
https://doi.org/10.1177/20420188211042145 
https://doi.org/10.1177/20420188211042145

Ther Adv Endocrinol  
Metab

2021, Vol. 12: 1–30

DOI: 10.1177/ 
20420188211042145

© The Author(s), 2021.  
Article reuse guidelines:  
sagepub.com/journals-
permissions

Therapeutic Advances in Endocrinology and Metabolism

journals.sagepub.com/home/tae 1

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License  
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
Diabetes mellitus (DM) is a global epidemic pos-
ing a significant health threat to people around 
the world. According to the International Diabetes 
Federation (IDF) estimates in 2019, 463 million 
people aged 20–79 years suffered from DM 
worldwide, which is projected to rise to a stagger-
ing 700 million in the next 25 years1 (Figure 1). 
DM is the fastest growing health challenge of the 
21st century, and its scale is such that 1 in 11 
adults (20–79 years) have DM, bleeding $760 

billion in funds, which is 10% of the worldwide 
health expenditure.2 DM confers a risk of early 
mortality, and in 2019 the IDF projected that 4.2 
million adults would die as a result of DM and 
related complications, which, when put into per-
spective, is equivalent to one death every 8 s.2 
T2DM accounts for approximately 90% of all 
DM cases, and the global exponential growth of 
this epidemic is mainly attributable to a sedentary 
lifestyle, obesity, an ageing populace, urbaniza-
tion, and economic development.3,4
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Management of T2DM requires a patient-centred 
approach in bringing about lifestyle changes and 
optimizing glycaemic control using the available 
pharmacological options to preserve the quality of 
life and minimize complications.5,6 The Kumamoto7 
and UK Prospective Diabetes Study (UKPDS)8,9 
confirmed that intensive glycaemic control in 
patients with newly diagnosed T2DM significantly 
decreased rates of microvascular complications 
and, therefore, early and adequate treatment is of 
paramount importance. T2DM is a progressive 
condition, and to prevent long-term complications, 
improving and sustaining glycaemic control is vital. 
Timely treatment escalation can help achieve this; 
however, this is often delayed, and people remain 
with suboptimal glycaemic control for several 
years.10 Comorbid state, insulin resistance (IR), 
and beta-cell dysfunction render many available 
treatments, either inadequate or contra-indicated. 
An intricate scenario is further complicated when 
treatment choices have to be informed to avoid 
hypoglycaemia and weight gain.11

Due to the introduction of new oral and injectable 
pharmacological agents, which are potent and well 
tolerated, clinicians nowadays have more options for 
treating T2DM. However, based on the commonly 
encountered constraints mentioned above, there is a 
requirement for developing new agents which are 
effective individually and can be safely co-prescribed 
with the currently available array of treatment 
options. In addition to this, the medical community 
is longing for preparations that positively impact 

complications arising from T2DM and have little or 
no limitations to their use in patients with significant 
multiorgan comorbid states.

In this article, we discuss the pathophysiology of 
hyperglycaemia in T2DM, followed by recently 
included therapeutic agents and novel medication 
under development for the treatment of T2DM.

Methodology
We systematically searched PubMed, MEDLINE, 
and Google Scholar for original articles, review arti-
cles, systematic reviews, randomized control trials 
(RCTs), and meta-analysis published in English 
from 01 January 2011 to 05 March 2021. Relevant 
and important articles published before 2011 were 
also included. We developed a search string of 
medical subject headings (MeSH) including the 
terms ‘diabetes’ OR ‘non-insulin-dependent diabe-
tes mellitus’ OR ‘hyperglycaemia’ OR ‘T2DM’, 
‘insulin resistance’, ‘novel agents’ OR ‘future medi-
cations’ AND ‘updates’, ‘medical treatment’ OR 
‘pharmacological treatment’ OR ‘therapy’, ‘novel 
delivery methods’ OR ‘administration’, ‘genome-
wide association and type 2 diabetes’, ‘insulin 
pump systems’ AND ‘closed-loop pump systems’.

Pathophysiology of hyperglycaemia in T2DM
In contrast to type-1 diabetes mellitus (T1DM), 
where the driving force behind hyperglycaemia is 
autoimmune destruction of β-cells, T2DM results 

Figure 1. A graphical description of the IDF-estimated number of adults living with diabetes globally since the 
year 2000 which is projected to rise to 700 million by 2045.1,2
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from β-cell dysfunction and IR. There is high 
insulin demand from the peripheral tissues due to 
IR resulting in β-cell expansion and hyperinsu-
linemia.12 As a result of this compensatory 
response from the β-cells, in the presence of a 
hyperglycaemic milieu, there is a steady loss of 
β-cell mass thought to occur from accentuated 
apoptosis.13–15 The development of T2DM is a 
continuum from a state of impaired glucose toler-
ance (IGT), where patients exhibit a very high 
level of IR and have lost an estimated 80% of 
their β-cell function to T2DM. To explain the 
pathophysiologic defects in T2DM, eight key col-
laborators have been described which include 

pancreatic β-cells (decreased insulin secretion), 
pancreatic α-cells (increased glucagon secretion), 
liver (increased hepatic glucose output), muscle 
(decreased glucose uptake), adipose tissue 
(increased lipolysis), kidney (increased glucose 
re-absorption), gut (decreased incretin effect), 
and the brain (impaired appetite regulation) 
which were collectively called the ominous octet.16 
In DM, the complex system required to maintain 
euglycemia independent of glucose load and 
clearance fails17 (Figure 2) and the fascinating 
interplay between IR, impaired insulin secretion 
and loss of β-cell mass, have long been targeted 
with therapeutic agents to treat this condition.

Figure 2. A brief illustrative explanation of molecular mechanisms responsible for insulin resistance in 
T2DM followed by a discussion on organ-specific contributions. Insulin resistance in the muscles; defective 
insulin signalling, glucose transport, glucose phosphorylation, glycogen synthesis, pyruvate dehydrogenase 
complex activity, and mitochondrial oxidative activity.16,18,19 Events in the liver; insulin resistance/deficiency, 
hyperglucagonaemia, enhanced glucagon sensitivity, and increased substrate (fatty acids, lactate, glycerol, 
and amino acids) delivery, leads to increased gluconeogenesis, which is responsible for the increased basal 
rate of glucose production and fasting hyperglycaemia.20–22 Renal contribution; renal insulin resistance and 
augmented renal gluconeogenesis contribute to fasting hyperglycaemia.23 Vascular endothelium; impaired 
vasodilation due to insulin resistance resulting in reduced insulin and glucose delivery.24 Finally, post-prandial 
hyperglycaemia ensues due to increased hepatic glucose output, muscle insulin resistance, reduced non-
insulin-mediated glucose uptake, and excessive renal glucose re-absorption.25,26
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Combined peptide injectables
By increasing β-cell insulin secretion, delaying 
gastric emptying, and reducing glucagon secre-
tion, glucagon-like peptide-1 (GLP-1) analogues 
successfully target and suppress post-prandial 
hyperglycaemia in T2DM.27,28 On the contrary, 
basal insulin therapy targets fasting hyperglycae-
mia and theoretically, when combined, their com-
plimentary action should result in significant 
improvement in glycaemic control. This material-
ized with the introduction of IDegLira (50 U insu-
lin degludec and 1.8 mg liraglutide) and iGlarLixi 
(100 U insulin glargine and 50 μg lixisenatide) in 
a titratable fixed-ratio combination. The FDA 
approved both combination injections for clinical 
use in 2016. Results from the DUAL (Dual Action 
of liraglutide and Insulin Degludec in T2DM) 
clinical development programme demonstrated 
the efficacy and safety of iDegLira in 1393 adults 
with T2DM, who had inadequate glycaemic con-
trol on liraglutide or basal insulin alone. Switching 
to iDegLira resulted in a mean reduction in 
HbA1c up to 1.94%. Lixilan-O (ClinicalTrials.
gov NCT02058147) compared iGlarLixi with 
insulin glargine or lixisenatide alone for treatment 
of insulin-naive patients on metformin29,30 while 
lixiLan-L (ClinicalTrials.gov NCT02058160) 
compared iGlarLixi with insulin glargine alone in 
patients already using basal insulin with or with-
out oral hypoglycaemic agents.30,31 As evidenced 
by several studies,29,31–33 both IDegLira and iGlar-
Lixi achieved more significant HbA1c reductions 
without increasing the risk of hypoglycaemia in 
patients with T2DM, compared to individual 
insulin or GLP-1 analogues. In addition to the 
described benefits, there is a lower risk of hypogly-
caemia, weight gain, and gastrointestinal side 
effects.34,35 All these attributes make these injec-
tions suited for the management of T2DM and 
can be utilized at the treatment intensification 
stage of the management algorithm.

