackled 
in section 2. As shown, the manipulator performs the task 
starting by visiting the point number 22 using the configuration 
coded by the binary digits “10…1” , then visits the point 3 
using the configuration coded by the binary  digits “01...0” and 
it finishes by visiting the point number 6 using the 
configuration coded by the binary  digits “11…1”; the relative 
placement of the manipulator and the task-points is on the 
nodes of “01...0”, ”10...0” and “00...1” corresponding to the 
three coordinate axis x, y, z respectively; relative orientation of 
the manipulator and placement are situated on nodes “01...1”, 
“10...0” and “01...1” around x, y, z axes respectively. 

 

B. Optimization Process  

In our approach, a population of 50 chromosomes is 
generated randomly and reproduced over 3250 generation. The 
evaluation process is applied according to the objective 
function described earlier, which is based on the cycle time that 
each solution can produce; where solutions with minimum time 
(high fitness value) are selected for reproduction. The selection 
constraint is a rank based selection where an elitist fraction of 
10% is preserved unchanged (no mutation or crossover) from 
the current generation to the next, to guarantee that the best 
solutions will not be lost. The remaining population’s 
chromosomes are reproduced through a mutation and crossover 
probability of 0.1 and 0.98 respectively. The applied crossover 
is the uniform crossover because it performs well compared to 
the two-point crossover, because this last leads to generate 
non-homogeneous chromosomes in our optimization. 

IV. SIMULATION SETUP 

A. 3D modeling and task definition of the robotized site  

To evaluate the proposed approach we have selected a real 

world industrial example of an automation plant with a 6- 

DOFs industrial manipulator (Staubli RX-130 XL). The task of 

spot-welding has been chosen because of its obvious 

importance for many industrial plants, especially in cars body 

assembly field. To this end, it is necessary to develop the 

whole 3D model of the robotized site, including the 

manipulator and its workspace, the working environment, the 

desired task-points and the pieces to be assembled (Fig. 3). The 

coordinates of the task-points are distributed on the whole body 

of the car. The definition of these points is done by using 

CAD-learning technique illustrated in [20]. The size of the 

occupied task zone is: 1695.75mm, 286.18mm and 479.98mm 

on x, y and z axes respectively. After the definition of the 3D 

model of the task, we calculate the placement and the 

orientation zone as discussed in [11]. Their values are 

respectively: 290.46[mm], 290.50[mm], 302.12[mm], 119.89°, 

223.94° and 246.59 for x, y, z, α, β, δ respectively. 

 

Fig. 2. Chromosome of n-DOF manipulator visiting N points in 3D space. 



B. Case of study 

To examine the effectiveness of the proposed approach, we 
evaluate the time of the task in five stages to quantify the 
influence of each part in the optimization process, separately 
and with different possible combinations (one by one, two by 
two, three by three and all parameters together) (Table 1). The 
simulations are for objective to optimize the cycle time of the 
task needed by the manipulator to perform the spot-welding at 
all task points and return back to the initial configuration. To 
seek precise results, the optimization process of each 
combination is performed within 10 trials.  

 

TABLE I.  POSSIBLE COMBINATIONS OF THE CHROMOSOME (T: TASK 

POINTS ORDER, C: IKM CONFIGURATIONS, P: PLACEMENT, O: ORIENTATION). 

1st stage T C P O   

2nd stage T-C T-P T-O C-P C-O P-O 

3rd stage T-C-P T-C-O T-P-O C-P-O   

4th stage T-C-P-O 

5th stage Overview of all stages 

V. RESULTS AND DISCUSSION 

In this section we assess the proposed optimization 
approach by calculating the time of the task according to the 
plan detailed in the previous section. For the GAs operators 
such crossover and mutation rates are chosen 0.9% and 0.05%, 
respectively. In order to have precise analyses, we used 
ANOVA (analyze of the variance) technique for our 
comparison at all stages except at the fourth and the fifth ones. 
Since the GAs are stochastic algorithms we use  term of "near 
optimal" instead of term "lower bound" of the task's time, 
which indicates the best time found by the algorithm. 

First stage: As mentioned in Table 1the, this evaluation 
test consists of the optimization the cycle time according to 
each part separately (see), starting from a random population. 

