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Abstract— Recent advancements in the domain of robotics 

have offered support to humans in their everyday activities with 

the aim of offloading workers from performing repetitive tasks. 

The present work highlights one such task in garment industry 

where the robot may find potential to manipulate different 

garments including developing a number of robotic skills like 

laundry pile sorting, garment stacking and garment folding/ 

unfolding. This paper is aimed to study the integration of 

hardware and software developed for ClopeMa Project on a 

human-friendly robotic platform, i.e. a Baxter robot that can 

safely operate side by side with humans. In particular, the paper 

discusses integration of RGB-D sensor with the ROS environment 

and studies utility of garment manipulation.  The goal is to present 

a working platform which can autonomously recognize the 

configuration of a piece of garment spread out on a flat surface. 

The algorithm for recognizing the garment consists of first 

applying Gaussian mixture model (MoG) for background 

subtraction and then using polygonal approximation to acquire 

feature points for the foreground of the garment. The proposed 

algorithm is tested online through series of experiments on towel, 

pants and t-shirts of various colors and materials. Results under 

varying lightening conditions witness robustness of the proposed 

scheme. 
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I.  INTRODUCTION 

Present research in the domain of robotics is broadly focused 
in developing robotic skills, which are similar or superior to 
humans with the ultimate aim of offloading humans from 
performing repetitive tasks [1]. Among the possible 
applications, this work highlights requirements for garment 
autonomous manipulation. This involves analysis of the given 
garment to detect feasible grasping points which can be used to 
manipulate different garments and develop different robotic 
skills such as laundry pile sorting according to color and 
material, garment stacking and garment folding/ unfolding [2]. 
There are number of methods for the analysis of a given piece of 
garment but this paper is based on the method developed by 
clothes perception and manipulation (ClopeMa) project [3] 
which involves geometric approach for the given piece of 
garment. This approach includes a complete pipeline for clothes 
configuration recognition by estimating positions of the most 
important grasping points (e.g. all four corners of a towel). This 

geometric strategy involves various fast and dynamic 
programming based methods to obtain efficient results during 
analysis of the garment.  

The setup used for experiments consist of a Baxter robot [4] 
having an RGB-D sensor mounted on the top of the robot. In 
front of the robot and within the range of the sensor, a white table 
has been used as a support for analyzing different garments 
laying on it. The whole pipeline for the adopted method is given 
below. 

A. Input Acquisition 

The input is a single color image of a piece of garment lying 
on the table. The original model of the cloth (e.g. towel, pant and 
shirt) is assumed to be known in advance. The image is taken 
from a RGB-D sensor attached to the top of the Baxter robot. As 
the position of table and camera is fixed, the analysis is done 
only on the cropped image of the table while discarding the area 
outside the table given by the image. 

B. Background Subtraction 

This is relatively an important step which requires robustness 
in the algorithm. The goal of this step is to segment the 
foreground (garment) from the background (table) by assuming 
significantly different color of the garment in contrast to table. 
The color properties of the table can be learned from the data 
(different images of the background) which is called as 
background learning [5]. The background learning makes this 
step more robust that can solve many noise issues originated 
during image acquisition the camera. As an outcome of this step, 
a gray scale image containing only the garment (as maximum 
pixel intensity) with a black background is obtained. 

C. Contour Detection 

The gray scale image is then processed through Canny edge 
detection algorithm to get the contours of the garment. An 
alternate option is to apply Moore’s algorithm [6] for tracing 
connected boundary of the region. The difference between both 
methods in that Canny gives edges which can be broken from 
several places if the result from the background subtraction is 
not efficient. In this case, these edges cannot be considered as a 
contour. So, performance of Canny algorithm is adequate 
provided background subtraction results are reasonably efficient 
[7]. Moore’s algorithm gives a single connected contour having 
the largest connected area.   
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D. Contour Simplification and Approximation: 

The contour obtained in the last step is very dense and 
contains many unnecessary points which are of no use to us. This 
contour is simplified based on polygonal approximation and can 
get the simplified contour points which can be considered as the 
vertices of the given garment. The approximation calculates the 
slope of the boundary (contour) and marks a point as a vertex 
when it detects a significant change in the slope. 

