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Abstract: The reaction of [Mo(η-C5Me5)Cl4] with the ortho-, meta-, or para-iodo-functionalized ani-
lines 2-IC6H4NH2, 3-IC6H4NH2, 4-IC6H4NH2 yields imido or amine products of the type [Mo(η-
C5Me5)Cl2(IC6H4N)] (2-I, 1, 3-I, 3, 4-I, 5) or [Mo(η-C5Me5)Cl4(IC6H4NH2)] (3-I, 2, 4-I, 4), respectively,
depending on the reaction stoichiometry/conditions; we were unable to isolate an amine complex of
the 2-I derivative. The reaction of [Mo(η-C5Me5)Cl4] with one equivalent of 2-I,4-FC6H3NH2 in the
presence of Et3N afforded [Mo(η-C5Me5)Cl2(2-I,4-FC6H3N)]·MeCN (6·MeCN), which, upon exposure
to air, afforded the Mo(VI) imido complex [Mo(η-C5Me5)Cl3(2-I,4-FC6H3N)] (7). For comparative
studies, the structure of the aniline (C6H5NH2)-derived complex [Mo(η-C5Me5)Cl2(2-C6H3N)] (8)
has also been prepared. The molecular structures of 1–8 have been determined and reveal packing in
the form of zig-zag chains or ladders. The complexes catalyze, in the presence of benzyl alcohol under
N2, the ring-opening polymerization (ROP) of ε-caprolactone affording relatively low molecular
weight products. The MALDI-ToF spectra indicate that a number of polymer series bearing a variety
of end groups are formed. Conducting the ROPs as melts or under air results in the isolation of
higher molecular weight products, again bearing a variety of end groups. Kinetic studies reveal the
aniline-derived imido complex 8 performs best, whilst a meta-iodo substituent and a Mo(V) centre are
also found to be beneficial. The structures of the side products 2-IC6H4NH3Cl and 3-IC6H4NH3Cl
are also reported.

Keywords: imido; amine; iodo; molybdenum; structure; ring opening polymerization

1. Introduction

Molybdenum, and to a lesser extent tungsten, organoimido chemistry has been of
interest for a number of decades now, given its relevance to a number of areas, particularly
olefin metathesis [1]. Although the literature on imido-containing compounds is vast,
reports concerning the synthesis of functionalized imido complexes are less widespread [2].
We have previously investigated the chemistry of [W(η-C5Me5)Cl4] as an entry point to new
half-sandwich species and have reported the structures of a number of products, including
the diamido complex {W(η-C5Me5)Cl2[1,2-(HN)2C6H4]} [3], as well as imido, hydrazido,
amino acid derived chelates [4], and functionalized 6,12-epiiminodibenzo[b,f][1.5]diazocine
ligands [5]. The complex [Mo(η-C5Me5)Cl4] is prepared by a similar procedure to its
tungsten analogue [6], and its chemistry is similarly relatively unexplored [7–12]. We and
others have also been exploring the potential of molybdenum-based complexes as catalysts
for the ring opening polymerization (ROP) of cyclic esters [13–22]. We were attracted to
the use of iodo-substituted organomido groups as a stabilizing motif given their tendency
to be involved in intermolecular bonding in the solid state. Such interactions are useful
for crystal engineering, halogen-catalyzed reactions, and even in drug design [23–25].
Furthermore, early transition metal imido complexes are known to be quite reactive [26].
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Herein, we find that the presence of the iodo-substituted organoimido groups does
indeed aid the formation of intermolecular interactions in the solid state, and adoption
of zig-zag chains or ladder motifs. Furthermore, such systems are capable of acting as
catalysts, in the presence of benzyl alcohol, for the ring opening polymerization (ROP) of
ε-caprolactone (ε-CL) at elevated temperatures, either under N2 or air, or as melts. The
iodo-containing imido complexes prepared herein are shown in Scheme 1.
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Scheme 1. Complexes 1–8 prepared herein.

2. Results
2.1. 2-Iodo Complexes

The interaction of [Mo(η-C5Me5)Cl4] with two equivalents of 2-iodoaniline, 2-IC6H4NH2
in refluxing toluene afforded, following work-up in acetonitrile, the imido complex [Mo(η-
C5Me5)Cl2(2-IC6H4N)] (1) in good yield (ca. 76%). Small, single crystals, suitable for an
X-ray structure determination using synchrotron radiation, were obtained on prolonged
standing (2–3 days) at ambient temperature. The molecular structure is shown in Figure 1,
with selected bond lengths and angles given in the caption. The asymmetric unit contains
one molecule of the molybdenum complex. The geometry of the molecule is a three-legged
piano stool, typical of such organometal imido dichlorides [11]. The distance from the
Cp* ring centroid to Mo(1) is 2.045(3) Å, whilst C(1) > C(5) are co-planar within 0.021 Å.
Meanwhile, the methyl groups all tilt away from the metal, and of these, the most marked
is that for C(7), which is under N(1), and C(10) under Cl(1). Bonds Mo(1)–C(4) and Mo(1)–
C(5) trans to N are longer than those trans to the Cl ligands. The ring slippage can be
measured by the τ value [3], which, here, is 3.5◦. The organoimido ligand is somewhat
bent at 159.8(4)◦, but is still considered linear, albeit at the lower end [27].

In the packing of 1, there are some weak I(1)···Cl(2) halogen bond interactions at
3.738 Å which result in zig-zag chains parallel to b (Figure 2). For alternative views of 1,
see Figure S1.

The side product in this reaction is the salt [2-I-NH3C6H4]+Cl−. It, too, has an interest-
ing structure, involving a number of intermolecular interactions. In the asymmetric unit,
there is one cation/anion pair, in which all three of the NH protons are involved in strong
H-bonds to the chloride anion. Unlike in [2-I-NH3C6H4]+Cl− vide infra, there are no I···I
halogen-halogen interactions, instead there are Cl···I interactions at 3.306 Å. There are no
π···π interactions; at best the molecules are highly slipped, forming a layered structure
with alternating hydrophilic ionic and hydrophobic aromatic layers. The ionic layers are in
the b/c plane, see Figure S2.
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Figure 1. Molecular structure of [Mo(η-C5Me5)Cl2(2-IC6H4N)] (1). H atoms omitted for clarity.
Selected bond lengths (Å) and angles (◦): Mo(1)–Cl(1) 2.3636(18), Mo(1)–Cl(2) 2.3634(15), Mo(1)–N(1)
1.756(4); Mo(1)–N(1)–C(11) 159.8(4), Cl(1)–Mo(1)–Cl(2) 92.92(7).
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Figure 2. Packing observed in 1 with halogen-bonded zig-zag chains in the b direction.