Fig. 4 shows the mean of cycle time that each part reaches. 
In details the T part reaches the value of 39.17s, while the C 
part reaches better value of 29.01s (best time in this scope). P 
and O parts got very closer with times of 46.54s and 47.95s, 
respectively. The p-value or the significance of the difference 
is very small (3.07e-011) which indicates a considerable 
difference among these parts. Moreover, this can be observed, 
simply, from the cycle time difference among these 
combinations, which attains the maximum value of 18.94s. The 
variance of the C part looks smaller because during most of 
trials, the optimization process has reached a close value sets 
(best possible solution for a given combination), where the best 
solution can't be improved further. It is worth noting that this is 

not due to a local minima because the nature of the algorithm 
does not allow these issues to happen [19]. This indicates that 
this part is dominating in the optimization process. However, 
the variance value of the other parts (respectively: 3.88s, 
31.97s and 15.23s) illustrates their ability to improve the 
solution. It is very worth to notify that the given time by each 
part is, strongly, related to the fixed values of the other parts. 

 
Second stage: In this stage we present the time of the task 

based on the combination of different parts two by two, where 
the level of complexity is augmented comparing to the 
previous stage. Considering the first combination that includes 
T and C, we set the P and O parts (which are generated 
randomly at the first generation) to fixed values. Successively, 
we combine the T with the P and then with the O, where we fix 
the C and the P parts, respectively. We do the same with the C, 
P and O parts, later (Fig.5 shows all combinations).  

The p-value (i.e., the significance of the test) of 8.31e-025 
clearly shows the meaning of the difference between these 
combinations. The first observation is that the combinations of 
the T part with the C part and this last with the P give best 
solutions. Values of the best cycle time that have been found 
are respectively 24.96s and 25.85s. This indicates that the T-C 
performs better, however, C-P's variance ( 7.87sec ) is 
bigger compared to the ones of T-C, which indicates the 
diversity of the found solutions. Some of these solutions reach 
values less than the one given by T-C, which indicates the 
possibility of finding solutions better compared to the 
combination of T-C. The variance of T-C is smaller which 
indicates that this combination always converges to near 
optimal solutions. However, when we consider the one outlier 
of 22.79s (which is less than T-C's mean value) seems there are 
some exceptions that can appear due to the chosen values of P 
and O parts. Moreover, the C part seems to be more 
dominating by giving the third best time of 26.75s in this 
series, combined with the O part.  

The T part combined with the P part gives better results 

with comparison to the same part combined with O. 

Respectively values of the found mean cycle times are 34.91s 

and 37.82s. However, with regarding to the possibility of 

finding best solutions, seems that the T-O performs better by 

having an interval of solutions varies from 31.36s to 39.82s 

(with variance of 7.08s) over the 10 trials. This may tell us 

about the complexity of convergence (does not converge to 

the best possible solution at all trials) and the huge space of 

solutions, which is increased by the fact of considering the O. 

Comparing this to T-P, the found solutions are very diverse 

from each other, and this may allows the algorithm to find best 

solutions by playing on the GAs parameters [15].  

 
Fig. 4. Comparison among parts separately. 

3.0729e-011---39.17--------29.01------------46.54--------------47.95 

var: 34.756=.......== 3.8851==.......==31.9733==......==15.2394= 

 
 

Fig. 3. 3D model of the robotized site. 



Finally the combination of the part T and the part O seems to 

give less performances, this is due to the reduced space of 

solutions affected by the fixation of the T and the C parts. 

However, by considering the variance value of 14.73s (the 

largest in this scope), the algorithm can reach best cycle time 

than the given mean value. Generally, P and O increase the 

performances of the T and C during the optimization process. 

For instance, with respect to the First stage, the part T reduces 

the cycle time from 39.17s to 34.91s and 37.82s, combined 

with P and O parts, respectively. Similarly for the C part, it 

improves the cycle time from 29.01s to 25.85s and 26.75s 

when it is combined with P and O parts, respectively. These 

improvements are without considering essential parts such as 

the part T for C-P and C-O, and the part C for the combinations 

of T-P and T-O. 

 
Third stage: In this stage, we combine different parts three 

by three. In this stage we increase the level of complexity 
(related to the search space) by considering more parts. The 
chromosome size becomes much longer. In this stage the 
optimization process performs well for finding the best 
solution compared with the previous stages as it is shown in 
Fig. 6. The best mean value of the cycle time is given by the 
combination of T with C and P parts, where, the cycle time is 
reduced to 21.93s. While, the second best time, in this stage, is 
given by the combination of T with C and O by reaching the 
value of 25.45s; the third best time found in this scope is 
25.75s, from the combination of C with P and O parts. While 
the worst time is given by the combination of T with P and O 
parts by value of 31.68s. 

 

However, the overall observation on this stage is the 
improvement of the performances of the algorithm compared 
to previous two stages. In detail, the T-C improves its solution 
of the cycle time from 24.96s to 21.93s. When adding the O 
part to T-C the mean time seems worst, however, by 
considering the T-C-O's variance of 4.40s, definitely, we 
expect that the algorithm can reach best values than T-C mean. 