E. Matching: 

We assumed that the model of the garment [8] is initially 
known. The approximated model obtained is matched with the 
known model defined for the corresponding type of the garment. 
The matching procedure involves finding the correspondence 
between the approximated vertices and landmark points defining 
the specific garment model. The matching considers mainly the 
local features of the approximated model. If the number of 
vertices are more than the landmark points of the model, 
unmatched vertices are discarded. 

II. BACKGROUND SUBTRACTION 

A robust background subtraction algorithm should handle 
lightening changes, repetitive motions and long-term scene 
changes. These problems are usually addressed by making the 
background model adaptive so that its parameters can track 
illumination changes. Also, increasing the complexity of the 
model results in accurate representation of multimodal 
backgrounds. The algorithm reported in [9] is an adaptive 
method which uses a mixture of Gaussian distributions to model 
a multimodal background image sequence. For each pixel, each 
normal distribution in its background mixture corresponds to the 
probability of observing a particular intensity or color in the 
pixel. The background is generated by multiple surfaces 
appearing in the pixel view. Each surface is represented by a 
normal distribution having a mean equal to the surface intensity 
or color and a variance due to surface texture, illumination 
fluctuations or camera noise.  

The first step in the background subtraction is to learn the 
background color which is a probabilistic distribution of RGB 
values of the background pixels. The distribution is represented 
as a mixture of 𝐾 Gaussians i.e. 

 

𝑝(𝑋) = ∑ 𝑤𝑘,𝑡  𝑁(𝑧 ;  𝜇𝑘 , 𝐸𝑘   )𝐾
𝑘=1                                        (1) 
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where 𝑁 is a normal distribution having mean vector 𝑤𝑘,𝑡 and a 

covariance matrix 𝐸𝑘. 𝑤𝑘,𝑡 are weights of the Gaussians for kth  

component. Number of components (𝑘) for Gaussian Mixture 
Model (GMM) is determined empirically based on the number 
of visible clusters in RGB. e.g. in one of the cases considered 
in the present work, background is completely white (table) 
while the foreground is completely black (pant). So, only two 
GMM components are required. GMM forms Gaussians taking 
into account all the colors in the image. From the Gaussians, the 
background color and foreground color can be easily judged in 
the present instance. The background is modeled as a mixture 

of adaptive Gaussians. Mixture and adaptive natures are due to 
multiple background colors and lightening conditions 
respectively.  

The Gaussian’s parameters are evaluated using a sequence 
of images of the background. At each iteration, Gaussians are 
evaluated using a simple heuristic rule to determine which ones 
are most likely to correspond to the background. At the end of 
this procedure, foreground is constructed by the image pixels 
which are not matched with the background Gaussians. 

The background model is obtained as follows: In the first 
step, the Gaussian distribution for all the pixels 
{𝑋1, 𝑋2 … … …  𝑋𝑛} is calculated on the first image of the 
background. These initial Gaussian parameters are then updated 
using other images in a learning process based on K-means 
approximations detailed in the following procedure. 

If a new pixel 𝑋𝑡+1 has been matching with the already 
existing Gaussian’s (within the limit of 2.5𝜎) then Gaussian 

µ𝑖,𝑡+1 and 𝜎2
𝑖.𝑡+1 are updated as follows 

        µ𝑖,𝑡+1 = (1-𝜌)µ𝑖,𝑡 +  𝜌𝑋𝑡+1                                            (3) 

                              

      𝜎2
𝑖.𝑡+1= (1-𝜌)𝜎2

𝑖.𝑡 +  𝜌(𝑋𝑡+1 − µ𝑖,𝑡+1 )2                         (4)  

 
where 𝜌 = 𝛼𝑁(𝑋𝑡+1 ;  𝜇𝑖,𝑡  , 𝜎2

𝑖.𝑡   )  and 𝛼 is a learning rate. The 

weights of the Gaussians are then updated by 

                     𝑤𝑖,𝑡+1 = (1-𝛼)𝑤𝑖,𝑡 +  𝛼𝑀𝑖,𝑡+1                         (5) 

where 𝑀𝑖,𝑡+1 = 1 for matching Gaussian and 0 for all the others. 

