
Feature Extraction of Garments Based on Gaussian

Mixture for Autonomous Robotic Manipulation

Tahir Rasheed1, Abdul Attayyab Khan2, Jamshed Iqbal3,4,*

1Ecole Centrale de Nantes, Laboratoire des Sciences du Numerique de Nantes (LS2N), Nantes, France

2Department of Electrical Engineering, Bahria University, Karachi, Pakistan
3Electrical and Computer Engineering Department, University of Jeddah, Jeddah, Saudi Arabia

4Department of Electrical Engineering, FAST National University of Computer and Emerging Sciences, Islamabad, Pakistan
*Corresponding author: jamshed.iqbal@nu.edu.pk

Abstract— Recent advancements in the domain of robotics

have offered support to humans in their everyday activities with

the aim of offloading workers from performing repetitive tasks.

The present work highlights one such task in garment industry

where the robot may find potential to manipulate different

garments including developing a number of robotic skills like

laundry pile sorting, garment stacking and garment folding/

unfolding. This paper is aimed to study the integration of

hardware and software developed for ClopeMa Project on a

human-friendly robotic platform, i.e. a Baxter robot that can

safely operate side by side with humans. In particular, the paper

discusses integration of RGB-D sensor with the ROS environment

and studies utility of garment manipulation. The goal is to present

a working platform which can autonomously recognize the

configuration of a piece of garment spread out on a flat surface.

The algorithm for recognizing the garment consists of first

applying Gaussian mixture model (MoG) for background

subtraction and then using polygonal approximation to acquire

feature points for the foreground of the garment. The proposed

algorithm is tested online through series of experiments on towel,

pants and t-shirts of various colors and materials. Results under

varying lightening conditions witness robustness of the proposed

scheme.

Keywords— Garment manipulation; Gaussian mixture model;

Industrial automation; Robotics applications

I. INTRODUCTION

Present research in the domain of robotics is broadly focused
in developing robotic skills, which are similar or superior to
humans with the ultimate aim of offloading humans from
performing repetitive tasks [1]. Among the possible
applications, this work highlights requirements for garment
autonomous manipulation. This involves analysis of the given
garment to detect feasible grasping points which can be used to
manipulate different garments and develop different robotic
skills such as laundry pile sorting according to color and
material, garment stacking and garment folding/ unfolding [2].
There are number of methods for the analysis of a given piece of
garment but this paper is based on the method developed by
clothes perception and manipulation (ClopeMa) project [3]
which involves geometric approach for the given piece of
garment. This approach includes a complete pipeline for clothes
configuration recognition by estimating positions of the most
important grasping points (e.g. all four corners of a towel). This

geometric strategy involves various fast and dynamic
programming based methods to obtain efficient results during
analysis of the garment.

The setup used for experiments consist of a Baxter robot [4]
having an RGB-D sensor mounted on the top of the robot. In
front of the robot and within the range of the sensor, a white table
has been used as a support for analyzing different garments
laying on it. The whole pipeline for the adopted method is given
below.

A. Input Acquisition

The input is a single color image of a piece of garment lying
on the table. The original model of the cloth (e.g. towel, pant and
shirt) is assumed to be known in advance. The image is taken
from a RGB-D sensor attached to the top of the Baxter robot. As
the position of table and camera is fixed, the analysis is done
only on the cropped image of the table while discarding the area
outside the table given by the image.

B. Background Subtraction

This is relatively an important step which requires robustness
in the algorithm. The goal of this step is to segment the
foreground (garment) from the background (table) by assuming
significantly different color of the garment in contrast to table.
The color properties of the table can be learned from the data
(different images of the background) which is called as
background learning [5]. The background learning makes this
step more robust that can solve many noise issues originated
during image acquisition the camera. As an outcome of this step,
a gray scale image containing only the garment (as maximum
pixel intensity) with a black background is obtained.

C. Contour Detection

The gray scale image is then processed through Canny edge
detection algorithm to get the contours of the garment. An
alternate option is to apply Moore’s algorithm [6] for tracing
connected boundary of the region. The difference between both
methods in that Canny gives edges which can be broken from
several places if the result from the background subtraction is
not efficient. In this case, these edges cannot be considered as a
contour. So, performance of Canny algorithm is adequate
provided background subtraction results are reasonably efficient
[7]. Moore’s algorithm gives a single connected contour having
the largest connected area.

mailto:jamshed.iqbal@nu.edu.pk

D. Contour Simplification and Approximation:

The contour obtained in the last step is very dense and
contains many unnecessary points which are of no use to us. This
contour is simplified based on polygonal approximation and can
get the simplified contour points which can be considered as the
vertices of the given garment. The approximation calculates the
slope of the boundary (contour) and marks a point as a vertex
when it detects a significant change in the slope.