2.2. 3-Iodo Complexes

Treatment of [Mo(η-C5Me5)Cl4] with one equivalent of the meta aniline 3-IC6H4NH2
at ambient temperature led, following work-up, to isolation of the amine complex [Mo(η-
C5Me5)Cl4(3-IC6H4NH2)]·MeCN (2·MeCN). The IR spectrum of 2 contains two sharp
(weak) stretches in the N–H region, at 3415 and 3328 cm−1, characteristic of the NH2
group. As for 1 and 3 (see below), the 1H NMR spectrum is broad and uninformative
consistent with the presence of the paramagnetic Mo(V) centre. The molecular structure of
2·MeCN is shown in Figure 3, with selected bond lengths and angles given in the caption.
The asymmetric unit contains one molecule of the molybdenum complex and a solvent
(MeCN) molecule of crystallisation. The geometry at the metal is best described as distorted
octahedral with the Mo ion 0.5783(18) Å out of the Cl4 plane. The Mo to Cp* ring centroid
distance is 2.078(6) Å and all the methyl groups bend substantially away from the C5
aromatic ring, by 0.14–0.22(2) Å; the τ value is 3.3◦. In contrast to 1, here the aniline-derived
ligand maintains the amine group, hence the elongated Mo–N bond length at 2.322(10) Å.
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Figure 3. Molecular structure of [Mo(η-C5Me5)Cl4(3-IC6H4NH2)]·MeCN (2·MeCN). Most H atoms
omitted for clarity. Selected bond lengths (Å) and angles (◦): Mo(1)–Cl(1) 2.407(3), Mo(1)–Cl(2)
2.413(3), Mo(1)–Cl(3) 2.376(3), Mo(1)–Cl(4) 2.420(3), Mo(1)–N(1) 2.322(10); Mo(1)–N(1)–Cl(1) 124.8(7),
Cl(1)–Mo(1)–Cl(2) 86.85(10), Cl(1)–Mo(1)–Cl(4) 151.67(11).

The Mo complex molecules form H-bonded zig-zag ladders in the crystallographic
a direction. Each complex forms four strong H-bonds, two as donor and two as acceptor.
These are via two independent N–H···Cl′ H-bonds (see Figure 4). There are also two
weaker, supporting, aromatic ortho-C–H···Cl interactions along the ladders. Otherwise,
there are only weak interactions involving C–H hydrogens between ladders. The MeCN
solvent molecule of crystallization forms a weak N···I interaction at 3.22 Å (see Figure S3).
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Figure 4. Independent N–H···Cl′ H-bonds in 2·MeCN forming ladder motifs. Symmetry operators:
A = −x + 1, −y + 1, −z + 1; B = −x + 2, −y + 1, −z + 1.

As for 1, use of three equivalents under reflux conditions affords an imido complex,
namely [Mo(η-C5Me5)Cl2(3-I-NC6H4)] (3), see Figure 5. In the asymmetric unit, there is
one molecule of 1. The distance from Mo(1) to the Cp* ring centroid is 2.0233(7) Å. All
the methyl groups bend a little away from the metal relative to the C5 ring by between
0.06–0.12 Å, whilst the C(3) & C(4) bond lengths to Mo(1) are the longest because they are
trans to N(1); the τ value is 3.9◦.
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Figure 5. Molecular structure of [Mo(η-C5Me5)Cl2(3-IC6H4N)] (3). Selected bond lengths (Å) and
angles (◦): Mo(1)–Cl(1) 2.3722(4), Mo(1)–Cl(2) 2.3724(4), Mo(1)–N(1) 1.7423(13); Mo(1)–N(1)–Cl(1)
169.50(12), Cl(1)–Mo(1)–Cl(2) 93.507(15).

There are a number of weak (Me)C–H···I/Cl interactions between molecules of 3. The
molecules pack in weakly-bound layers in the b/c plane (Figure S4). The shortest, and only
feasible halogen–halogen interaction is Cl(1)···I(1′) at 3.464 Å.

For the secondary product, namely [3-I-NH3C6H4]+Cl−, there is one cation/anion
pair in the asymmetric unit. Within the salt, the ions form strongly H-bonded stacks/layers
via +N–H···Cl− interactions in the a and b directions. Among the NH hydrogen atoms, two
form fairly strong, single N–H···Cl H-bonds, while the last is bifurcated to two different
Cl– ions, and, hence, all these are notably weaker. Moreover, in the b direction, there are
zig-zag I···I interactions at 3.890 Å, and overall a 3D supramolecular network is formed
(Figure S5).

2.3. 4-Iodo Complexes

Extension of this chemistry to the para iodoaniline 4-IC6H4NH2 led, following the
conditions used for 2, to isolation of the amine complex [Mo(η-C5Me5)Cl4(4-IC6H4NH2)]
(4). The IR spectrum of 4 contains two weak stretches in the N–H region, at 3318 and
3286 cm−1, characteristic of the NH2 group. Unlike 2, this complex crystallizes without
any solvent of crystallization. The molecular structure of 4 is shown in Figure 6, with
selected bond lengths and angles given in the caption. The distorted octahedral Mo ion lies
0.5750(5) Å out of the Cl4 plane. The Mo(1) to Cp* ring centroid distance is 2.0826(15) Å (cf
2.078(6) in amine complex 2), and the methyl carbons are pushed between 0.173–0.215(6) Å
away from the Cp* ring plane in the direction away from the metal ion; the τ value is 3.3◦.
As in 2, the aniline-derived ligand is an amine with Mo–N at 2.340(3) Å.