Especially, by playing on the number of the generation, which 
is limited in our case due to some constraints of VBA. On the 
other hand, we can see how much the O part improves the 
results at some trials and makes it worst in others. Also, other 
combinations (T-P-O and C-P-O) have improved the cycle 
time with regarding to T-P and C-P respectively. Moreover, the 
variance increases to reach the value of 4.57s and 6.72s for T-
P-O and C-P-O, respectively, which also may indicate the 
possibility of finding best solutions. 

Fourth stage: In the fourth stage we combine all parts 
together in order to benefit from all of them at ones. to find a 
best near optimum cycle time. The chromosome size becomes 
even longer. Effectively, this increases the chance of finding 
best results; however, it may takes more computational time in 
term of generations (after how many generations the algorithm 
converge). Unlike previous stages, without using ANOVA 
technique, we present in Fig. 7 the worst and the best cycle 
time at each generation, at one of the best trials. By launching 
all parts at the same time, we get impressive results, where the 
10 trials mean of the cycle time reaches 17.61s, while the worst 
time value is 82.92s. These is appreciated results with 
comparing to previous combinations (separately, two by two 
and three by three).  

 
Also it is clear that the near optimal time that has been found 

is a contribution of all parts together, (i.e., separately or with 

less combinations the algorithm can't reach this value). The 

cycle time has been reduced, in this stage, from 37.64s to 

17.61s with a value of 23.23s. These results seems very 

promising (considering the number of task-points of 22) 

compared to the one presented in [15] with a reduced time of 

7.66s (with N=12, and without considering the orientation).  

Let us define a ratio of the reduced time per point, the ratio 

of the proposed algorithm is 1.0559[s/point] (23.23/22), while 

the one given in [15] is 0.6383[s/point]. Moreover, this 

explicitly indicates that the proposed algorithm performs very 

well, even considering, relatively, high number of task-points, 

which also increase the level of complexity to find near 

optimal solutions.  
Fifth stage: In this stage we give an overall view of all 

combinations, where we compute the mean of the cycle time 
given by each stage. This may allow us to quantify the 
combinations themselves and classify which one has more 
influence on the optimization process. Fig. 9(a) shows the 
mean of the best time given by each combination and the mean 
of the best time at each stage. Clearly, we can see that 
combining different parts of the optimization process brings 

 
Fig. 7. Maximum and minimum task's time optimization. 

 
Fig. 6. Task time evaluation by combining parts three by three. 

 
Fig. 5. Task time evaluation by combining parts two by two. 



important advantages to this last. Consequently, each part is 
benefiting from the others, and all parts push the optimization 
process toward the optimal solution, by improving each 
chromosome of the population. The best cycle time (Fig. 8(a)) 
compared to the previous stages is very less. Contrary the 
computational time (represented as the minimum number of 
generation to find the best solution) is higher, because the 
search space is increased and even within a high generation 
number the algorithm is still finding alive solutions.  

The gain of reducing the time from 37 to 17 is very 

significant. E.g., considering an automobile plant which 

produce 1500 vehicles/day (about one car/minute); reducing 

the cycle time of the robotics chain to the half (17/37) drives to 

double the production to be 3000/day. This is not negligible 

given that an eventual cost of a second chain (infrastructures, 

personals, maintenance, etc.) is dramatically high. It is very 

worth to not that the algorithm runs around 29min to find a 

near optimal solution, instead thousands of years to probe all 

possible solutions. 

 

VI. CONCLUSION 

We proposed in this paper, a novel task scheduling and 
optimization approach based on Genetics Algorithm (GAs) 
dedicated for industrial manipulators. The proposed approach 
takes into consideration the task-points order, the IKM 
configuration used at each task-point, the manipulator 
placement, and orientation. All these factors are combined 
together to participate in finding the best combination that lead 
to the minimum cycle time. Moreover, we sought to perform a 
direct comparison between all these factors, using ANOVA 
(Analysis of variance) that quantify the quality of each factor in 
reducing the cycle time. Results of these comparisons show 
that the factors that have the most important effect on the cycle 

time are classified as follows: the IKM configurations, the 
task-point order, the placement and the orientation. Moreover, 
the placement and the orientation enhance the quality of the 
solution by increasing the search space solution. Moreover, the 
computational time has been reduced to a set of minutes 
instead of thousands of years to probe all possible solutions. 
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Fig. 8. Comparison of all stages, by their mean of : (a) the best near 

optimal time, (b) the minimum number of generations to fine a best solution.  

 
 