E. Matching:

We assumed that the model of the garment [8] is initially
known. The approximated model obtained is matched with the
known model defined for the corresponding type of the garment.
The matching procedure involves finding the correspondence
between the approximated vertices and landmark points defining
the specific garment model. The matching considers mainly the
local features of the approximated model. If the number of
vertices are more than the landmark points of the model,
unmatched vertices are discarded.

II. BACKGROUND SUBTRACTION

A robust background subtraction algorithm should handle
lightening changes, repetitive motions and long-term scene
changes. These problems are usually addressed by making the
background model adaptive so that its parameters can track
illumination changes. Also, increasing the complexity of the
model results in accurate representation of multimodal
backgrounds. The algorithm reported in [9] is an adaptive
method which uses a mixture of Gaussian distributions to model
a multimodal background image sequence. For each pixel, each
normal distribution in its background mixture corresponds to the
probability of observing a particular intensity or color in the
pixel. The background is generated by multiple surfaces
appearing in the pixel view. Each surface is represented by a
normal distribution having a mean equal to the surface intensity
or color and a variance due to surface texture, illumination
fluctuations or camera noise.

The first step in the background subtraction is to learn the
background color which is a probabilistic distribution of RGB
values of the background pixels. The distribution is represented
as a mixture of 𝐾 Gaussians i.e.

𝑝(𝑋) = ∑ 𝑤𝑘,𝑡 𝑁(𝑧 ; 𝜇𝑘 , 𝐸𝑘)𝐾
𝑘=1 (1)

𝑁(𝑧 ; 𝜇𝑘 , 𝐸𝑘) =
𝑒

−
1
2

(𝑥−𝜇)𝑇𝐸𝑘
−1(𝑥−𝜇)

√(2𝜋)3𝐸𝑘
 (2)

where 𝑁 is a normal distribution having mean vector 𝑤𝑘,𝑡 and a

covariance matrix 𝐸𝑘. 𝑤𝑘,𝑡 are weights of the Gaussians for kth

component. Number of components (𝑘) for Gaussian Mixture
Model (GMM) is determined empirically based on the number
of visible clusters in RGB. e.g. in one of the cases considered
in the present work, background is completely white (table)
while the foreground is completely black (pant). So, only two
GMM components are required. GMM forms Gaussians taking
into account all the colors in the image. From the Gaussians, the
background color and foreground color can be easily judged in
the present instance. The background is modeled as a mixture

of adaptive Gaussians. Mixture and adaptive natures are due to
multiple background colors and lightening conditions
respectively.

The Gaussian’s parameters are evaluated using a sequence
of images of the background. At each iteration, Gaussians are
evaluated using a simple heuristic rule to determine which ones
are most likely to correspond to the background. At the end of
this procedure, foreground is constructed by the image pixels
which are not matched with the background Gaussians.

The background model is obtained as follows: In the first
step, the Gaussian distribution for all the pixels
{𝑋1, 𝑋2 … … … 𝑋𝑛} is calculated on the first image of the
background. These initial Gaussian parameters are then updated
using other images in a learning process based on K-means
approximations detailed in the following procedure.

If a new pixel 𝑋𝑡+1 has been matching with the already
existing Gaussian’s (within the limit of 2.5𝜎) then Gaussian

µ𝑖,𝑡+1 and 𝜎2
𝑖.𝑡+1 are updated as follows

 µ𝑖,𝑡+1 = (1-𝜌)µ𝑖,𝑡 + 𝜌𝑋𝑡+1 (3)

 𝜎2
𝑖.𝑡+1= (1-𝜌)𝜎2

𝑖.𝑡 + 𝜌(𝑋𝑡+1 − µ𝑖,𝑡+1)2 (4)

where 𝜌 = 𝛼𝑁(𝑋𝑡+1 ; 𝜇𝑖,𝑡 , 𝜎2

𝑖.𝑡) and 𝛼 is a learning rate. The

weights of the Gaussians are then updated by

 𝑤𝑖,𝑡+1 = (1-𝛼)𝑤𝑖,𝑡 + 𝛼𝑀𝑖,𝑡+1 (5)

where 𝑀𝑖,𝑡+1 = 1 for matching Gaussian and 0 for all the others.