As in 2, molecules form zig-zag ladders via strong N–H···Cl H-bonds in the b direction,
with each molecule forming four such interactions, two as donor and two as acceptor (see
Figure 7). The location of the iodine atom in either the meta or para position allows the
ladder motif to form. In addition, in 4, there are some weak aromatic C–H···X interactions
either along ladders or between ladders. These involve all four of the hydrogens on the
halogenated ring (Figure S6).
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Figure 6. Molecular structure of [Mo(η-C5Me5)Cl4(4-IC6H4NH2)] (4). Most H atoms omitted for
clarity. Selected bond lengths (Å) and angles (◦): Mo(1)–Cl(1) 2.4181(9), Mo(1)–Cl(2) 2.3771(10),
Mo(1)–Cl(3) 2.4063(9), Mo(1)–Cl(4) 2.4403(10), Mo(1)–N(1) 2.340(3); Mo(1)–N(1)–Cl(1) 123.1(2), Cl(1)–
Mo(1)–Cl(2) 84.80(3), Cl(1)–Mo(1)–Cl(4) 86.66(3).
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Symmetry operators: A = −x + 1, −y + 1, −z + 1; B = −x + 1, −y + 2, −z + 1.

Use of three equivalents of 4-iodoaniline in refluxing toluene led, on work-up, to the
imido complex [Mo(η-C5Me5)Cl2(p-NC6H4I)] (5) as dark prisms in ca. 60% isolated yield.
In the crystal structure there is one molecule in the asymmetric unit (Figure 8). The distance
from Mo(1) to the Cp* ring plane is 2.034(2) Å, which compares favorably with the other
imido complexes 1 (2.045(3) Å) and 3 (2.0233(7) Å). The Me groups all point a little away
from the metal relative to the Cp* ring plane, with C(12) pushed further away than the
other four due to the location of the imido ligand; the τ value is 4.8◦. The Mo(1)–C(9)/C(10)
distances are rather longer than the other three due to the trans influence at N.

In the packing of 5, there are halogen bond interactions between I(1) and Cl(2′) on a
neighboring molecule at a distance of 3.431 Å. This gives rise to zig-zag chains propagating
in the c direction (Figure S7).
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Figure 8. Molecular structure of [Mo(η-C5Me5)Cl2(4-IC6H4N)] (5). Selected bond lengths (Å) and
angles (◦): Mo(1)–Cl(1) 2.3676(12), Mo(1)–Cl(2) 2.3646(11), Mo(1)–N(1) 1.739(4); Mo(1)–N(1)–C(1)
175.6(4), Cl(1)–Mo(1)–Cl(2) 92.66(4).

2.4. Use of 2-I,4-FC6H3NH2

Reactions using this aniline proved to be more sensitive than others employed herein.
It was found that to avoid oxidation (see 7), it was better to mix [Mo(η-C5Me5)Cl4] with one
equivalent of 2-I,4-FC6H3NH2 in the presence of Et3N in toluene at ambient temperature.
Work-up as before (i.e., extraction into MeCN) afforded orange/brown crystals on standing.
The molecular structure of [Mo(η-C5Me5)Cl2(2-I,4-FC6H3N)]·MeCN (6·MeCN) is shown in
Figure 9, with selected bond lengths and angles given in the caption. This is the asymmetric
unit. The Mo(1) to ring centroid distance is 2.0375(7) Å. All of the Me groups point away
from the Mo(V) ion, with C(15) furthest displaced due to the proximity of the large imido
ligand; the τ value is 4.4◦. As seen for the other complexes, C(7) and C(8) are notably
further from the Mo than the other three C atoms in the ring due to the trans influence of
the N atom.
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Figure 9. Molecular structure of [Mo(η-C5Me5)Cl2(2I,4F-C6H3N)]·MeCN (6·MeCN). Selected bond
lengths (Å) and angles (◦): Mo(1)–Cl(1) 2.3646(4), Mo(1)–Cl(2) 2.3727(4), Mo(1)–N(1) 1.7483(13);
Mo(1)–N(1)–C(1) 165.03(11), Cl(1)–Mo(1)–Cl(2) 92.402(14).

Molecules of 6·MeCN pack in H-bonded tapes in the b direction. There is an inter-
molecular I(1)···Cl(2′) halogen bond with separation 3.486 Å. For an alternative view of
6·MeCN and different views of the packing, see Figure S8.

Oxidized product: Consistent use of three equivalents of 2-I,4-FC6H3NH2 afforded,
following work up, the diamagnetic complex [Mo(η-C5Me5)Cl3(2-I,4-F-NC6H3)] (7). Pre-
sumably, here the complex has been oxidized by adventitious exposure to the atmosphere
resulting in the formation of a Mo(VI) centre. We note that the complex [W(η-C5Me5)
(NC6F5)Cl3] has been isolated from exposure of [W(η-C5Me5)(NC6F5)Cl2] to air [11]. The
molecular structure of 7 is shown in Figure 10, with selected bond lengths and angles given
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in the caption. The geometry is a four-legged piano stool in which the Cp* centroid lies
2.071(3) Å from Mo(1) and is considerably slipped with a large variation in Mo(1)–C bond
lengths from 2.300(6) Å for C(5) to 2.546(7) Å for C(2), which lies trans to N(1), itself having
a strong trans influence. All five methyl groups are pushed away from the aromatic C5
plane, with C(7) less affected than the four others. The displacements away from the C5
plane (Å) are 0.166(12) C(6), 0.052(12) C(7), 0.185(12) C(8), 0.139(12) C(9), 0.176(12) C(10).
There is a degree of variation, i.e., localization in the C5 C–C distances with C(1)–C(5) and
C(3)–C(4), being longer at ca. 1.45 Å than the other three at ca. 1.41–1.42 Å; the τ value
is 7.6◦.
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Figure 10. Molecular structure of [Mo(η-C5Me5)Cl3(2-I,4-F-NC6H3)] (7). Selected bond lengths (Å)
and angles (◦): Mo(1)–Cl(1) 2.4362(17), Mo(1)–Cl(2) 2.4159(16), Mo(1)–Cl(3) 2.4137(17), Mo(1)–N(1)
1.750(5); Mo(1)–N(1)–C(11) 178.4(5), Cl(1)–Mo(1)–Cl(2) 80.04(6).

In the packing (Figure S9), there are a number of weak C–H···Cl interactions. The F···I
distance at 3.390 Å suggests weak halogen bonding. The molecules pack in layers with
Cp*Mo units together and the halogen-bonded imido ligands together.