If the new pixel 𝑋𝑡+1 is not matched with the already existing 
Gaussian, then the Gaussian for that specific pixel is not 
updated. After this step, we are proceeding heuristically to 
choose the Gaussian which has most supporting evidence and 
less variance. So the Gaussians are ordered by the value 
of  𝑤/ 𝜎. Then the first B distributions are chosen as a 
background model i.e. 

                      B = argminb (∑  𝑤𝑖 > 𝑇 )𝑏
𝑖=1                        (6) 

where T is the minimum portion of the image that has to be a 
background (threshold). Fig. 1 is the initial background which 
is the empty table while Fig. 2a is the captured image having a 
pant on the table at time t (These images belong to ClopeMa 
dataset. In this case we only took one background because these 
are simple images having no problem with the noise). By 
applying the background subtraction the results obtained are 
shown in Fig. 2b. It is a gray scale image which contains only 
foreground (pant). 

 
Fig. 1. Background table. 



  
(a) (b) 

Fig. 2. Background subtraction: (a) Image acquired through 

camera (b) Result. 
 

III. CONTOUR DETECTION 

The background subtraction resulted in a gray scale image 
that contains the foreground only. This gray scale image is then 
processed to find the connected boundary of the foreground, 
which can be achieved by two different methods: 

A. Edge Detection 

One way to get the connected boundary of the foreground 
image is to process the image based on Canny edge detection 
algorithm. The result can be seen in the given Fig. 3a. 

B. Moore’s Approach 

The idea behind Moore-Neighbor tracing [10] is simple. The 
Moore neighborhood of a pixel 𝑃 is the set of 8 pixels which 
share a vertex or edge with that pixel. These pixels are named as 
{P1, P2, …, P8} in Fig. 3b. The Moore’s neighborhood is also 
known as the 8-neighbors or indirect neighbors. 

 

  
(a) (b) 

Fig. 3. Contour detection: (a) Result of edge detection (b) 

Moore neighborhood of pixel P. 

 
Given a digital pattern i.e. a group of white pixels on a 

background of black pixels (a grid), a white pixel is located and 
is declared as ‘start’ pixel. This can be done by starting from the 
bottom left corner of the grid, scanning each column of pixels 
from bottom to upwards and from leftmost column to the right 
until a black pixel is encountered. Being on the start pixel, the 
contour is extracted by going around the pattern in a clockwise 
direction without loss of generality. The traversal direction can 
be arbitrary provided it is consistent throughout the algorithm. 

 

The general idea is that every time a white pixel 𝑃 is hit, we 
need to backtrack i.e. go back to the previous black pixel and 
then go around 𝑃 in a clockwise direction, visiting each pixel in 
its Moore neighborhood until a white pixel is encountered. The 
algorithm terminates when the start pixel is re-visited. The 
visited white pixels form the contour of the pattern. The results 
of Moore’s algorithm on Fig. 2b is shown in Fig. 4. 

 

 
Fig. 4. Result of Moore’s algorithm. 

 
The results from Moore’s algorithm are much better than the 

Canny because Moore deals with the connected boundary while 
Canny deals only with the edges which may or may not be 
connected. 

IV. CONTOUR SIMPLIFICATION AND APPROXIMATION 

After tracing the contour in Section III, next step is to 
simplify this contour and to get only the significant points on 
the contour. The number of distinct points 𝐿 (where 𝐿 
contains (𝑞1, 𝑞2, … 𝑞𝐿) points) on the contour depends upon the 
image resolution as well as on size of the garment piece. 
Typically, 𝐿 has an order of hundreds or thousands. We need to 
simplify the contour by approximating it with a polygon having 
𝑁 vertices with N<<L. The objective is to select a subsequence 
of N points (𝑝1, 𝑝2, … 𝑝𝑁) that is a subset of (𝑞1, 𝑞2, … 𝑞𝐿). 
Additionally we want to minimize the sum of Euclidean 
distances of the original points (𝑞1, 𝑞2, … 𝑞𝐿) to edges of the 
approximated polygon (𝑝1, 𝑝2, … 𝑝𝑁) as seen in Fig. 5. 
Simplification procedure for the garment contour is based on 
the dynamic programming algorithm for the optimal 
approximation of a close curve [11]. This algorithm iteratively 
computes the optimal approximation of points (𝑞1, 𝑞2, … 𝑞𝑖) by 
n vertices from previously found approximation of 