GLP-1 and GIP dual-receptor agonists
GIP is an incretin hormone like the much talked 
about GLP-1. Together, they are responsible for 
enhancing glucose-dependant insulin secretion 
from the pancreatic β-cells termed the incretin 
effect.36,37 Under normal physiological circum-
stances, the incretin effect is mainly driven by 
GIP.38,39 Developed by Eli Lilly, Tirzepatide 
(TZP), LY3298176, is a GLP-1 receptor and GIP 
receptor (GLP-1R/GIPR) dual agonist, which has 

achieved superior HbA1c and weight reductions 
compared to injectable semaglutide as an add-on to 
metformin in adults with T2DM in the phase-3 
SURPASS-2 clinical trial (ClinicalTrials.gov 
NCT03987919). In this 40-week, multi-centre, 
randomized, parallel, open-label trial, participants 
taking weekly TZP 15 mg (highest dose) achieved 
an HbA1c reduction of 2.46% and weight loss of 
13.1% compared to weekly semaglutide 1 mg. An 
estimated 51% of patients who received the higher 
TZP dose achieved an HbA1c of <5.7% (non-
diabetic range) compared to 20% in the semaglu-
tide arm.40 Previously in patients with T2DM, once 
weekly TZP at doses of 1, 5, 10, or 15 mg has been 
compared to once weekly dulaglutide 1.5 mg; in a 
double-blind phase-2 study. Patients were ran-
domly assigned (1:1:1:1:1:1) to receive either once 
weekly subcutaneous (SC) TZP (1, 5, 10, or 15 
mg), dulaglutide (1.5 mg), or a placebo for 26 
weeks. The change in HbA1c with TZP at 26 
weeks was −1.06% (1 mg), −1.73% (5 mg), 
−1.89% (10 mg), and −1.94% (15 mg) compared 
with −0.06% for placebo and −1.21%. Reassuringly, 
the change in HbA1c with TZP did not plateau. At 
26 weeks, 33%–90% of patients treated with TZP 
achieved the HbA1c target <7% versus (vs) 52% 
with dulaglutide and 12% with placebo. At 26 
weeks, changes in mean body weight ranged from 
−0.9 to −11.3 kg for TZP versus −0.4 kg for pla-
cebo versus −2.7 kg for dulaglutide. Gastrointestinal 
events including nausea, diarrhea, and vomiting 
were the most reported side effects, were dose 
dependent, mostly mild-moderate and self-limit-
ing. There were no reports of severe hypoglycae-
mia.41 Although the mechanism of its action is not 
fully understood, studies suggest that TZP binds to 
the GIPR with the same affinity as native GIP while 
its affinity with the GLP-1R is five times lower than 
the endogenous molecule.42 As a result, TZP 
engages GIPR more than the GLP-1R, and the 
unique signalling properties at the GLP-1R may 
form the basis of its profound efficacy.43,44 GLP-1R/
GIPR dual agonists (Table 1) have shown signifi-
cantly better efficacy in terms of glycaemic control 
and weight loss compared to GLP-1R agonists with 
satisfactory tolerability and so will be a welcome 
addition to the therapeutic options in T2DM.

Sodium-glucose co-transporter and dual 
SGLT1 and SGLT2 inhibitors
Sodium-glucose co-transporters (SGLTs) regu-
late sodium and glucose transport across cell 
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membranes. Six SGLT isoforms have been iden-
tified in human beings;46 however, only SGLT1 
and SGLT2 inhibition has translated into phar-
macotherapy in T2DM so far. SGLT1 is a high-
affinity but low-capacity transporter,47 which 
mediates the absorption of glucose in the small 
intestine and accounts for the re-absorption of 
approximately 3% of the filtered glucose from the 
S3 segment of the proximal convulated tubule 
(PCT) in the nephrons.48,49 In contrast, SGLT2 
is a low-affinity but high-capacity transporter,47 
which is responsible for the bulk (>90%)48,49 of 
glucose re-absorption from the S1 and S2 seg-
ments of the PCT.50,51 Targeting the inhibition of 
SGLT2 could lead to glucosuria and improved 
glycemia.

In 2012, dapagliflozin was approved by the 
European Medicines Agency (EMA) for clinical 
use, marking the first approval of a drug from this 
class anywhere around the world.52 The following 
year, canagliflozin was approved by the Food and 
Drug Administration (FDA) for clinical use in the 
United States,53 and thereafter several agents 
have been approved and marketed around the 
world. These approvals came on the back of 
large-scale clinical trials, where, in addition to 
improving glycaemic control, SGLT2 inhibitors 
led to weight loss and demonstrated cardio-renal 
benefits. For instance, not only did empagliflozin 
reduce the 3-point major adverse cardiac events 
(cardiovascular death, non-fatal myocardial 
infarction, and stroke), it was shown to reduce 
cardiovascular death (by 38%), hospitalization 
with heart failure (by 35%), and all-cause mortal-
ity (by 32%) aswell.54–57 These remarkable results 

have led to a rapid uptake of this class in the man-
agement of T2DM.

Recent pharmacological research suggested that 
combined SGLT1 and SGLT2 inhibition resulted 
in significant post-prandial glucose reduction, the 
elevation of endogenous GLP-1, and urinary glu-
cose excretion. First-in-class of dual SGLT1 and 
SGLT2 inhibitors, sotagliflozin has been devel-
oped.58 It has 20-fold higher selectivity for SGLT2 
than SGLT1, is as effective as dapagliflozin and 
canagliflozin in inhibiting SGLT2 but is greater 
than 10-fold more potent than them in inhibiting 
SGLT1.59–61 From phase-2 and -3 clinical trials, 
sotagliflozin has demonstrated improved glycae-
mic control, reduced post-prandial glucose, 
reduced insulin requirements, appetite suppres-
sion, and weight loss in patients with type-162 and 
type-2 diabetes.63,64

Encouraging results from phase 3, inTandem 1–3 
trials65 among others,62 have led to its approval in 
the EU as an adjunct to insulin in patients with 
T1DM with a body mass index (BMI) ⩾ 27 kg/m2 
who have failed to achieve adequate glycaemic 
control despite optimal insulin therapy.66 A higher 
incidence of ketoacidosis with sotagliflozin (3%) 
compared to placebo (0.6%) was seen in the 
inTandem study which is of some concern,61,65 an 
effect also seen with dapagliflozin in the past.67 
Goldenberg and colleagues have developed the 
‘STOP DKA Protocol’, a practical tool that may 
potentially help in reducing this risk in clinical 
pratice68 in addition to appropriate patient selec-
tion and down titration of basal insulin. In the 
SOLOIST-WHF clinical trial (ClinicalTrials.gov 

Table 1. A list of recently developed GLP-1R/GIPR dual agonists.45.

Drug Developer Route of administration Status

LYS3298176 (TZP) Eli Lilly Once weekly SC injection Phase 3

NNCOO90-2746 Novo Nordisk Daily SC injection Phase 2

 Eli Lilly – Preclinical

ZP-I-98 Zealand Pharma – Preclinical

ZP-DI-70 Zealand Pharma Preclinical

SAR438335 Sanofi – Discontinued in phase-2 
clinical trials.

GLP-1R, GLP-1 receptor; GIPR, GIP receptor.
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NCT03521934), sotagliflozin therapy resulted in 
a significantly lower total number of deaths from 
cardiovascular causes, hospitalizations, and 
urgent visits for heart failure compared to placebo 
in patients with T2DM.69 Moreover, in the 
SCORED clinical trial (ClinicalTrials.gov 
NCT03315143), treatment with sotagliflozin 
resulted in a similar effect in patients with T2DM 
and chronic kidney disease with or without albu-
minuria.70 Another dual SGLT1 and SGLT2 
inhibitor, licogliflozin has been shown to exert a 
favourable metabolic effect leading to weight loss, 
reduced PPG excursion, and elevation of total 
GLP-1 levels in patients with obesity and 
T2DM.71,72 Based on the overwhelmingly encour-
aging results from sotagliflozin, it seems that 
approval for use in T2DM is not far away. At the 
same time, other agents from this novel class can 
emerge as clinically beneficial entities for the 
treatment of T2DM in the years to come.