2.5. Use of Aniline

For comparative catalytic studies, we also prepared the complex [Mo(η-C5Me5)Cl2(NC6
H5)] via the use of three equivalents of the parent aniline. As for the other derivatives
isolated above, single crystals suitable for an X-ray diffraction study were grown from a
saturated solution of acetonitrile. There is one molecule of the complex in the asymmetric
unit, which adopts a piano-stool conformation (Figure 11). The Cp* ligand is disordered
over two sets of positions related by a ca. 22◦ rotation. The Mo(1) to Cp* ring plane
distance is 2.013(8) Å for the major component and 2.058(17) Å for the minor component.
For the major component, all the Cp* Me groups are bent somewhat away from the ring
plane relative to the metal, but C(14) is notably more displaced away than the other four,
presumably due to the proximity of the imido ligand ‘below’. The statistics are less reliable
for the minor component. The bond lengths Mo(1)–C(11)/C(11X)/C(7X) are notably longer
than the other Mo–C distances, being positioned trans to the imido nitrogen N; the τ values
are 3.2◦ and 3.6◦ for the major and minor components, respectively. The packing of 8 is
shown in Figure S10.
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Figure 11. Molecular structure of [Mo(η-C5Me5)Cl2(C6H5N)] (8). Selected bond lengths (Å) and
angles (◦): Mo(1)–Cl(1) 2.3702(10), Mo(1)–Cl(2) 2.3693(11), Mo(1)–N(1) 1.735(3); Mo(1)–N(1)–C(1)
165.0(3), Cl(1)–Mo(1)–Cl(2) 92.16(4).

3. Ring Opening Polymerization (ROP) Studies

Based on our previous molybdenum ROP studies [20–22], we selected the conditions
of 130 ◦C with a ratio of ε-CL to complex of 500:1 in the presence of one equivalent of
benzyl alcohol over 24 h under N2. Data for the runs are presented in Table 1, and it can
be seen that at ambient temperature, low molecular weight oily products are formed with
good control (PDI < 1.25). End group analysis by 1H NMR spectroscopy (e.g., Figure S11
for entry 7, Table 1) is consistent with the presence of a BnO end group, which indicates that
the polymerization proceeds through a coordination-insertion mechanism. Interestingly,
despite the narrow PDI values, MALDI-TOF spectra revealed at least five series of ions
corresponding to sodiated PCL. For example, in Figure 12 (using PCL from entry 2, Table 1;
for the full spectrum, see Figure S12), for each group of the five species, the end groups,
from lowest to highest mass, very likely correspond to BnO-/-H (n-1 compared with the
rest of the group), no end groups, H-/-OH end groups, MeO-/-H, and the artifact NaO-/-H.
On increasing the temperature from ambient to 70 ◦C, the molecular weight increased (by
more than 6-fold in the case of 2, entries 5 v 6, Table 1), although this was generally at
the cost of control. On further increasing the temperature to 130 ◦C, there was a further
increase in polymer molecular weight, together with an increase in the PDI. The presence
of a high oxidation state appears beneficial for affording a high molecular weight product
given that use of the molybdenum(VI) precursor 7, afforded the highest molecular weight
product, albeit with the worst control (entry 16, Table 1).

However, if the runs were conducted as melts (Table 2), all the systems (except for the
use of 2) afforded higher molecular weight products versus runs conducted in solution.
Runs employing the amine species 2 (entry 2, Table 2) and 4 (entry 4, Table 2) afforded the
lowest molecular weight products. Analysis of the MALDI-TOF spectra again indicated
the presence of multiple species, e.g., for the PCL from entry 2 of Table 2, the same five
polymer series as identified above were present but in different relative intensities (see
Figure 13; for the full spectrum, see Figure S13).
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Table 1. Synthesis of polycaprolactone from using catalysts 1–8 over 24 h under N2
a.

Entry Cat. Temp (◦C) Conv. (%) b Mn
c MnCalcd

d PDI e

1 1 130 99 1590 56,499 1.35
2 1 70 99 4650 56,499 1.49
3 1 15 99 850 56,499 1.25
4 2 130 98.6 6840 56,271 1.33
5 2 70 99 5740 56,499 1.50
6 2 15 99 890 56,499 1.21
7 3 130 >99 16,710 56,499 1.76
8 3 15 66.2 400 37,780 1.27
9 4 130 99 1015 56,499 1.62

10 4 70 99 2490 56,499 1.19
11 4 15 99 840 56,499 1.25
12 5 130 97.4 12,300 55,586 1.76
13 5 15 97.9 900 55,872 1.22
14 6 130 98.5 5700 56,214 1.46
15 6 15 96.3 840 54,958 1.09
16 7 130 98.7 21,470 56,328 2.10
17 7 15 96 850 54,787 1.08
18 8 130 99 7740 56,499 2.12
19 8 70 99 1560 56,499 1.30
20 8 20 94.9 470 54,159 1.19

a All conducted with [monomer]:[Cat]:BnOH = 500:1:1. b Conversion was confirmed by 1H NMR spectroscopy.
c Determined by GPC analysis calibrated with polystyrene standards and multiplied by correction factor of 0.56.
d F.W.[M]/[BnOH])(conversion) + BnOH. e Polydispersity index (Mw/Mn) were determined by GPC.
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Table 2. Synthesis of polycaprolactone from using catalysts 1–8 as melts (130 ◦C) under N2
a.

Entry Cat. Conv. (%) b Mn
c MnCalcd

d PDI e

1 1 94.7 12,490 54,045 2.41
2 2 97.6 3510 55,700 1.53
3 3 >99 18,290 56,499 2.05
4 4 97.4 5820 55,586 1.37
5 5 98.5 26,780 56,214 2.00
6 6 >99 19,580 56,499 1.76
7 7 >99 12,450 56,499 1.22
8 8 >99 10,990 56,499 2.35

a All conducted with [monomer]:[Cat]:BnOH = 500:1:1. b Conversion was confirmed by 1H NMR spectroscopy.
c Determined by GPC analysis calibrated with polystyrene standards and multiplied by correction factor of 0.56.
d F.W.[M]/[BnOH])(conversion) + BnOH. e Polydispersity index (Mw/Mn) were determined by GPC.
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Good conversions were also observed on conducting the runs under air at 130 ◦C for
24 h (Table 3). Molecular weights were far higher than those observed under N2 when
using 1–5, whilst that for 7 (entry 7, Table 3) was far lower. At ambient temperature under
air, the products were low molecular weight oily products (e.g., entry 8, Table 3). In the
MALDI-TOF spectra, there is one dominant series corresponding to no end groups, with
two minor series likely corresponding to BnO-/-H and H-/-OH series; the former of these
two starts to become more dominant at higher mass (see Figure 14, entry 5, Table 3; for the
full spectrum, see Figure S14).