(𝑞1, 𝑞2, … 𝑞𝑗) where 𝑗 ∈ {𝑛 − 1 … 𝑖 − 1} by n-1 points as 

demonstrated in Fig. 6. 

 
Fig. 5. Contour approximation problem. 



 

 
Fig. 6. Dynamic problem solution. 

 

In Fig. 5, the original contour (𝑞1, 𝑞2, … 𝑞𝐿) plotted in red is 

simplified with a polygon in blue. The points (𝑝1, 𝑝2, … 𝑝𝑁) are 

the simplified points approximated by a polygon (in blue) while 
minimizing the distances of the original points 𝑞𝑖 to polygon 
edges. In Fig. 6, the dynamic programming algorithm for 
polygonal approximation utilizes previously constructed 
approximation of points (𝑞1, 𝑞2, … 𝑞6) by n-1 vertices to obtain 
approximation of next points (𝑞1, 𝑞2, … 𝑞6,  𝑞7). 

Here, the N-vertex polygonal contour 𝑃 obtained from 
Moore’s algorithm is approximated into another polygonal 
contour 𝑄 with the minimum number of line segments 𝑀 such 
that the approximation error 𝐸(𝑝) is less than error bound (can 
be around 2%) [12]. 𝐸(𝑝) is defined as a Euclidean distance 
from the vertices of the curve 𝑃 to the approximated line 
segment of curve 𝑄. 

             𝐸(𝑃) = 𝑚𝑎𝑥1≤𝑚≤𝑀𝑑(𝑞𝑚 , 𝑞𝑚+1)                          (7) 

where  

𝑑(𝑝𝑖 , 𝑝𝑗) = 𝑚𝑎𝑥𝑖≤𝑘≤𝑗𝑘; 𝑑(𝑝𝑖 , 𝑝𝑗) 

and 

𝑞𝑚 = 𝑝𝑖 , 𝑞𝑚+1 = 𝑝𝑗 

 

The approximation [11] for the closed curve 𝑃 with the 
fixed starting point can be found by first converting into a 
feasibility graph which is constructed on vertices of the curve 
𝑃 for the given error tolerance. Nodes 𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛} of the 
graph G1 are vertices {𝑝1, 𝑝2, … 𝑝𝑛} of the curve 𝑃. A pair of 
nodes 𝑣𝑖 and 𝑣𝑗 is connected by an edge if the approximation 

error for the curve segment {𝑝𝑖 ,𝑝𝑖+1, 𝑝𝑗} by the line segment 

(𝑝𝑖 , 𝑝𝑗) is less than a given error tolerance i.e. 𝑑(𝑝𝑖 , 𝑝𝑗) ≤ 𝜀. 

The solution to this problem lies in determining the shortest 
path in the feasibility graph G1. To find this path in a directed 
acyclic graph, we introduce 1D discrete state space Ω1 =
𝑤𝑛: 𝑛 = 1, . . 𝑁. Every point in this state space represents the 
sub-problem of the node in the graph G1. The cost function 
𝐶(𝑛) is given as the minimum number of edges in the shortest 
path and is calculated by dynamic programming for all 
n=1,2,....N. 

𝐶(𝑛) = 𝑚𝑖𝑛
(𝑣𝑗.𝑣𝑛)∈𝐺1

1≤𝑗≤𝑛
𝐶(𝑗) + 1 

A. Bellman and Ford Algorithm 

The approximation algorithm computes final contour points 
which are the cost of the cheapest paths from a starting node to 
all other nodes in the graph. Thus, the paths afterwards can also 
be constructed. The algorithm considers each 𝑞 points as nodes 
and tries to find the shortest path by satisfying the condition that 
the approximation error 𝐸(𝑝) should be less than error bound. 
The first estimate is: 

 The starting node has cost 0, as its distance to itself is 
obviously 0.  