Peroxisome proliferator–activated receptor 
α (alpha)/γ (gamma)/δ (delta) pan-agonists
Peroxisome proliferator–activated receptors 
(PPARs) are ligand-activated transcription factors 
of nuclear hormone receptors. Their subtypes 
include PPAR-α (liver, muscle, and heart);  
PPAR-γ (adipose tissue and vascular endothelial  
cells), and PPAR-δ (widespread whole-body dis-
tribution) which play an integral part in energy 
metabolism, where PPAR- δ regulates energy 
expenditure while PPAR-γ mediates its stor-
age.73–75 Thiazolidinediones (TZDs) are anti-dia-
betic agents in clinical use since 1997.76 They are 
PPAR-γ agonists, which enhance insulin sensitiv-
ity by increasing adiponectin, GLUT4 expression 
and oppose the effect of tumour necrosis factor 
(TNF)-alpha in adipocytes. These actions result 
in reduced hepatic gluconeogenesis and increase 
insulin-dependent glucose uptake in muscle and 
fat.77 Chiglitazar, a novel PPARα/γ/δ pan-agonist, 
has been investigated in phase-3 multi-center, ran-
domized, double-blind, and placebo-controlled 
trials (ClinicalTrials.gov NCT02121717),78 as 
well as sitagliptin, controlled (ClinicalTrials.gov 
NCT02173457)79 trials in patients with T2DM 
with insufficient glycaemic control despite diet 
and exercise. Compared to placebo, at 24 weeks, 
both doses of chiglitazar were superior to placebo 
in HbA1c reduction and the effects were sustained 
for 52 weeks. The mean change in HbA1c from 
baseline was −0.45% ± 1.22% with placebo, 
−1.30% ± 1.07% with chiglitazar 32 mg, and 

−1.52% ± 1.19% with chiglitazar 48 mg. Although 
hypoglycaemia, weight gain, and oedema were 
relatively more common with chiglitazar, the over-
all adverse events were comparable across all 
groups with no major safety concerns.80 MHY2013 
and IVA337 are other examples of PPAR pan-ago-
nists that have been shown to suppress inflamma-
tion and hepatic lipid accumulation and may 
emerge as useful candidates for treating non-alco-
holic fatty liver disease (NAFLD) in the future.81,82

GLIMINS
A novel oral anti-diabetic drug, imeglimin is a tet-
rahydrotriazine compound that is the first member 
of the ‘glimins’ class of agents and has been investi-
gated in many landmark clinical trials.83 In patients 
with T2DM, imeglimin has shown sustained 
improvement in hyperglycaemia without disabling 
hypoglycaemia and was not associated with a con-
cerning side-effect profile.84,85 Its unique mecha-
nism of action (MOA) (Figure 3) not only increases 
glucose-dependant insulin secretion but also 
reduces IR.86,87 It acts by inhibiting the process of 
oxidative phosphorylation in the mitochondria of 
aerobic cells which in turn leads to favourable met-
abolic effects.86 Imeglimin counteracts a variety of 
metabolic disruptions at play in T2DM. It acceler-
ates the phosphorylation of Akt (protein kinase B) 
leading to enhanced insulin signalling88 and has 
also been linked to the induction of insulin sensitiv-
ity in the β-cells.89 In addition to this, imeglimin 
reduces hepatic gluconeogenesis,86,90 is protective 
against β-cell death, increases the β-cell mass and 
improves glucose-induced insulin secretion (GSIS) 
from islets of Langerhan cells in the pancreas.87,89,91 
Interestingly, Lachaux et al.92 reported a reduction 
in left ventricle (LV) end-diastolic pressure and 
increased LV tissue perfusion with imeglimin treat-
ment in Zucker fa/fa rats. These findings suggest 
that imeglimin is potentially cardioprotective in 
addition to its anti-diabetic properties and thus 
once approved for commercial use, will be a useful 
inclusion to the arsenal against T2DM.

A systematic review and meta-analysis of the avail-
able evidence from Crabtree et  al.93 showed that 
imeglimin therapy, at a dose of 1500 mg twice a 
day, lead to a reduction in HbA1c (0.63%) and 
fasting plasma glucose (FPG) (0.52 mmol/L) in 
patients with T2DM when used alone or in combi-
nation with metformin or sitagliptin. These results 
are similar to those reported for other classes of 
glucose-lowering therapies inducted in clinical 
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practice in recent times. Based on the available evi-
dence, imeglimin use is not related to any signifi-
cant adverse effects and is overall well tolerated.94 
Based on its potent anti-diabetic effect as mono-
therapy and as an adjunctive treatment,93 the lack 
of major adverse effects and potential cardiopro-
tection, imeglimin is poised to occupy a crucial 
role in the future of T2DM pharmacotherapy.

Therapies targeting the glucagon receptor

GLP-1R and glucagon receptor dual agonists
Around 90% of patients with T2DM are over-
weight, making it an important risk factor for its 
development.95 GLP-1R agonists improve glycae-
mic control and reduce weight in patients with 
T2DM, making them an effective pharmacological 
agent.96 Glucagon is a peptide hormone, produced 
by the α-cells of the islets of Langerhans. Acting 
via the glucagon receptor (GCGR), it increases 
glucose concentration in the bloodstream via  
gluconeogenesis and glycogenolysis, increases 
lipolysis, improves energy expenditure and can 
activate the GLP-1R leading to a glucose-lowering 
effect.97,98 In diet-induced obese (DIO) mice, 
Pocai et al. demonstrated that GLP-1 and GCGR 
dual agonism lead to superior weight loss 

compared to GLP-1R agonists alone while the 
lipid-lowering and antihyperglycemic activity of 
both classes were comparable. Chronic adminis-
tration of GLP-1/GCGR dual agonist leads to a 
more pronounced improvement in plasma  
metabolic parameters (insulin, leptin, and adi-
ponectin) compared to GLP-1R agonist alone.99 
Oxyntomodulin, JNJ-64565111, and MEDI-
0382100,101 are examples of some agents being 
developed in this emerging class with some encour-
aging results being reported with MEDI-0382 
recently.102

GCGR antagonist
Glucagon and insulin exhibit opposite metabolic 
effects. Glucagon regulates glucose homeostasis 
through hepatic glucose production via gluconeo-
genesis and glycogenolysis. Glucagon receptor 
antagonists (GRAs) are a novel class of anti-hyper-
glycaemic agents designed to target hyperglycae-
mia in diabetes by blocking glucagon action 
through its receptor.103,104 GRAs differ chemically, 
and on this basis, can be classified into small mol-
ecule, monocloncal antibody, and anti-sense oligo-
nucleotide agents. A variety of GRAs studied in 
clinical trials have shown to improve glycaemic 
control in terms of HbA1c, but clinically significant 

Figure 3. Potential mechanisms via which glucose homeostasis is improved by imeglimin therapy.86
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adverse effects have precluded their use as thera-
peutic options in clinical practice. Weight gain, 
elevated hepatic enzymes, increase in low-density-
lipoprotein-C (LDL-C) levels and liver fat content, 
rise in systolic blood pressure, and α-cell hyperpla-
sia are some of the concerns reported with GRA 
use.105,106 Efforts are underway to minimize side 
effects of GRAs,107 and many agents are currently 
being developed from this class101(Table 2).

GLP-1R/GCGR/GIPR triple agonists
Following Roux-en-Y gastric bypass (RYGBP) 
surgery, it was noted that the endogenous GLP-1, 
GIP, and glucagon (Incretins) secretion was 
increased. It was theorized that these incretins’ 
synergistic metabolic action could lead to weight 
reduction.112,113 HM15211, currently in phase-1 
clinical trials, is a weekly SC GLP-1R/GCGR/
GIPR tri-agonist peptide being developed by 
Hanmi Pharma to treat obesity, NAFLD, and 
T2DM. It is a modified human glucagon mole-
cule formed by conjugating to human immuno-
globulin G Fc fragment through PEG linkage.