Table 3. Synthesis of polycaprolactone from using catalysts 1–8 over 24 h at 130 ◦C under air a,b.

Entry Cat. Conv. (%) c Mn
d MnCalcd

e PDI f

1 1 89.6 17,050 51,135 2.41
2 2 99 18,390 56,499 2.47
3 3 92.2 21,600 52,619 2.17
4 4 97.8 21,040 55,814 2.45
5 5 >99 20,660 56,499 2.27
6 6 >99 8640 56,499 1.71
7 7 >99 7000 56,499 2.47
8 8 f 99 710 56,499 1.38
9 8 >99 7470 56,499 1.81

a All conducted with [monomer]:[Cat]:BnOH = 500:1:1. b Conducted at 20 ◦C. c Conversion was confirmed by
1H NMR spectroscopy. d Determined by GPC analysis calibrated with polystyrene standards and multiplied
by correction factor of 0.56. e F.W.[M]/[BnOH])(conversion) + BnOH. f Polydispersity index (Mw/Mn) were
determined by GPC.

Kinetics

Kinetic studies for the imido complexes 1, 3, 5, and 8 (Figure 15), conducted using the
ratio 500:1:1 ([CL]:[Cat]:[BnOH]) revealed the rate trend 8 > 3 > 1 > 5. This suggests the pres-
ence of either a meta- or an ortho-iodo substituent is beneficial to the rate of conversion for
the iodo-bearing systems, whilst the best rate was observed for the aniline-derived system.
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Figure 15. (a) Relationship between conversion and time for the polymerization of ε-CL by using complexes 1, 3, 5, and 8;
(b) Plot of ln[CL]0/[CL]t vs. time for the polymerization of ε-CL by using complexes 1, 3, 5, and 8; Conditions: T = 130 ◦C,
nMonomer:nCat:BnOH = 500:1:1.

Comparing the kinetics for complexes 6 and 7 (Figure 16) suggests that a molybde-
num(V) centre is beneficial to the rate of conversion versus molybdenum(VI).

For the amine complexes 2 and 4, kinetics (Figure 17) revealed, as for the imido
complexes, that a meta- rather than a para-iodo group is beneficial for the rate of conversion.
Note complex 8 exhibits a slightly better rate than 2 (see Figure S15); prior to screening,
sample 2 was dried in vacuo for >2 h to remove the acetonitrile of crystallization.
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Figure 17. (a) Relationship between conversion and time for the polymerization of ε-CL by using complex 2 and 4; (b)
Plot of ln[CL]0/[CL]t vs. time for the polymerization of ε-CL by using complexes 2 and 4; Conditions: T = 130 ◦C,
nMonomer:nCat:BnOH = 500:1:1.

An overall analysis of the kinetics for the systems herein reveals the rate trend 8 > 2 >
3 > 6 ≈ 1 > 7 > 5 > 4. Thus, the most active catalyst systems amongst the ‘functionalized’
systems are those bearing a meta iodo substituent, which is more likely influenced by the
electronics of the system rather than the sterics. The near linear relationships above imply
the polymerizations follow a first-order dependence on the monomer concentration.

4. Materials and Methods
4.1. General

All manipulations were carried out under an atmosphere of dry nitrogen using con-
ventional Schlenk and cannula techniques or in a conventional nitrogen-filled glove box.
Toluene (Aldrich, Dorset, UK) was refluxed over Na-benzophenone/Ketyl (Aldrich, Dorset,
UK), acetonitrile (Aldrich, Dorset, UK) was refluxed over calcium hydride (Aldrich, Dorset,
UK), whilst benzyl alcohol (Aldrich) was dried over molecular sieves. ε-CL (Aldrich,
Dorset, UK) was dried over calcium hydride, and distilled prior to use. The purity of the
monomer ε-CL was determined to be 99.6% (determined by 1H NMR spectroscopy, JEOL
ECZ 400S spectrometer, Tokyo, Japan). The anilines 2-iodoaniline (TCI, Oxford, UK), 3-
iodoaniline (TCI, Oxford, UK), 4-iodoaniline (TCI, Oxford, UK) and 4-fluoro-2-iodoaniline
(Fluorochem, Hadfield, UK) were purchased from commercial sources and used directly.

IR spectra (nujol mulls, KBr windows) were recorded on a Nicolet Avatar 360 FT
IR spectrometer (Thermo Nicolet Corporation, Madison, WI, USA); 1H NMR spectra
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were recorded at 400.2 MHz at room temperature on a on a JEOL ECZ 400S spectrometer
(JEOL Ltd., Tokyo, Japan). The 1H NMR spectra were calibrated against the residual
protio-impurity of the deuterated solvent; chemical shifts are given in ppm (δ). Elemental
analyses were performed by the elemental analysis service in the Department of Chemistry
at the University of Hull, OEA Labs Ltd. (Devon, UK), or London Metropolitan University.
The precursor [Mo(η-C5Me5)Cl4] was prepared by the literature method [6]. All other
chemicals were purchased from Sigma Aldrich or TCI UK.

MALDI-TOF mass spectra (Wyatt Analytical Ltd., Colwyn Bay, UK) were acquired
on a Bruker Autoflex Speed MALDI-TOF spectrometer, in both positive-linear (LP/-1)
and reflectron (RP/-3) modes and processed with Bruker PolyTools and Strohalm mMass
(v5.5.0) software. Molecular weights were calculated from the experimental traces using
the OmniSEC 467 (Thermo Nicolet Corporation, Madison, WI, USA).

The mass spectra of the complexes 1–8 were run on a Bruker Maxis Impact HD Mass
spectrometer at the University of Hull in ESI positive mode, or at the National Mass
Spectrometry Facility at Swansea (UK), using an atmospheric solids analysis probe (ASAP).