If the new pixel 𝑋𝑡+1 is not matched with the already existing
Gaussian, then the Gaussian for that specific pixel is not
updated. After this step, we are proceeding heuristically to
choose the Gaussian which has most supporting evidence and
less variance. So the Gaussians are ordered by the value
of 𝑤/ 𝜎. Then the first B distributions are chosen as a
background model i.e.

 B = argminb (∑ 𝑤𝑖 > 𝑇)𝑏
𝑖=1 (6)

where T is the minimum portion of the image that has to be a
background (threshold). Fig. 1 is the initial background which
is the empty table while Fig. 2a is the captured image having a
pant on the table at time t (These images belong to ClopeMa
dataset. In this case we only took one background because these
are simple images having no problem with the noise). By
applying the background subtraction the results obtained are
shown in Fig. 2b. It is a gray scale image which contains only
foreground (pant).

Fig. 1. Background table.

(a) (b)

Fig. 2. Background subtraction: (a) Image acquired through

camera (b) Result.

III. CONTOUR DETECTION

The background subtraction resulted in a gray scale image
that contains the foreground only. This gray scale image is then
processed to find the connected boundary of the foreground,
which can be achieved by two different methods:

A. Edge Detection

One way to get the connected boundary of the foreground
image is to process the image based on Canny edge detection
algorithm. The result can be seen in the given Fig. 3a.

B. Moore’s Approach

The idea behind Moore-Neighbor tracing [10] is simple. The
Moore neighborhood of a pixel 𝑃 is the set of 8 pixels which
share a vertex or edge with that pixel. These pixels are named as
{P1, P2, …, P8} in Fig. 3b. The Moore’s neighborhood is also
known as the 8-neighbors or indirect neighbors.

(a) (b)

Fig. 3. Contour detection: (a) Result of edge detection (b)

Moore neighborhood of pixel P.

Given a digital pattern i.e. a group of white pixels on a

background of black pixels (a grid), a white pixel is located and
is declared as ‘start’ pixel. This can be done by starting from the
bottom left corner of the grid, scanning each column of pixels
from bottom to upwards and from leftmost column to the right
until a black pixel is encountered. Being on the start pixel, the
contour is extracted by going around the pattern in a clockwise
direction without loss of generality. The traversal direction can
be arbitrary provided it is consistent throughout the algorithm.

The general idea is that every time a white pixel 𝑃 is hit, we
need to backtrack i.e. go back to the previous black pixel and
then go around 𝑃 in a clockwise direction, visiting each pixel in
its Moore neighborhood until a white pixel is encountered. The
algorithm terminates when the start pixel is re-visited. The
visited white pixels form the contour of the pattern. The results
of Moore’s algorithm on Fig. 2b is shown in Fig. 4.

Fig. 4. Result of Moore’s algorithm.

The results from Moore’s algorithm are much better than the

Canny because Moore deals with the connected boundary while
Canny deals only with the edges which may or may not be
connected.

IV. CONTOUR SIMPLIFICATION AND APPROXIMATION

After tracing the contour in Section III, next step is to
simplify this contour and to get only the significant points on
the contour. The number of distinct points 𝐿 (where 𝐿
contains (𝑞1, 𝑞2, … 𝑞𝐿) points) on the contour depends upon the
image resolution as well as on size of the garment piece.
Typically, 𝐿 has an order of hundreds or thousands. We need to
simplify the contour by approximating it with a polygon having
𝑁 vertices with N<<L. The objective is to select a subsequence
of N points (𝑝1, 𝑝2, … 𝑝𝑁) that is a subset of (𝑞1, 𝑞2, … 𝑞𝐿).
Additionally we want to minimize the sum of Euclidean
distances of the original points (𝑞1, 𝑞2, … 𝑞𝐿) to edges of the
approximated polygon (𝑝1, 𝑝2, … 𝑝𝑁) as seen in Fig. 5.
Simplification procedure for the garment contour is based on
the dynamic programming algorithm for the optimal
approximation of a close curve [11]. This algorithm iteratively
computes the optimal approximation of points (𝑞1, 𝑞2, … 𝑞𝑖) by
n vertices from previously found approximation of

(𝑞1, 𝑞2, … 𝑞𝑗) where 𝑗 ∈ {𝑛 − 1 … 𝑖 − 1} by n-1 points as

demonstrated in Fig. 6.