To assess the efficacy in treatment of obesity, 
HM15211 was compared with liraglutide in DIO 
mice, where early results have shown a ~three-fold 
reduction in weight and increased energy expendi-
ture with HM15211 compared to liraglutide. 
Moreover, in methionine choline–deficient (MCD) 
mice, HM15211 administration resulted in reduc-
tion in hepatic TGs (−82.6% vs vehicle) and thio-
barbituric acid reactive substances (TBARS) 
(−60.7% vs vehicle). A concurrent fall in serum 
alanine-aminotransferase (ALT) and bilirubin was 
also observed. HM15211 resulted in increased 
intracellular cAMP through GLP-1R, GCGR and 
GIPR. Its robust glucagon activity caused weight 
loss and improved lipid profiles by accelerated lipid 
oxidation. GLP-1R and GIP served to neutralize 

the glucagon-induced hyperglycaemia.101,114,115 By 
affecting weight loss and improving lipid profiles, 
this class could provide an attractive therapeutic 
option for treating obesity and related diseases, 
for example, T2DM and NAFLD. NN9423 
(NNC9204-1706) by Novo Nordisk and GGG tri-
agonist by Eli Lilly are examples of some other 
GLP-1R/GCGR/GIPR triple agonists which are 
currently under development.101

G-protein-coupled receptor ligands
A variety of mediators acting through G-protein-
coupled receptors (GPCRs) can enhance and 
inhibit GSIS.116 Gs, Gi, Gq, and G12 are involved 
in signalling pathways modulating insulin secre-
tion. Gs and Gq stimulate insulin release while Gi 
inhibits it.117

GPR119 agonists
GPR119 is a Class-A orphan GPCR found in the 
pancreas and the gastrointestinal tract and can 
regulate insulin and incretin release. Its activation 
leads to the intracellular accumulation of cAMP, 
resulting in GSIS from the pancreatic β-cells and 
incretin release from the gut.118,119 Due to the dual 
effect of GSIS and incretin release coupled with a 
low risk of hypoglycaemia, these agents have 
drawn considerable interest as a therapeutic entity 
in the management of T2DM. Unfortunately, no 
synthetic GPR119 ligand has been approved for 
treatment, nor has any passed beyond phase-2 
clinical studies.120,121 DS-8500 is a GPR119 ago-
nist being developed by Daiichi Sankyo Company 
and is currently in phase-2 clinical trials.122

Free fatty acid receptor
Several agents have been identified to have anti-
hyperglycaemic action by stimulating or blocking 

Table 2. Examples of GRAs in various stages of development.

Chemical nature Name Developer Status

Small molecules LGD 6972108,109 Metavant Sciences and Ligand 
Pharmaceuticals

Phase 2

Monoclonal antibodies PF 06293620110 Pfizer Phase 1

Anti-sense oligonucleotide 
agents

IONIS-GCGRRx111 Isis Pharmaceuticals and Ionis 
Pharmaceuticals

Phase 2

GRA, glucagon receptor antagonists.
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the free fatty acid receptor (FFAR). Among the 
FFARs, FFAR1 (GPR40), FFAR2 (GPR43), 
FFAR3 (GPR41), and FFAR4 (GPR120) have 
emerged as anti-diabetic targets.123 Long-chain 
free fatty acids (FFAs) activate FFAR1 and 
FFAR4, and agonists of these two receptors have 
been proven to enhance insulin and incretin 
release.124 Short-chain FFA activates FFAR2 and 
FFAR3 and as opposed to FFAR1 and 4, antago-
nism of these receptors has shown anti-diabetic 
potential.125 Mice studies have demonstrated that 
FFAR2 and FFAR3 antagonists can enhance 
insulin secretion and glucose tolerance.126 Agents 
targeting the FFAR are still in the early stages of 
development, and it remains to be seen whether 
an effective and safe drug can be delivered and 
inducted into clinical practice from this class in 
the future. P1736 and P11187 by Piramal 
Enterprises and LY2922470 by Eli Lilly are exam-
ples of recently studied FFAR1 agonists.123,127

Takeda G-protein-coupled receptor  
5 (TGR5 agonists)
Discovered in 2002, TGR5 (also known as GPBAR1 
and GPR131) is a bile acid–specific receptor found 
in the gastrointestinal tract, pancreas, liver, gallblad-
der, and adipose tissue.128 A lot of research has gone 
into establishing a link between bile acids and glu-
cose metabolism, with numerous studies showing 
bile acid–mediated TGR5 activation resulting in 
impactful gluco-metabolic sequelae including GLP-
1, insulin, and glucagon release.129–132 The ability to 
stimulate GLP-1 secretion133 has attracted consider-
able interest; however, this effect may be limited as 
TGR5 receptors are predominantly present in 
L-cells’ basolateral membrane, leading to insuffi-
cient luminal activation required to produce the 
desired metabolic impact.134,135 Studies in rodents 
suggest an important role for TGR5 in GLP-1 
secretion,129 and therefore, it is an important target 
for the development of pharmacotherapy directed 
against metabolic disease, including T2DM.136 
However, data from animal studies showed signifi-
cant safety concerns with TGR5 agonists treatment, 
foremost of which were gall bladder dilation, pan-
creatitis, and hepatic necrosis. Human studies have 
reported no beneficial effects on GLP-1 secretion 
or plasma glucose levels, and as such, currently, a 
viable pharmacological option using this concept 
is not on the horizon.137,138 SB 756050, originated 
by GlasgowSmithKline, was TGR5 agonist studied 
for the treatment of T2DM. Fifty-one participants 
were randomized to receive either placebo or one 

of four doses of SB-756050 for 6 days. A single 100 
mg dose of sitagliptin was co-administered on Day 6 
to all participants. It was well tolerated, however, 
exhibited variable pharmacodynamic effects with 
rise in glucose at the two lowest doses and no fall in 
glucose at the two highest doses. The glucose effects 
of SB-756050 and sitagliptin were comparable to 
those of sitagliptin alone (ClinicalTrials.gov 
NCT00733577).139 Studies on SB-756050 were 
eventually discontinued in Phase-2 clinical trials.140

Melatonin receptor
Peripheral and central IR, glucose intolerance and 
reduced expression of the GLUT4 gene have been 
observed in pinealectomized animals, which 
improved with melatonin administration.141,142 
Furthermore, a reduction in melatonin formation 
has been reported in animal models with 
T2DM.143,144 MT1 and MT2 are isoforms of mel-
atonin receptors expressed on hepatocytes and 
pancreatic cells, forming part of the glucose regula-
tion pathway. Various studies demonstrate that 
melatonin-mediated activation of these receptors 
improves insulin sensitivity and suppress glucone-
ogenesis.145,146 In the past, MT1 and MT2 knock-
out mice have been shown to have systemic IR and 
reduced insulin sensitivity, with the latter exhibit-
ing increased insulin release.147–149 Ramelteon is a 
selective melatonin receptor (MT1 and MT2) ago-
nist, approved by the FDA for the treatment of 
insomnia;150 however, as noted by Tsunoda 
et al.,151 its use did not improve glycaemic control 
in patients with T2DM suffering from insomnia.

In contrast, piromelatine, a novel melatonin receptor 
agonist, has been shown to exert a protective effect 
on insulin sensitivity and lipid metabolism in sleep-
deprived rats.152 Melatonin receptor is a potential 
target for developing therapies to address hypergly-
caemia. However, substantial research is required in 
this class to produce a clinically relevant agent in the 
future. Shiraz University of Medical Sciences is 
conducting a clinical study on Melatonin’s Effects 
on the Treatment of Diabetes Mellitus (METOD), 
which is currently in the early phase-1 stage.153

Enzymes, hormones, and receptors  
as therapeutic targets

Protein tyrosine phosphatase-1B inhibitor
Protein tyrosine phosphatases (PTPs) lead to  
the inactivation of the insulin receptor via  
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dephosphorylation. PTP-1B down-regulates insu-
lin and leptin pathway and therefore has been 
seen as a therapeutic target for the treatment of 
diabetes and obesity.154,155 PTP-1B-deficient 
mice were observed to be sensitive to insulin and 
had a degree of resistance to weight gain.156,157 
Selective, reversible, and high-affinity PTP-1B 
inhibitors have been tested in animal models,  
but being highly charged molecules, they could 
not be developed into medicinal products.158–160 
KQ-791, developed by Kaneq Bioscience, has 
been studied in a phase-1 interventional rand-
omized placebo control trial for treatment of 
T2DM (ClinicalTrials.gov NCT02445911). The 
study consisted of 81 participants which were 
divided into four groups based on the regimen of 
KQ-791 they receive over a period of 4 weeks. 
Group 1 (n = 20) received a loading dose of 100 
mg on day 1, followed by single 50 mg doses on 
days 8, 15, 22, and 29. Group 2 (n = 20) received 
a loading dose of 250 mg on day 1, followed by a 
daily dose of 25 mg for 28 days and group 3 
(n = 21) received a loading dose of 1500 mg on 
day 1, followed by a daily dose of 150 mg for 28 
days. Group 4 (n = 20) received multiple ascend-
ing doses matching KQ-791 dose (placebo). The 
primary outcome measure was the difference in 
change in fasting blood glucose between KQ-791 
and placebo from baseline to day 29. The results 
suggested superior improvement in fasting blood 
glucose in group 1 −3.28 ± 22.99 mg/dL and 
group 2 −3.93 ± 30.63 mg/dL compared to group 
3 0.67 ± 30.82 and placebo 3.17 ± 23.17. No 
serious adverse event (SAE) was recorded with 
any intervention group.161