4.2. Synthesis of [Mo(η-C5Me5)Cl2(2-IC6H4N)] (1)

To [Mo(η-C5Me5)Cl4] (1.00 g, 2.68 mmol) and 2-IC6H4NH2 (1.76 g, 8.04 mmol) in a
Schlenk flask was added toluene (20 mL). The system was refluxed for 12 h, and on cooling,
volatiles were removed. The residue was extracted into MeCN (40 mL) and on standing for
24 h at 0 ◦C afforded the complex 1 as dark crystals. Yield 1.06 g, 76%. C16H19Cl2NIMo
requires C 37.02, H 3.69, N 2.70%. Found C 37.02, H 4.09, N 3.71%. IR: 1631w, 1564w, 1301s,
1261s, 1198w, 1156m, 1140w, 1092m, 1044m, 1016s, 967m, 948w, 919w, 892w, 844w, 801m,
765s, 722s, 690w, 645w, 635w, 6166w, 565m. Mass spec (ASAP, solid): 483 (M+–Cl).

4.3. Synthesis of [Mo(η-C5Me5)Cl4(3-IC6H4NH2)]·MeCN (2·MeCN)

As for 1, but using [Mo(η-C5Me5)Cl4] (1.00 g, 2.68 mmol) and 3-IC6H4NH2 (0.32 mL,
2.7 mmol) which, under prolonged standing at 0 ◦C afforded dark red crystals of 2.MeCN.
Yield 0.97 g, 57%. C16H21Cl4NIMo·(C2H3N) requires (sample dried in vacuo for 2 h, -
MeCN) C 32.46, H 3.58, N 2.37% Found C 33.28, H 3.85, N 2.31%. IR: 3415w, 3328w, 2314w,
2289w, 2250w, 1702w, 1644w, 1570w, 1552w, 1306m, 1260s, 1168m, 1156m, 1094s, 1062s,
1020s, 987m, 932w, 911w, 879w, 847w, 801s, 782m, 722s, 673w, 655w. Mass spec (ASAP,
solid): 521 (M+-MeCN–2Cl), 486 (M+-MeCN–3Cl).

4.4. Synthesis of [Mo(η-C5Me5)Cl2(3-IC6H4N)] (3)

As for 2 but using [Mo(η-C5Me5)Cl4] (1.00 g, 2.68 mmol) and 3-IC6H4NH2 (0.97 mL,
8.1 mmol) which, under prolonged standing at 0 ◦C afforded dark red crystals of 3. Yield
0.95 g, 68%. C16H19Cl2NIMo requires C 37.02, H 3.69, N 2.70%. Found C 36.81, H 4.03, N
2.65%. IR: 1583w, 1557w, 1414m, 1260s, 1094s, 1020s, 908w, 865m, 800s, 733w, 697w, 673w,
662w, 571w, 550w, 526w, 507w, 466w. M.S. (ESI, positive): 448 (M+–2Cl).

4.5. Synthesis of [Mo(η-C5Me5)Cl4(4-IC6H4NH2)] (4)

As for 1 but using [Mo(η-C5Me5)Cl4] (1.00 g, 2.68 mmol) and 4-IC6H4NH2 (0.59 g,
2.7 mmol) which, under prolonged standing at 0 ◦C afforded dark red crystals of 4. Yield
0.72 g, 45%. C16H21Cl4NIMo· 12 MeCN requires C 33.33, H 3.70, N 3.43%. Found C 33.33, H
3.51, N 3.40%. IR: 3421w, 3332w, 2310w, 2288w, 1641m, 1609m, 1558m, 1401s, 1312m, 1260s,
1197m, 1170m, 1094s, 1058s, 1020s, 1011s, 987s, 933w, 913m, 879w, 846m, 805s, 722m, 687w,
660w. Mass spec (ASAP, solid): 521 (M+–2Cl), 486 (M+–3Cl).

4.6. Synthesis of [Mo(η-C5Me5)Cl2(4-IC6H4N)] (5)

As for 1 but using [Mo(η-C5Me5)Cl4] (1.00 g, 2.68 mmol) and 4-IC6H4NH2 (1.76 g,
8.04 mmol) affording 5 as dark crystals. Yield: 0.83 g, 60%. C16H19Cl2NIMo requires C
37.02, H 3.69, N 2.70%. Found C 36.94, H 4.24, N 2.71%. IR: 1558w, 1312s, 1290w, 1261s,
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1208w, 1167w, 1153w, 1110m, 1093s, 1051m, 1022s, 998s, 986m, 893w, 838s, 809s, 800s, 723m,
669m, 633w, 614w, 536m, 516s. M.S. (ESI, positive): 520 (MH+), 449 (M+–2Cl).

4.7. Synthesis of [Mo(η-C5Me5)Cl2(2-I,4-FC6H3N)]·MeCN (6·MeCN)

To [Mo(η-C5Me5)Cl4] (1.12 g, 3.00 mmol) and 2-I,4-FC6H3NH2 (0.36 mL, 3.0 mmol) in
a Schlenk flask was added toluene (20 mL) and triethylamine (0.86 mL, 6.2 mmol). The
system was stirred for 12 h, and then the volatiles were removed. The residue was extracted
into MeCN (40 mL) and on standing for 24 h at ambient temperature, the complex 6·MeCN
formed as dark orange crystals. Yield 1.06 g, 61%. C16H18Cl2FNIMo requires C 35.75, H
3.38, N 2.61%. Found C 35.50, H 3.67, N 2.67%. IR: 1573m, 1561m, 1309m, 1283w, 1259s,
1245m, 1199s, 1157w, 1109m, 1095m, 1032s, 1022s, 985w, 950w, 891w, 869s, 855m, 821s, 802s,
722m, 663w, 623w, 589w, 576w, 552w, 467w, 451m. M.S. (ESI, positive): 543 (M+–Cl), 537
(M+–MeCN).