 All other nodes have cost as infinity, which is the 
worst estimate possible.  

From Fig. 7, the subset of total contour points (in the box) 
has been chosen. Based on which, the algorithm finds the 
shortest path which leads to polygonal approximation. 
Afterwards, the algorithm checks every edge for the condition 
if cost of the source of the edge plus the cost for using the edge 
(considered as unity) is smaller than the cost of the edge's target 
i.e. 

𝑖𝑓 𝑑𝑖𝑠𝑡[𝑣] >  𝑑𝑖𝑠𝑡[𝑢] +  1, then 

 𝑈𝑝𝑑𝑎𝑡𝑒 𝑑𝑖𝑠𝑡[𝑣] 
𝑑𝑖𝑠𝑡[𝑣]  =  𝑑𝑖𝑠𝑡[𝑢]  +  1 

 
Finally, the updates for each edge predict the contour points 

from the set of 𝑞 points that we have found from Moore's 
algorithm. 

 

 
Fig. 7. Bellman and Ford algorithm. 

 

B. Working of Dynamic Programming 

The algorithm calculates shortest paths in a bottom-up 
fashion. It first calculates the shortest distances for the shortest 
paths which have at-most one edge in the path. Then, it 
calculates shortest paths with at-most 2 edges, and so on. After 

the 𝑖𝑡ℎ iteration of the outer loop, the shortest paths with at most 
𝑖 edges are calculated. A simple path can contain maximum of 
|V| – 1 edges, so the outer loop runs |v| – 1 times. Assuming that 
there is no negative weight cycle, if we have calculated shortest 
paths with at most 𝑖 edges, then an iteration over all edges 
guarantees to give shortest path with at-most 𝑖 + 1 edges. The 
determined shortest path is the required contour points. The 
working of the algorithm can be illustrated by Figs. 8 (a-c). 

 



  
(a)  (b) 

 
(c) 

Fig. 8. Algorithm: (a) Initialization (b) Update list. (c) 

Contour points determined by dynamic programming. 

V. FEATURE MATCHING 

Since the model of the garment on the table is assumed to 
be known, each model is determined by the vertices of the 
specific garment. Following the marking of vertices in the 
known model, we need to match these features (vertices) with 
the obtained simplified vertices for the specific garment on the 
table.  So, we have two sets of feature points; one from the 
known model 𝐹 and other from the contour approximation 𝐺. 
Mathematically, 

𝐹𝐼1 ={(𝑥1𝑖 , 𝑦1𝑖 , 𝑁1𝑖)}𝑖=1
𝑁  

 
𝐺𝐼2 ={(𝑥2𝑗 , 𝑦2𝑗 , 𝑁2𝑗)}𝑖=1

𝑀  

 
where 𝑋 = [𝑥, 𝑦] are positions of features in the image while 
𝑁1, 𝑁2 are the image patches around feature points which are 
centered at (3*3). The neighborhood 3*3 image patch can be 
seen in Fig. 3b. The adjacency matrix is then calculated by,           

𝐸(𝑖, 𝑗) = 𝑒−||𝑋1𝑖−𝑋2𝑖||
2 𝜎2⁄  

 
where 𝐸 is N*M matrix measuring the degree of closeness 
between the feature 𝐹𝐼1 in image 𝐼1 and feature 𝐺𝐼2 in 
image 𝐼2. 𝜎 is the standard deviation. The matrix 𝐸 has values 
in the range [0, 1] and is used to calculate affinity matrix by 

𝐴(𝑖, 𝑗) = 𝐸(𝑖, 𝑗) ∗
1

2
(∅𝑁𝐶𝐶(𝑁1𝑖 , 𝑁2𝑗) + 1) 

 
where ∅𝑁𝐶𝐶  is termed as Normalized Cross Correlation (NCC) 
which is frequently used in computer vision. It is used to get rid 
of the big differences between pixel positions that affect the 

overall efficiency of the algorithm. NCC is calculated for each 

pixel. For pixel 𝑓, NCC (𝑓) is calculated as 

 