Human pro-islet peptide
DM is a chronic illness and is characterized by a 
lack of functioning pancreatic β-cells at advanced 
stages. Increasing β-cell numbers to alleviate DM 
is the logical answer; however, this is cumber-
some to deliver in clinical practice. Transplantation 
of donor islets has been explored but has been 
limited by insufficient donors. Where successful 
islet transplantation has been achieved, patients 
have been plagued with post-transplantation 
sequelae, including rejection and adverse effects 
of immunosuppressive therapies.162–166 The 
human pro-islet peptide (HIP) is a 14-amino 
acid, biologically active fragment encoded by the 
human REG3a gene with the ability to increase β-
cell mass whereby improving glycaemic con-
trol.167 In streptozotocin-induced diabetic mice, 

Jiang et  al.168 have demonstrated that HIP pro-
motes differentiation of human foetus–derived 
pancreatic progenitor cells (HFPPCs) into insu-
lin-secreting cells leading to a significant reduc-
tion in hyperglycaemia. Evidence from this 
landmark effort from Jiang et al.168 suggests that 
ex vivo HIP-treated HFPPCs can differentiate 
into functional β-cells and can potentially cure 
diabetes in their recipients. Phase-1 clinical trials 
with BTI-410 (first agent in the class of HIPs) 
established good safety and tolerability in patients 
with T2DM with promising results. Boston ther-
apeutics have now planned two 90-day phase-2 
clinical trials for the study of BTI-410; one 36 
patient study in immunocompromised T1DM 
patients post–renal transplant and another 120 
patient study in otherwise healthy T2DM 
patients, marking the beginning of an exciting 
prospect.169

Fibroblast growth factor 21 analogues
Fibroblast growth factors (FGFs) are signalling 
molecules responsible for wide-ranging functions 
from development and regeneration to maintaining 
metabolic homeostasis.170 FGF-21 is an atypical 
member of this family, produced from the liver; it is 
involved in regulating glucose and lipid metabo-
lism.171 Elevated FGF-21 levels in obese animals 
have been observed to reduce hyperglycaemia, body 
weight, and lipid concentration.172 Recombinant 
FGF-21 also demonstrates a similar effect in vari-
ous diabetic animal models.173–175 Pegbelfermin 
(BMS-986036) is a recombinant PEGylated FGF-
21 that is well tolerated and significantly reduces fat 
fraction in patients with non-alcoholic steatohepati-
tis.176 A randomized, double-blind, placebo-con-
trolled trial was carried out in which patients with 
T2DM and obesity (BMI 30–50 kg/m2) received 
either SC pegbelfermin (n = 96) at doses of 1, 5, or 
20 mg daily or 20 mg weekly or placebo (n = 24) for 
a duration of 12 weeks (ClinicalTrials.gov 
NCT02097277). At 12 weeks, pegbelfermin ther-
apy did not impact HbA1c concentrations com-
pared to placebo; however, significant differences 
(p < 0.05) versus placebo were noted for a reduction 
in FPG (20 mg weekly) and an increase in whole-
body insulin sensitivity (Matsuda index; 20 mg 
daily). In addition, significant improvements were 
observed in high-density lipoproteins (HDLs) and 
TG for the 20 mg daily regime versus placebo. 
Injection site bruising (5%) and reaction (4%) 
together with diarrhoea were among the commonly 
reported adverse events.177 Based on these results, 
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pegbelfermin warrants further investigation in eval-
uation of its efficacy in obesity-induced metabolic 
conditions.

Adenosine monophosphate analogues
Adenosine monophosphate (AMP) predomi-
nantly activates adenosine monophosphate–acti-
vated protein kinase (AMPK). Once activated, 
AMPK exhibits an insulin-sensitizing effect, 
reducing hepatic gluconeogenesis and lipogenesis 
via negative regulation of specific genes178 while 
promoting peripheral glucose uptake and lipid 
oxidation in skeletal muscles. Low levels of 
AMPK have been noted in patients with diabe-
tes,179 and its activation is one of the cellular 
mechanisms through which metformin exerts its 
anti-diabetic effect.180,181 Novel agents which can 
activate AMPK or serve as AMP analogues have 
been explored as potential therapeutic modalities 
in T2DM. First in class, AMPK activator, O304, 
is a PAN-AMPK activator studied in a proof-of-
concept phase-2(a), single-centre, randomized, 
parallel-group, double-blinded, placebo-con-
trolled trial in patients with T2DM on metformin 
(TELLUS). Sixty-five patients with T2DM were 
studied for 28 days and O304 administration 
resulted in a mean absolute reduction in FPG at 
day 28 compared with day 1 of −0.60 mM 
(p = 0.010) compared to −0.10 mM in the pla-
cebo group. At day 28, O304 use resulted in a 
mean absolute reduction in systolic blood pres-
sure (BP) by 5.8 mmHg (p = 0.030) and diastolic 
BP by −3.8 mmHg (p = 0.009). In addition to 
these findings, O304 use resulted in an increase 
in microvascular perfusion as well. These benefi-
cial effects may allow it to play an important role 
in treating patient with T2DM complicated with 
cardiovascular disease.182,183

Glucokinase activators
Glucokinase (GK), also known as hexokinase 
type-IV, is part of the hexokinase enzyme family. 
Mainly expressed in the pancreas, liver, brain, 
and gastrointestinal tract,184 it facilitates phos-
phorylation of glucose to glucose-6-phos-
phate.185,186 It regulates GSIS, hepatic glucose 
uptake and glycogenesis, thus regulating whole-
body glucose homeostasis.187,188 Based on the 
characteristics mentioned above, agents activat-
ing GK have a therapeutic potential in T2DM.189 
Numerous GK activators developed thus far have 
shown significant glucose-lowering capabilities. 

However, a concomitant increase in plasma 
(TGs) and loss of efficacy with continued admin-
istration meant that they could not be used as 
therapeutic entities.190–192 TMG-123, a novel GK 
activator, has been shown to overcome these limi-
tations and, in animal studies, has demonstrated 
glucose-lowering effects without affecting hepatic 
and plasma TG. As the plasma insulin levels were 
not increased, it is likely that TMG-123 mainly 
acts in the liver.193 Although it is a viable candi-
date for development as a new treatment for 
T2DM, its safety needs to be evaluated further as 
Kobayashi and colleagues have shown that TMG-
123 causes long-lasting hypoglycaemia and irre-
versibly impairs spermatogenesis in rats.194 
TTP-399 is another GK activator being investi-
gated as a potential therapy in both T1DM and 
T2DM.195