Fig. 5. Contour approximation problem.

Fig. 6. Dynamic problem solution.

In Fig. 5, the original contour (𝑞1, 𝑞2, … 𝑞𝐿) plotted in red is

simplified with a polygon in blue. The points (𝑝1, 𝑝2, … 𝑝𝑁) are

the simplified points approximated by a polygon (in blue) while
minimizing the distances of the original points 𝑞𝑖 to polygon
edges. In Fig. 6, the dynamic programming algorithm for
polygonal approximation utilizes previously constructed
approximation of points (𝑞1, 𝑞2, … 𝑞6) by n-1 vertices to obtain
approximation of next points (𝑞1, 𝑞2, … 𝑞6, 𝑞7).

Here, the N-vertex polygonal contour 𝑃 obtained from
Moore’s algorithm is approximated into another polygonal
contour 𝑄 with the minimum number of line segments 𝑀 such
that the approximation error 𝐸(𝑝) is less than error bound (can
be around 2%) [12]. 𝐸(𝑝) is defined as a Euclidean distance
from the vertices of the curve 𝑃 to the approximated line
segment of curve 𝑄.

 𝐸(𝑃) = 𝑚𝑎𝑥1≤𝑚≤𝑀𝑑(𝑞𝑚 , 𝑞𝑚+1) (7)

where

𝑑(𝑝𝑖 , 𝑝𝑗) = 𝑚𝑎𝑥𝑖≤𝑘≤𝑗𝑘; 𝑑(𝑝𝑖 , 𝑝𝑗)

and

𝑞𝑚 = 𝑝𝑖 , 𝑞𝑚+1 = 𝑝𝑗

The approximation [11] for the closed curve 𝑃 with the
fixed starting point can be found by first converting into a
feasibility graph which is constructed on vertices of the curve
𝑃 for the given error tolerance. Nodes 𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛} of the
graph G1 are vertices {𝑝1, 𝑝2, … 𝑝𝑛} of the curve 𝑃. A pair of
nodes 𝑣𝑖 and 𝑣𝑗 is connected by an edge if the approximation

error for the curve segment {𝑝𝑖 ,𝑝𝑖+1, 𝑝𝑗} by the line segment

(𝑝𝑖 , 𝑝𝑗) is less than a given error tolerance i.e. 𝑑(𝑝𝑖 , 𝑝𝑗) ≤ 𝜀.

The solution to this problem lies in determining the shortest
path in the feasibility graph G1. To find this path in a directed
acyclic graph, we introduce 1D discrete state space Ω1 =
𝑤𝑛: 𝑛 = 1, . . 𝑁. Every point in this state space represents the
sub-problem of the node in the graph G1. The cost function
𝐶(𝑛) is given as the minimum number of edges in the shortest
path and is calculated by dynamic programming for all
n=1,2,....N.

𝐶(𝑛) = 𝑚𝑖𝑛
(𝑣𝑗.𝑣𝑛)∈𝐺1

1≤𝑗≤𝑛
𝐶(𝑗) + 1

A. Bellman and Ford Algorithm

The approximation algorithm computes final contour points
which are the cost of the cheapest paths from a starting node to
all other nodes in the graph. Thus, the paths afterwards can also
be constructed. The algorithm considers each 𝑞 points as nodes
and tries to find the shortest path by satisfying the condition that
the approximation error 𝐸(𝑝) should be less than error bound.
The first estimate is:

 The starting node has cost 0, as its distance to itself is
obviously 0.

 All other nodes have cost as infinity, which is the
worst estimate possible.

From Fig. 7, the subset of total contour points (in the box)
has been chosen. Based on which, the algorithm finds the
shortest path which leads to polygonal approximation.
Afterwards, the algorithm checks every edge for the condition
if cost of the source of the edge plus the cost for using the edge
(considered as unity) is smaller than the cost of the edge's target
i.e.

𝑖𝑓 𝑑𝑖𝑠𝑡[𝑣] > 𝑑𝑖𝑠𝑡[𝑢] + 1, then

 𝑈𝑝𝑑𝑎𝑡𝑒 𝑑𝑖𝑠𝑡[𝑣]
𝑑𝑖𝑠𝑡[𝑣] = 𝑑𝑖𝑠𝑡[𝑢] + 1

Finally, the updates for each edge predict the contour points

from the set of 𝑞 points that we have found from Moore's
algorithm.