𝑓 =
𝑓 −  𝑓̅

√∑(𝑓 − 𝑓)̅2
 

 

where, 𝑓 ̅is the mean of overall image and √∑(𝑓 − 𝑓)̅2 is 
standard deviation. The matrix 𝐴 also has values in the range 
[0, 1]. Each row in 𝐴 is examined to find the maximum element. 
Then it is evaluated if the same element is also maximum in the 
corresponding column of 𝐴. Holding this condition true implies 
that we the match is found. 

VI. RESULTS 

The algorithm has been applied on images from ClopeMa 
dataset using RGB-D sensor and on-line results have been 
acquired. Initially, several background models have been 
formulated with an empty table for ‘learning background’. Then 
the experiments are done on-line on the towels, pants and t-
shirts of various colors and materials. In these results, green 
circles show the vertices of the given garment which are 
actually the feature points of the specific garment.  

Setup for the experiments is same as mentioned in Section 
I. The images acquired from RGB-D senor are at the rate of 30 
frames/second while the machine used for processing of the 
images is Intel core i7 CPU 930 @ 2.80 GHz (64-bit) with 8 
GB RAM. For each garment category but with different 
materials, 2-3 experiments have been done. For the sake of 
brevity, results corresponding to one material for each garment 
is presented. Since we have not performed model matching, so 
the algorithm is detecting the vertices even if the garment is not 
completely flat on the table. Fig. 9 shows results on a t-shirt 
orientated on the table. 8-10 points have been detected 
depending on the flatness of the shirt on the table. 

 

 
Fig. 9. Contour point for t-shirt. 

 

Fig. 10 presents results of application of the algorithm on 
black and yellow towel (Knitwear material) orientated at 
various angles with four feature points. Fig. 11 shows results on 
the red towel (Cotton toweling material) orientated at different 
angles while a blue jean spread in multiple orientations is 
illustrated in Fig. 12. As can be seen that the pant contains seven 
feature points. 

 



  
(a) (b) 

Fig. 10. Contour points for knitwear cloth:  

(a) Orientation 1 (b) Orientation 2 
 

  
(a) (b) 

Fig. 11. Contour points for knitwear cotton towel:  

(a) Orientation 1 (b) Orientation 2 
 

  
(a) (b) 

Fig. 12. Contour points for knitwear jeans  

(a) Orientation 1 (b) Orientation 2 
 

Thanks to GMM, the presented algorithm is also capable of 
recognizing correct vertices even by changing the lightening 
conditions.  Varying these conditions, Fig. 13 (1-c) presents the 
results of contour points corresponding to low, medium and high 
lightening. One can see that consistent results are obtained even 
though the conditions are different. This implies that the 
proposed algorithm is robust enough to take care of noise, 
shadows and lightening issues.  

 

  
(a) (b) 

 
(c) 

Fig. 13. Feature extraction under various lightening 

conditions: (a) Low (b) Medium (c) High 

VII. CONCLUSION 

We have presented an algorithm based on the ClopeMa 
project which can provide the feature points for nearly all type 
of garments. The robustness of the algorithm is evident by its 
performance in variable lightening condition. The primary 
limitation offered by this approach is constituted by the fact that 
we need a background significantly different from the garment. 
In case the portion of background i.e. color of table is similar to 
that of color of the garment, the performance of the presented 
approach highly depends on the size of the matching portion. In 
worst cases, the algorithm may give feature points within the 
cloth by considering the boundary of the matching portion as 
the boundary of the whole cloth. This may lead to failure of the 
method due to wrong detection of vertices. Thus, the key 
assumption of proper working of the approach is that the 
background color should be different that garment color. 

In future, this algorithm can be used for calculating the 
transformation from the camera to the pixel location to get the 
3D point of the features which can be passed to Baxter for the 
development of numerous robotic skills. 
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