4.8. Synthesis of [Mo(η-C5Me5)Cl3(2-I,4-FC6H3N)] (7)

As for 1 but using [Mo(η-C5Me5)Cl4] (1.00 g, 2.68 mmol) and 2-I,4-FC6H3NH2 (0.96 mL,
8.1 mmol) affording 7 as yellow plate-like crystals. Yield 0.83 g, 54%. C16H18Cl3FNIMo
requires C 33.57, H 3.17, N 2.45%. Found C 34.21, H 3.48, N 3.23%. IR: 1745w, 1606w, 1595w,
1574w, 1543w, 1299m, 1260s, 1240m, 1198m, 1184s, 1158m, 1096s, 1022s, 985w, 932w, 910w,
879m, 864m, 801s, 753w, 722m, 663w. 1H NMR (CDCl3, 400 MHz), δ: 7.66 (m, 1H, arylH),
7.61 (m, 1H, arylH), 7.14 (m, 1H, arylH), 2.27 (s, 15H, C5Me5). M.S. (ESI, positive): 502
(M+–2Cl).

4.9. Synthesis of [Mo(η-C5Me5)Cl2(C6H5N)] (8)

As for 1 but using [Mo(η-C5Me5)Cl4] (1.00 g, 2.68 mmol) and C6H4NH2 (0.75 g,
8.1 mmol) affording 8 as pale brown crystals. Yield: 0.84 g, 80%. C16H20Cl2NMo requires
C 48.87, H 5.13, N 3.56%. Found C 49.71, H 5.12, N 4.16%. IR: 1565w, 1303m, 1260s, 1200w,
1153w, 1095m, 1068m, 1021s, 981m, 920w, 881w, 801m, 775s, 740m, 723m, 691m, 617w, 548w,
506w, 473w. M.S. (ESI, positive): 394 (MH+), 357 (M+–Cl).

4.10. ROP of ε-Caprolactone (ε-CL)

All polymerizations were carried out in Schlenk tubes under nitrogen atmosphere
unless otherwise stated. ε-CL was polymerized using complexes 1–8 in the presence of
BnOH (0.1 M in toluene) as a co-initiator. Complexes were weighed out in the glove box
and then initiator and monomer were added to the flask successively via syringe. The
molar ratio of monomer/catalyst/BnOH ([CL]/[Cat]/[BnOH]) used was 500:1:1. The
reaction mixture was then placed into an oil bath, preheated to the required temperature.
The reaction was quenched by the addition of an excess of glacial acetic acid (0.2 mL), then
the reaction solution was poured into cold methanol (20 mL). The reaction conversion
was monitored by 1H NMR (400 MHz, CDCl3, 25 ◦C) spectroscopic studies. The resulting
polymer was washed several times with methanol, collected on filter paper and then dried
under vacuum to constant weight at 40 ◦C. GPC (in THF) were used to determine molecular
weights (Mn and PDI) of the polymer products.

4.11. Polymerization Kinetics

Kinetic experiments were carried out following the previous polymerization method.
At regular time intervals, 0.05 mL aliquots were removed, quenched with wet CDCl3
(1 mL), and analysed by 1H NMR spectroscopy.

4.12. Polymer Samples Preparation for MALDI-TOF

All samples were dissolved in THF, as was the matrix. Data was acquired using a
dithranol matrix and NaTFA additive, where the matrix, sample, and additive solutions
were mixed together in a 5:1:0.1 ratio. Then, 0.5 µL of the mixture solution was spotted
onto the MALDI target and left to air-dry prior to analysis.
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4.13. Crystal Structure Determinations

In all cases, crystals suitable for an X-ray diffraction study were grown from a saturated
MeCN solution at 0 ◦C or ambient temperature. Compounds 3 and 3I co-crystallized from
the same vial. All (except 1) single crystal X-ray diffraction data were collected at the UK
National Crystallography service using Rigaku Oxford Diffraction ultra-high intensity
instruments employing modern areas detectors. For 1 diffraction data were collected using
silicon 111-monochromated synchrotron radiation at Daresbury Laboratory Station 9.8. In
all cases, standard procedures were employed for integration and processing of data.

Complex 2 was refined as a two-component non-merohedral twin with 180◦ rotation
about direct and reciprocal axes 0 0 1 with the major:minor component ratio: 56.2:43.8(2)%.
For 7, there was some evidence of unresolved twinning from some largish residual electron
density peaks and Fobs > Fcalc for many reflections.

Crystal structures were solved using dual space methods implemented within
SHELXT [28]. The completion of these structures was achieved by performing least squares
refinement against all unique F2 values using SHELXL-2018 [29]. Table 4 contains the crys-
tallographic data for 1–8, 2-I NH3Cl and 3-I NH3Cl. CCDC 2122492-2122501 contain the sup-
plementary crystallographic data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
(accessed on 6 December 2021).

Table 4. X-ray crystallographic data for 1–8, 2-I NH3Cl and 3-I NH3Cl.

Compound 1 2·MeCN 3 4

Formula C16H19Cl2NIMo C16H21Cl4NIMo·(C2H3N) C16H19Cl2NIMo C16H21Cl4NIMo
Formula weight 519.06 633.03 519.06 591.98
Crystal system Monoclinic Monoclinic Monoclinic Monoclinic

Space group P21/c P21/c P21/c P21/c
a (Å) 13.959(7) 8.6986(4) 14.2972(2) 11.8409(3)
b (Å) 7.926(4) 22.7727(7) 17.0160(2) 9.8584(2)
c (Å) 16.248(8) 11.3268(10) 7.60500(12) 17.9445(4)
α (◦) 90 90 90 90
β (◦) 97.953(10) 92.068(5) 101.7956(15) 105.356(3)
γ (◦) 90 90 90 90

V (Å3) 1780.4(15) 2242.3(2) 1811.08(4) 2019.92(8)
Z 4 4 4 4

Temperature (K) 120(2) 100(2) 100(2) 100(2)
Wavelength (Å) 0.6903 0.71073 0.71073 0.71073

Calculated density (g.cm−3) 1.936 1.875 1.904 1.947
Absorption coefficient (mm−1) 2.52 2.44 2.72 2.71

Transmission factors (min./max.) 0.770, 0.947 0.256, 1.000 0.595, 1.000 0.326, 1.000
Crystal size (mm3) 0.10 × 0.05 × 0.02 0.22 × 0.09 × 0.04 0.20 × 0.18× 0.04 0.12 × 0.04 × 0.02

θ(max) (◦) 25.0 27.6 28.7 27.5
Reflections measured 7905 17958 36812 19181

Unique reflections 3172 8457 4670 4624
Rint 0.032 0.163 0.034 0.063

Reflections with F2 > 2σ(F2) 2863 7052 4519 3231
Number of parameters 195 242 196 221

R1 [F2 > 2σ(F2)] 0.048 0.094 0.016 0.036
wR2 (all data) 0.135 0.226 0.040 0.089

GOOF, S 1.06 1.10 1.13 1.02
Largest difference peak and hole (e Å−3) 3.08 and −1.44 3.13 and −1.84 0.55 and −0.40 0.81 and −0.92

www.ccdc.cam.ac.uk/structures
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Table 4. Cont.