Fig. 7. Bellman and Ford algorithm.

B. Working of Dynamic Programming

The algorithm calculates shortest paths in a bottom-up
fashion. It first calculates the shortest distances for the shortest
paths which have at-most one edge in the path. Then, it
calculates shortest paths with at-most 2 edges, and so on. After

the 𝑖𝑡ℎ iteration of the outer loop, the shortest paths with at most
𝑖 edges are calculated. A simple path can contain maximum of
|V| – 1 edges, so the outer loop runs |v| – 1 times. Assuming that
there is no negative weight cycle, if we have calculated shortest
paths with at most 𝑖 edges, then an iteration over all edges
guarantees to give shortest path with at-most 𝑖 + 1 edges. The
determined shortest path is the required contour points. The
working of the algorithm can be illustrated by Figs. 8 (a-c).

(a) (b)

(c)

Fig. 8. Algorithm: (a) Initialization (b) Update list. (c)

Contour points determined by dynamic programming.

V. FEATURE MATCHING

Since the model of the garment on the table is assumed to
be known, each model is determined by the vertices of the
specific garment. Following the marking of vertices in the
known model, we need to match these features (vertices) with
the obtained simplified vertices for the specific garment on the
table. So, we have two sets of feature points; one from the
known model 𝐹 and other from the contour approximation 𝐺.
Mathematically,

𝐹𝐼1 ={(𝑥1𝑖 , 𝑦1𝑖 , 𝑁1𝑖)}𝑖=1
𝑁

𝐺𝐼2 ={(𝑥2𝑗 , 𝑦2𝑗 , 𝑁2𝑗)}𝑖=1

𝑀

where 𝑋 = [𝑥, 𝑦] are positions of features in the image while
𝑁1, 𝑁2 are the image patches around feature points which are
centered at (3*3). The neighborhood 3*3 image patch can be
seen in Fig. 3b. The adjacency matrix is then calculated by,

𝐸(𝑖, 𝑗) = 𝑒−||𝑋1𝑖−𝑋2𝑖||
2 𝜎2⁄

where 𝐸 is N*M matrix measuring the degree of closeness
between the feature 𝐹𝐼1 in image 𝐼1 and feature 𝐺𝐼2 in
image 𝐼2. 𝜎 is the standard deviation. The matrix 𝐸 has values
in the range [0, 1] and is used to calculate affinity matrix by

𝐴(𝑖, 𝑗) = 𝐸(𝑖, 𝑗) ∗
1

2
(∅𝑁𝐶𝐶(𝑁1𝑖 , 𝑁2𝑗) + 1)

where ∅𝑁𝐶𝐶 is termed as Normalized Cross Correlation (NCC)
which is frequently used in computer vision. It is used to get rid
of the big differences between pixel positions that affect the

overall efficiency of the algorithm. NCC is calculated for each

pixel. For pixel 𝑓, NCC (𝑓) is calculated as

𝑓 =
𝑓 − 𝑓̅

√∑(𝑓 − 𝑓)̅2

where, 𝑓 ̅is the mean of overall image and √∑(𝑓 − 𝑓)̅2 is
standard deviation. The matrix 𝐴 also has values in the range
[0, 1]. Each row in 𝐴 is examined to find the maximum element.
Then it is evaluated if the same element is also maximum in the
corresponding column of 𝐴. Holding this condition true implies
that we the match is found.

VI. RESULTS

The algorithm has been applied on images from ClopeMa
dataset using RGB-D sensor and on-line results have been
acquired. Initially, several background models have been
formulated with an empty table for ‘learning background’. Then
the experiments are done on-line on the towels, pants and t-
shirts of various colors and materials. In these results, green
circles show the vertices of the given garment which are
actually the feature points of the specific garment.

Setup for the experiments is same as mentioned in Section
I. The images acquired from RGB-D senor are at the rate of 30
frames/second while the machine used for processing of the
images is Intel core i7 CPU 930 @ 2.80 GHz (64-bit) with 8
GB RAM. For each garment category but with different
materials, 2-3 experiments have been done. For the sake of
brevity, results corresponding to one material for each garment
is presented. Since we have not performed model matching, so
the algorithm is detecting the vertices even if the garment is not
completely flat on the table. Fig. 9 shows results on a t-shirt
orientated on the table. 8-10 points have been detected
depending on the flatness of the shirt on the table.

Fig. 9. Contour point for t-shirt.