Sirtuins
Sirtuins (SIRT1-SIRT7) are a family of NAD+-
dependent deacetylases which modulate a range 
of metabolic processes together with age-related 
conditions, including obesity and T2DM.196,197 
SIRT1 and SIRT6 have been extensively studied 
and have been identified to have a role in main-
taining insulin sensitivity.198,199 In the pancreatic 
β-cells, overexpression of SIRT1 was noted to 
augment insulin secretion, leading to improved 
glucose tolerability.200 And by inhibiting PTP-1B 
(which blocks the insulin receptor), SIRT1 
enhanced insulin sensitivity.156,201 Metformin is 
recommended as the first-line treatment for 
T2DM202 and has been shown to directly activate 
SIRT1,203 among various other recognized meta-
bolic effects. This lends credence to the potential 
usefulness of SIRT1 activating agents in the treat-
ment of T2DM. SIRT2, SIRT3, and SIRT6  
also sustain insulin sensitivity, whereas SIRT4 
and SIRT7 downregulate insulin secretion.204 
Resveratrol, a polyphenol found in grapes, has 
been shown to activate SIRT1.205 It has been 
shown to have a positive impact on glucose home-
ostasis in rodents,206–208 and several studies have 
reported improvements in insulin sensitivity, gly-
caemic control, and other metabolic parameters 
in patients with T2DM.209–211 Jeyaraman et al.212 
reviewed RCTs comparing the effects of oral res-
veratrol with placebo, no treatment, other anti-
diabetic medications, or diet or exercise, in adults 
with a diagnosis of T2DM and found that the 
available research was insufficient for evaluation 
of safety and potency of resveratrol therapy for 
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treating T2DM. Recently, De Ligt et al. studied 
the effects of resveratrol 150 mg daily (n = 20) 
compared to placebo (n = 21), in a randomized, 
double-blind, placebo-controlled trial over 6 
months in overweight participants with pre-dia-
betes (BMI 27–35 kg/m2) (ClinicalTrials.gov 
NCT02565979). At 6 months, although treat-
ment with resveratrol did not affect insulin sensi-
tivity, there was a significant (p = 0.007) difference 
in the post-intervention HbA1c between the two 
groups with the adjusted means showing a lower 
post-intervention HbA1c in the resveratrol group 
((35.8 ± 0.43 mmol/mol) compared to placebo 
(37.6 ± 0.44 mmol/mol).213 These results point 
towards a positive impact of resveratrol on glycae-
mic control; however, despite rigorous research, a 
clinically safe and effective SIRT activator for 
treating T2DM is yet to be found.214–216

11β-hydroxysteroid dehydrogenase 1 (11β-
HSD1) inhibitors
11β-HSD1 is a reductive nicotinamide adenine 
dinucleotide phosphate (NADPH)-dependent 
enzyme, predominantly expressed in the liver, 
adipose tissue, gonads, and brain and is responsi-
ble for the formation of cortisol from its inactive 
metabolite, cortisone.217,218 Cortisol regulates 
energy homeostasis (liver and adipose tissue) and 
has been well characterized to impair peripheral 
glucose uptake and increase hepatic IR.219 
Stimson and colleagues have shown that the 
whole body 11β-HSD1 activity is increased in 
obese men with T2DM,220 making the inhibition 
of 11β-HSD1 a target for treating T2DM, espe-
cially in those with high fasting blood glucose as 
shown by Shukla and colleagues.221 Several com-
pounds have entered clinical trials and have dem-
onstrated modest improvement in glycaemic 
control, together with favourable changes in some 
metabolic syndrome parameters.222,223 11β-
HSD1 inhibition will reduce the levels of circulat-
ing cortisol and, due to a lack of negative feedback, 
will increase levels of adrenocorticotropic hor-
mone (ACTH). This can result in adrenal hyper-
trophy, accumulation of adrenal androgen 
precursors and depression.224,225 These unfavour-
able sequelae must be addressed while ensuring 
significant clinical benefit before a medicinal 
product from this class can be introduced into 
clinical practice. BI 135585, a selective 11β-
HSD1 inhibitor, was evaluated in an open-label 
administration of BI 135585 200 mg as a single 
dose in nine healthy volunteers (ClinicalTrials.

gov NCT01652742) and in a multiple-dose study 
with randomized, double-blind administration of 
BI 135585 5, 12.5, 25, 50, 100, and 200 mg or 
placebo once daily in 72 participants with T2DM 
over a period of 2 weeks (ClinicalTrials.gov 
NCT01282970). It was found to be safe and was 
well tolerated; however, adrenocorticotropic hor-
mone was noted to be slightly raised but within 
the normal range. Serum cortisol levels remained 
unchanged and increased total urinary corticoid 
excretion was noted.226 While these are positive 
results, its safety profile and therapeutic potency 
need to be investigated in further trials over a 
longer period of time.

Insulin
For the management of T2DM, insulin therapy is 
initiated generally as a last resort when patients 
fail to achieve their glycaemic targets with two or 
more oral hypoglycaemic agents (OHAs) or with 
non-insulin injectable medication. Various insulin 
preparations are now available in clinical practice, 
ranging from rapid to long-acting preparations.227 
As with other areas in the management of T2DM, 
insulin therapy has also been a focus of research, 
and work has been done to devise insulin prepara-
tions with alternate delivery methods. Compounds 
have been developed with a longer duration of 
action to reduce the frequency of injections.

Oral insulin
Following its endogenous release from the β-cells in 
the pancreas, insulin is transferred to the liver, 
where it undergoes degradation from the hepatic 
first-pass metabolism resulting in a concentration 
gradient between the hepatic portal and periph-
eral systemic circulation.228 As parenteral insulin 
preparations are directly delivered to the peripheral 
circulation, they fail to achieve the described con-
centration gradient resulting in the reversal of nor-
mal physiology. Therefore, when injected, insulin 
reaches the liver at a lower concentration, and insu-
lin-treated diabetic patients tend to develop weight 
gain and hypoglycaemia as a manifestation of 
peripheral hyperinsulinaemia.229 Oral insulin, on 
the contrary, mimics normal physiology leading to 
better glycaemic regulation. Once absorbed from 
the gut, insulin is delivered to the liver via the portal 
circulation building a high portosystemic gradient. 
Reduced levels of systemic insulin alleviate hypogly-
caemia and issues with weight gain.230–233 As a pep-
tide hormone, insulin is susceptible to degradation 
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from acid hydrolysis in the stomach and proteolytic 
cleavage in the intestine. These factors have made 
the production of a viable oral insulin preparation 
challenging.232,234 There is an emphasis on protect-
ing and enhancing peptide drug absorption. To 
achieve this, researchers have employed innovative 
measures such as mucoadhesive polymers, microni-
zation, absorption enhancers, protease inhibitors, 
and particulate carrier systems.233,235,236 A recent 
randomized, placebo-controlled, phase-2b trial 
with the novel oral human insulin, ORMD-0801, 
has shown promising results in subjects with 
poorly controlled T2DM. ORMD-0801 achieved 
a significant reduction in HbA1c without an 
increase in the frequency of hypoglycaemia or 
weight.237 It can be the first commercial oral insu-
lin preparation and has currently entered the FDA 
phase-3 clinical trials.

Oral devices comprising mucoadhesive patches 
and enterically coated capsules are another insu-
lin delivery technique on the horizon.238 Gupta 
et  al. developed a mucoadhesive patch of 
Carbopol934, pectin, sodium carboxymethyl cel-
lulose in 1:1:2 ratio. When loaded with bovine 
insulin, human insulin, and exenatide to compare 
the efficacies when administered through the oral 
route, the results indicated that mucoadhesive 
patches increased oral insulin absorption. They 
concluded that the release of the insulin from the 
patches was time-dependent, and the insulin 
loaded into the delivery system was wholly 
released from the patch within 5 h of administra-
tion. The results are an encouraging step towards 
the development of another non-invasive anti-
diabetic therapeutic option in the form of sus-
tained-release mucoadhesive patches promoting 
oral peptide delivery to improve patient compli-
ance and drug adherence.239,240

Transdermal insulin
The use of the transdermal route for drug delivery 
has been around for a long time. In terms of insu-
lin delivery, the transdermal route alleviates the 
discomfort and inconvenience of regular SC 
injections. This is especially true for patients on 
multiple daily injections (MDIs) of insulin. It bol-
sters compliance among patients while ensuring 
controlled insulin release over a while.241 Lack of 
adequate permeability of the stratum corneum is 
the main limiting factor with this route.242,243 
Over the years, researchers have been working on 
methods to bypass this obstacle, leading to 

discovering various novel techniques to achieve 
this.244–246 Abdul Ahad et al.247 have summarized 
various transdermal insulin delivery techniques, 
including microneedle (MN), a chemical permea-
tion enhancer, patches, sonophoresis, iontopho-
resis, nanoparticles, and microemulsions, among 
others. In this article, we will focus on insulin 
patches as a novel insulin delivery method.