Compound 5 6 MeCN 7 8

Formula C16H19Cl2NIMo C18H21Cl2FN2IMo C16H18Cl3FNIMo C16H20Cl2NMo
Formula weight 519.06 578.11 572.50 393.17
Crystal system Orthorhombic Monoclinic Orthorhombic Orthorhombic

Space group Pca21 I2/a Fdd2 Pbca
a (Å) 15.3004(5) 14.45516(19) 14.6309(3) 12.93812(8)
b (Å) 7.28895(19) 8.64656(9) 63.6134(13) 14.34123(9)
c (Å) 16.7395(4) 33.2386(4) 8.14550(17) 17.82290(11)
α (◦)
β (◦)
γ (◦)

V (Å3)

90 90 90 90
90 96.0961(12) 90 90
90 90 90 90

1866.85(9) 4130.91(9) 7581.2(3) 3307.01(4)
Z

Temperature (K)
4 8 16 8

100(2) 100(2) 100(2) 100(2)
Wavelength (Å)

Calculated density (g·cm−3)
Absorption coefficient (mm−1)

Transmission factors (min./max.)

0.71073 0.71073 0.71073 1.54178
1.847 1.859 2.006 1.579
2.64 2.40 2.75 9.36

0.722, 1.000 0.775, 1.000 0.960, 1.000 0.537, 0.893
Crystal size (mm3)

θ(max) (◦)
0.20 × 0.18 × 0.12 0.24 × 0.16 × 0.08 0.24 × 0.18 × 0.03 0.09 × 0.04 × 0.02

28.7 28.7 33.2 70.5
Reflections measured 19105 36899 59080 113441

Unique reflections 4744 5345 6772 3153
Rint 0.037 0.016 0.061 0.043

Reflections with F2 > 2σ(F2) 4704 5113 6613 3095
Number of parameters 196 232 213 273

R1 [F2 > 2σ(F2)] 0.024 0.016 0.042 0.038
wR2 (all data) 0.062 0.037 0.095 0.084

GOOF, S 1.06 1.10 1.12 1.32
Largest difference peak and hole (e Å−3) 1.08 and −0.96 0.47 and −0.45 2.69 and −1.49 0.46 and −0.81

Compound 2-I NH3Cl 3-I NH3Cl

Formula C6H7NI·Cl C6H7NI·Cl
Formula weight 255.48 255.48
Crystal system Monoclinic Monoclinic

Space group P21/c P21/n
a (Å) 9.24697(19) 4.51643(17)
b (Å) 9.29797(18) 5.99872(17)
c (Å) 9.3626(2) 30.1104(11)
α (◦)
β (◦)
γ (◦)

V (Å3)

90 90
100.672(2) 92.257(4)

90 90
791.05(3) 815.14(5)

Z
Temperature (K)

4 4
100(2) 100(2)

Wavelength (Å)
Calculated density (g.cm−3)

Absorption coefficient (mm−1)
Transmission factors (min./max.)

0.71073 0.71073
2.145 2.082
4.30 4.17

0.328, 1.000 0.588, 1.000
Crystal size (mm3)

θ(max) (◦)
0.18 × 0.09 × 0.09 0.16 × 0.12 × 0.01

28.7 28.7
Reflections measured 15911 13319

Unique reflections 2041 2077
Rint 0.025 0.050

Reflections with F2 > 2σ(F2) 1984 1840
Number of parameters 95 91

R1 [F2 > 2σ(F2)] 0.012 0.029
wR2 (all data) 0.029 0.068

GOOF, S 1.11 1.09
Largest difference peak and hole (e Å−3) 0.42 and −0.39 2.79 and −0.91

5. Conclusions

In conclusion, we have utilized iodoanilines to access and stabilize zig-zag chains or
ladders incorporating organometallic molybdenum fragments. Amine or organoimido
species can be accessed depending on conditions for the 3- and 4-iodoanilines; for the
2-iodoaniline, only an imido product could be isolated. Use of 4-fluoro-2-idoaniline was
more sensitive, and both Mo(V) and Mo(VI) imido complexes were accessible, the latter
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via adventitious oxidation. All structures exhibit a variety of intermolecular interactions.
In terms of ROP, the substituent pattern of the iodo substituents strongly influences the
polymerization rate. A meta-iodo substituent is favoured, and it is assumed that the
presence of this electron withdrawing group promotes the ability of the metal to perform a
nucleophilic attack at the carbonyl of the ε-caprolactone.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11121554/s1, Figure S1: Alternative views of 1, Figure S2: Views of the molecular
structure of [2-I-NH3C6H4]Cl, Figure S3: Packing of the complex 2·MeCN, Figure S4: Packing views
of 3, Figure S5: Different views of [3-I-NH3C6H4]Cl, Figure S6: Different views of the packing of 4,
Figure S7: Packing of the complex 5, Figure S8: Alternative view and packing for 6·MeCN, Figure S9:
Packing of complex 7, Figure S10: Packing of the aniline complex 8, Figure S11: 1H NMR spectrum
(CDCl3, 400 MHz, 298 K) of the PCL synthesized with 3/BnOH at 130 ◦C under N2 (entry 7, Table 1),
Figure S12: Mass spectra of the PCL synthesized with 2/BnOH (entry 2, Table 1), Figure S13: Mass
spectra of the PCL synthesized with 2/BnOH (entry 2, Table 2), Figure S14: Mass spectra of the PCL
synthesized with 2/BnOH (entry 5, Table 3), Figure S15: Kinetics of 8 versus 2.
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