Fig. 10 presents results of application of the algorithm on
black and yellow towel (Knitwear material) orientated at
various angles with four feature points. Fig. 11 shows results on
the red towel (Cotton toweling material) orientated at different
angles while a blue jean spread in multiple orientations is
illustrated in Fig. 12. As can be seen that the pant contains seven
feature points.

(a) (b)

Fig. 10. Contour points for knitwear cloth:

(a) Orientation 1 (b) Orientation 2

(a) (b)

Fig. 11. Contour points for knitwear cotton towel:

(a) Orientation 1 (b) Orientation 2

(a) (b)

Fig. 12. Contour points for knitwear jeans

(a) Orientation 1 (b) Orientation 2

Thanks to GMM, the presented algorithm is also capable of
recognizing correct vertices even by changing the lightening
conditions. Varying these conditions, Fig. 13 (1-c) presents the
results of contour points corresponding to low, medium and high
lightening. One can see that consistent results are obtained even
though the conditions are different. This implies that the
proposed algorithm is robust enough to take care of noise,
shadows and lightening issues.

(a) (b)

(c)

Fig. 13. Feature extraction under various lightening

conditions: (a) Low (b) Medium (c) High

VII. CONCLUSION

We have presented an algorithm based on the ClopeMa
project which can provide the feature points for nearly all type
of garments. The robustness of the algorithm is evident by its
performance in variable lightening condition. The primary
limitation offered by this approach is constituted by the fact that
we need a background significantly different from the garment.
In case the portion of background i.e. color of table is similar to
that of color of the garment, the performance of the presented
approach highly depends on the size of the matching portion. In
worst cases, the algorithm may give feature points within the
cloth by considering the boundary of the matching portion as
the boundary of the whole cloth. This may lead to failure of the
method due to wrong detection of vertices. Thus, the key
assumption of proper working of the approach is that the
background color should be different that garment color.

In future, this algorithm can be used for calculating the
transformation from the camera to the pixel location to get the
3D point of the features which can be passed to Baxter for the
development of numerous robotic skills.

REFERENCES

[1] J. Iqbal, R. U. Islam, S. Z. Abbas, A. A. Khan and S. A. Ajwad,
“Automating industrial tasks through mechatronic systems – A review of
robotics in industrial perspective”, Tehnicki Vjesnik-Technical Gazette,
vol. 23, no. 3, pp. 917-924, 2016

[2] J. Stria, D. Prusa, V. Hlavac, L. Wagner, V. Petrik, P. Krsek and V.
Smutny, “Garment perception and its folding using a dual-arm robot”,
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 61-67, 2014

[3] “CloPeMa (Clothes Perception and Manipulation) research project,”
http://www.clopema.eu

[4] E. McLeod, “The factory robot of the future: Baxter is the world's first
low-cost, user-friendly factory robot”, Short article, SAGE Business
Researcher, pp. 1-4, 2017

[5] T. Bouwmans, L. Maddalena and A. Petrosino, “Scene background
initialization: A taxonomy”, Pattern Recognition Letters, In Press, DOI:
10.1016/j.patrec.2016.12.024, 2017

[6] R. C. Gonzalez, R. E. Woods and S. L. Eddins, Digital Image Processing
Using MATLAB, 2nd ed, ISBN: 0982085400, Gatesmark Publishing,
2009

[7] P. Jiménez, “Visual grasp point localization, classification and state
recognition in robotic manipulation of cloth: An overview”, Robotics and
Autonomous Systems, vol. 92, pp. 107-125, 2017

[8] S. Lu, P.Y. Mok and X. Jin, “A new design concept: 3D to 2D textile
pattern design for garments”, Computer-Aided Design, vol. 89, pp. 35-49,
2017

[9] Orchard, M., Bouman, C.: Color quantization of images. IEEE
Transactions on Signal Processing, vol. 39, no. 12, pp. 2677-2690, 1991

[10] T. Liu, A. W. Moore, A. Gray and K. Yang, “An investigation of practical
approximate nearest neighbor algorithms”, Advances in Neural
Information Processing Systems, 2004

[11] A. Kolesnikov and P. Franti, “Polygonal approximation of closed discrete
curves”, Pattern Recognition, vol. 40, no. 4, pp. 1282-1293, 2007

[12] J. C. Perez and E. Vidal, “Optimum polygonal approximation of digitized
curves”, Pattern Recognition Letters, vol. 15, no. 8, pp. 743-750, 1994

http://www.clopema.eu/