Subcutaneous insulin patch-pump system. Using 
novel technologies, the insulin patch-pump 
devices provide accurate and flexible insulin deliv-
ery. Omnipod, a full-featured device available 
worldwide and V-GoTM, a simple specific patch 
pump available in the US/Europe,248 can be seen 
as a sophisticated modification of the already 
widely used continuous SC Insulin infusion 
(CSII) systems (Table 3 shows examples of fully 
featured and simple mechanical patch pumps). 
Patch pumps are smaller, flexible, discreet, with-
out tubing and cheaper, making them more attrac-
tive than CSII systems.249 These devices do not 
use tubing, thus improving the user experience. 
The Omnipod system comprises an insulin reser-
voir and a handheld Personal Diabetes Manager 
(PDM). Using wireless technology, PDM directs 
the delivery of continuous basal insulin from the 
reservoir via a discreet needle. The V-GoTM device, 
on the other hand, can deliver basal and bolus 
insulin over 24 h and is suitable for patients on 
MDI insulin regimes. It replaces the insulin pens, 
low in price without an upfront cost and is dispos-
able.248 Using an adapter, the device is loaded 
with rapid-acting insulin analogues and then 
attached to the skin with a hypoallergenic adhesive 
strip. The basal rates are pre-set and are available 
as 20, 30, or 40 units of insulin per 24 h and each 
one also allows for 36 units of bolus insulin daily. 
Mader et  al. evaluated PAQ®, which is a simple 
specific patch pump providing set basal and on 
demand insulin delivery. The study included 28 
adults with T2DM with HbA1c ⩾53 and ⩽97 
mmol/mol while treated with ⩾2 insulin injec-
tions/day. Participants were investigated in three 
phases: baseline (on usual insulin injections), tran-
sition, and a PAQ treatment phase. After 12 weeks 
of PAQ wear, HbA1c improved significantly 
(HbA1c –16 ± 9 mmol/mol (p < 0.0001)) while 
the body weight remained stable with no episodes 
of severe hypoglycaemia (ClinicalTrials.gov 
NCT02158078 & NCT02419859).250 The patch-
pump targets a large cohort within the DM popu-
lation however, for patients with T2DM who are 
on simple insulin regimes, the simple specific 
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patch pump is an exciting prospect as in clinical 
studies they have demonstrated improved glycae-
mic control, user satisfaction, and were cost-effec-
tive compared to MDI insulin regimes.251,252

Closed-loop pump systems. Over the last few 
years, particularly in the domain of blood glucose 
monitoring and insulin delivery, advances in tech-
nology have revolutionized diabetes care. Intro-
duction of closed-loop (CL) pump systems are 
one such technological marvel, where continuous 
glucose monitoring (CGM) and an insulin pump 
function in a unified manner, achieving automa-
tion in glucose-responsive insulin delivery by the 
help of a computerized algorithm which adjusts 
basal insulin in response to data obtained from 
the CGM helping to maintain glucose levels in 

the target range. For mealtime insulin delivery, 
users input their carbohydrate counts into the 
algorithm which calculates the required insulin 
dose and signals the pump to deliver the dose 
(single hormone system). Dual hormone CL 
pump systems can also deliver glucagon in a glu-
cose-responsive manner, and therefore, the CL 
pump systems reduce the user burden by auto-
matically adjusting insulin delivery based on 
sensed glucose levels (CGM).

With the hybrid closed-loop (HCL) systems, algo-
rithm-mediated and user-initiated insulin delivery 
co-exists as basal insulin delivery is adjusted auto-
matically; however, meal time boluses are required 
to be programmed manually.253 The HCL system 
can make regular self-directed adjustments to the 
basal insulin delivery rate which prevents large fluc-
tuations in blood glucose, and overall, these novel 
insulin delivery systems have resulted in improved 
glycaemic control and reduction in hypoglycaemic 
events in people with T1DM.254,255 In the last 2 
years numerous commercial HCL pump systems 
have been marketed (Table 4 describes examples of 
commercially available HCL pump systems and 
their properties while Figure 4 depicts the 
Medtronic 670G with the guardian 3 sensor).

Interestingly, people with T1DM around the world 
have developed ‘Do-It-Yourself’ (DIY) artificial 
pancreas systems by creating their own algorithm 
which runs on a smartphone app and automates 
insulin delivery while integrating with existing 
CGM and insulin pumps.256 Several studies have 
shown that DIY artificial pancreas systems increase 
the time in range (TIR) leading to a fall in HbA1c 
without increasing the incidence of hypoglycae-
mia.259 Examples of these DIY artificial pancreas 
systems include OpenAPS (runs on a Linux com-
puter); AndroidAPS (runs on an Android phone); 
and Loop (runs on an iPhone and communicates 
to the pump with the RileyLink).259 However, these 
are unlicenced devices and users are responsible for 
any untoward events related to their use.

The HCL pump system technology is undergoing 
rapid development and with active trials being 
conducted on Insulin Only Bionic Pancreas 
(iLET) (ClinicalTrials.gov NCT04200313) and 
Omnipod Horizon™ Automated Glucose Control 
System (ClinicalTrials.gov NCT04196140),256 
and the future of closed-loop pump system tech-
nology appears to be bright. Although these sys-
tems are relevant to the management of T1DM 

Table 3. Examples of full-featured and simple mechanical patch pumps.248

Full-featured mechanical patch 
pumps

Simplified mechanical patch 
pump systems

Omnipod V- GoTM

Cellnovo PAQ

JewelPump OneTouch Via

Figure 4. The Medtronic 670G with a guardian 3 
sensor; an example of a hybrid closed-loop pump 
system.
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which is beyond the scope of this article, we have 
described these systems due their novel insulin 
delivery method and in future we may see them 
being employed for treatment of people with 
T2DM on MDI insulin regimes.

MN patch. The MN technology provides an inno-
vative method for transdermal delivery of pro-
teins.260,261 The MN patch forms temporary 
cutaneous channels, which provide access to the 
epidermis and dermis for biotherapeutics delivery. 
Once the MN patch is removed, the micro-chan-
nels close up quickly, preventing long-term skin 
damage.262,263 As opposed to the 26-G hypodermic 
needles, MN use is tolerated much better as it 
causes significantly less pain, anxiety, and local tis-
sue irritation/damage.264 Based on the material and 
mechanism of drug delivery, MN’s can be classified 
into solid, degradable, hollow, dissolvable, and 
recently developed bioresponsive MNs that can 
respond to physiological glucose levels on-demand 
delivery of insulin.265 The MN developed by Zhang 
et al. using cross-linked alginate coupled with malt-
ose, were functionally robust with high cytocom-
patibility. These MN’s demonstrated a sustained 
hypoglycaemic effect in diabetic SD rats with the 
relative pharmacological availability (RPA) and 
relative bioavailability (RBA) at 94.1 ± 5.6% and 
93.7 ± 4.7%, respectively, compared with that of 
SC injection route at similar insulin doses demon-
strating their efficacy in the treatment of DM.266 

Being convenient and painless, MN is ideal for 
domiciliary use. However, before induction into 
clinical practice, a thorough investigation is required 
to look at their safety with regards to the potential 
for skin infection and irritation.

Inhaled insulin
Dance 501, from Dance Biopharm, is a front run-
ner in the domain of pulmonary insulin delivery. It 
is a mist formulation of human insulin adminis-
tered with a pocket-sized smart inhaler using 
vibrating mesh micropump technology developed 
by Aerogen.267 It is small, discreet, portable, and 
battery-operated hence overcoming some of the 
major drawbacks encountered with Exubera 
which lead to its withdrawal from the market in 
2007.268 Data from phase-2 randomized, con-
trolled study comparing Dance 501 to SC insulin 
lispro in T2DM are encouraging. Dance 501 
inhaled human insulin demonstrated faster onset 
and greater action in the first hour of administra-
tion than SC insulin lispro, with good tolerability 
and without any pulmonary safety concerns.269 
The insulin release with Dance 501 is breath actu-
ated and so requires training before use. In addi-
tion to this, before use, the inhaler reservoir needs 
to be loaded with insulin and may present some 
difficulty to patients with compromised manual 
dexterity, for example, in cases of tremors or severe 
deforming arthritis.270 Nevertheless, if it continues 

Table 4. Salient features of various commercially available HCL pump systems.256

Hybrid closed-loop 
system

Medtronic 670G- Guardian 3 
sensor

CamAPS FX DanaRS-
Dexcom G6

Tandem t: slimX2- 
Dexcom G6 -Control IQ

Insulin pump 670 G Dana RS pump Tandem t: slimX2

Sensor Guardian 3 Dexcom G6 Dexcom G6

Sensor duration 7 days 10 days 10 days

Algorithm Treat to target, proportional 
integral derivative (PID) with 
insulin feedback

Treat to target, Adaptive 
Model, Predictive 
Control

Treat to range, 
Predictive algorithm

Advantages Well-established pump 
system with significant 
clinical experience

Robust evidence base, 
no finger-prick tests 
required, licensed for 
use in pregnancy

Strong evidence base, 
no need for fingerstick

Disadvantages Multiple daily finger-prick 
tests required, alarm 
fatigue, sparse RCT evidence

Limited real-world 
clinical experience

Limited real-world 
clinical experience

HCL, hybrid closed-loop; RCT, randomized control trials.

https://journals.sagepub.com/home/tae


Therapeutic Advances in Endocrinology and Metabolism 12

16 journals.sagepub.com/home/tae

to provide positive results in clinical trials, Dance 
501 will be a potent option in managing T2DM.

Once weekly insulin
T2DM is a chronic illness, and to reduce the long-
term morbidity burden, patients must achieve 
adequate glycaemic control. Due to the lack of 
compliance and acceptance in some patients, mul-
tiple daily basal insulin injections prove to hinder 
this venture. Novo Nordisk has developed a long-
acting insulin analogue, insulin Icodec, which has 
now entered phase-3 clinical trials in the United 
States, United Kingdom, and Europe. By three 
amino acid substitutions (A14E, B16H, and B25 
H) and an addition of a C20 fatty diacid contain-
ing side chain at B29 K, insulin icodec undergoes 
reduced enzymatic degradation and robust revers-
ible albumin binding resulting in reduced clear-
ance which stretches its terminal elimination 
half-life to 196 h.271 These properties allow it to be 
used as a single weekly injection covering the basal 
insulin requirements for an entire week. In a ran-
domized, double-blind, double-dummy, phase-2 
clinical trial, Rosenstock et al. compared the safety 
and efficacy of insulin icodec with once-daily insu-
lin glargine U100 in insulin-naïve patients with 
T2DM. At 26 weeks, the estimated mean change 
from baseline in the HbA1c was −1.33% in the 
insulin icodec group and −1.15% in the insulin 
glargine group; thus insulin icodec demonstrated 
similar glucose-lowering efficacy to once-daily 
insulin glargine U100. There were no significant 
safety concerns with insulin icodec either, with 
observed hypoglycaemia rates similar to those in 
the insulin glargine group.272 From the available 
evidence so far, without compromising glycaemic 
control, insulin icodec can reduce the frequency 
of basal insulin injections and improve compli-
ance, making it an exciting prospect for the future.

Genome-Wide Association Study and T2DM
Genome-Wide Association Study (GWAS) is a 
method used in genetics research, which can iden-
tify specific genetic variations in the form of single 
nucleotide polymorphisms (SNPs) linked to a vari-
ety of disease processes.273 A recent meta-analysis 
of GWAS with ~16 million genetic variants in 
62,892 T2DM cases and 596,424 controls of 
European ancestry has led to the identification of 
143 variants associated with T2DM, over three 
dozen of which were previously unknown.274 
Impairment of pancreatic β-cell glucose sensitivity 

in the non-diabetic population is an independent 
and robust predictor of abnormal glucose tolerance 
and progression to T2DM.275,276 Following a 
genome-wide association meta-analysis, Deshmukh 
and Madsen et al. identified CDKAL1 and GIPR-
QPCTL loci as important determinants of beta-
cell glucose sensitivity.277 Similar studies have 
uncovered genes that are targets for current thera-
peutics. KCNJ11, GLP1R, and PPARG are gene 
variants identified by this method for T2DM tar-
geted by sulfonylureas (SU), GLP-1 analogues, 
and TZD’s, respectively.278–280 Using the knowl-
edge obtained from GWAS, new modalities in the 
form of ivacaftor and lumacaftor have been devel-
oped to treat cystic fibrosis (CF).281,282 
Identification of genetic variants implicated in 
complex pathologies, the presence of successful 
drug therapies against these targets and the devel-
opment of new treatments using knowledge from 
GWAS has lent substantial credence to this 
approach. In the future, advances in this strategy 
can inform the development of effective and may 
be curative pharmacotherapy for T2DM.

New agents and delivery methods in pre-
existing classes of medication for the 
treatment of T2DM
SGLT2 inhibitors, GLP-1 analogues, and dipeptidyl 
peptidase-4 (DPP-4) inhibitors are among the new 
classes of medication for the treatment of T2DM, 
developed over the last 15 years. Their novel MOA, 
ease of administration, effective glycaemic control, 
weight reduction capability, cardiovascular, and 
renal protection have had an overwhelmingly posi-
tive impact on the management of T2DM.283 A 
description of these agents is beyond the scope of 
this review; however, we detail some of the new 
developments to these classes in Tables 5 and 6.

Table 5. Examples of new developments in pre-
existing therapeutic classes in T2DM.

Class Novelty

GLP-1 analogues Efpeglenatide, once 
monthly SC.257

DPP-4 inhibitors Trelagliptin, 
once weekly oral 
administration.258

DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like 
peptide-1; SC, subcutaneous; T2DM, type-2 diabetes 
mellitus.
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Table 6. The table summarizes some examples of new therapeutic classes, recently approved, and novel 
agents in pre-existing groups for the treatment of T2DM.

CLASS DRUG NOVELTY Clinical status

ORMD-0801 Oral Phase 3

Insulin Omnipod V-GoTM Transdermal Approved for 
clinical use

 Dance 501 Inhaled Phase 2

 Icodec Once weekly administration Phase 3

Combined peptide 
injections

IDegLira iGLarLixi Basal insulin and GLP-1 agonists 
combination

Approved for 
clinical use

Glimins Imeglimin Inhibits oxidative phosphorylation 
and improves insulin resistance

Phase 3

Dual GLP-1/GIP agonists Tirzepatide Glucagon pathway Phase 3

GLP-1/GCGR dual agonist MEDI-0382 Glucagon pathway Phase 2

GCGR antagonist LGD 6972 IONIS-
GCGRRx

Glucagon receptor blockade Phase 2

GLP-1R/GCGR/GIPR 
triple agonist

HM15211
NN9423
GGG tri-agonist

Synergistic incretin effect Phase 1

GPR119 agonists DS-8500 Stimulates insulin release Phase 2

FFAR1 agonists P1736
P11187
LY2922470

Enhance insulin and incretin 
release

Phase 2
Phase 1
Phase 1

TGR5 agonists SB-756050 Bile acid-specific receptor-
mediated gluco-metabolic effects

Phase 2 
(discontinued)

Melatonin receptor 
agonists

Melatonin Improve insulin sensitivity and 
suppress gluconeogenesis

Phase 1

PTP-1B inhibitors KQ-791 Protection of insulin receptor 
from inactivation

Phase 1

HIP BTI-410 Increases β-cell mass Phase 2

FGF-21 analogues Pegbelfermin Promotes insulin-dependent 
glucose uptake

Phase 2

AMP analogues O304 AMPK activation, insulin-
sensitizing effect

Phase 2(a)

Glucokinase activators TTP-399 Promotes conversion of glucose 
to glucose-6-phosphate

Phase 2

Sirtuins – SIRT1 activation increased insulin 
secretion and sensitivity.

–

11β-HSD1 inhibitors BI 135585 Prevents conversion of cortisone 
to cortisol

Phase 1

(continued)
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Conclusion
Since the ground-breaking work from the French 
physician Jean Sterne, who studied metformin 
for the first time in humans in the 1950s to treat 
DM,284 the industry has come a long way in 
investigating, developing, and delivering benefi-
cial treatment modalities in T2DM. Most novel 
compounds produced for treatment have shown 
a potent anti-hyperglycaemic effect; however, 
they need to be examined further to ensure that 
their use is safe and well-tolerated in clinical 
practice. Various new therapeutic targets have 
been explored; however, an extension of previ-
ously known mechanisms has yielded greater 
success as in the case of sotagliflozin, for  
example. Innovations in delivery methods and 
reduction in dosing frequency will undoubtedly 
improve compliance with these formulations in 
the real world. Oral and once-weekly insulin, 
insulin patch pumps and once monthly GLP-1 
analogues are an exciting prospect with the 
potential of conferring significant clinical bene-
fits to patients.

The future appears to be bright; there are 129 
active interventional studies in T2DM registered 
over the last 10 years, currently in phase 1 to phase 
4 globally, based on data from ClinicalTrials.gov 
from March 2021. Can the academic and phar-
maceutical industry come together and uncover 
an agent which reverses the underlying mecha-
nisms fuelling dysglycaemia and normalizes 

glucose homoeostasis resulting in the cure of 
T2DM? Perhaps the advances in monoclonal 
antibody and gene therapy will provide this answer 
in the future.
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