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ABSTRACT In robotic manipulators, feedback control of nonlinear systems with fast finite-time con-
vergence is desirable. However, because of the parametric and model uncertainties, the robust control
and tuning of the robotic manipulators pose many challenges related to the trajectory tracking of the
robotic system. This research proposes a state-of-the-art control algorithm, which is the combination of
fast integral terminal sliding mode control (FIT-SMC), robust exact differentiator (RED) observer, and
feedforward neural network (FFNN) based estimator. Firstly, the dynamic model of the robotic manipulator
is established for the n degrees of freedom (DoFs) system by taking into account the dynamic LuGre
friction model. Then, a FIT-SMC with friction compensation-based nonlinear control has been proposed
for the robotic manipulator. In addition, a RED observer is developed to get the estimates of robotic
manipulator joints’ velocities. Since the dynamic friction state of the LuGre friction model is unmeasurable,
FFNN is established for training and estimating the friction torque. The Lyapunov method is presented to
demonstrate the finite-time sliding mode enforcement and state convergence for a robotic manipulator. The
proposed control approach has been simulated in the MATLAB/Simulink environment and compared with
the system with no observer to characterize the control performance. Simulation results obtained with the
proposed control strategy affirm its effectiveness for a multi-DoF robotic system with model-based friction
compensation having an overshoot and a settling time less than 1.5% and 0.2950 seconds, respectively, for
all the joints of the robotic manipulator.

INDEX TERMS robotic manipulator, robust exact differentiator, feedforward neural network, fast integral
sliding mode control, LuGre friction model, autonomous articulated robotic educational platform.

I. INTRODUCTION

R esearchers in academia and industry have shown a sig-
nificant deal of interest in robotic manipulators in recent

years due to scientific advancements and industrial needs
[1]. In reality, robotic manipulators play a significant role
in the industry by lowering manufacturing costs, improving
accuracy, quality, and efficiency, and offering more flexibility
than specialized equipment. They ought to be controlled and
operated smoothly, securely, and reliably to accomplish tasks
with higher throughput or productive exploration [2]. The

control of robotic manipulators is a complex task because
their dynamic behavior is exceptionally nonlinear, highly
coupled, and time-varying. Apart from that, uncertainties in
the system model, such as external disturbances, parame-
ter uncertainty, and nonlinear frictions, constantly exist and
cause the unstable performance of the robotic system [3].
In the literature, several approaches have been proposed for
controlling the robotic systems, such as sliding mode control
(SMC) [4] , H-infinity (H∞) control [5], optimal control
[6], PID control [7], adaptive control [8], model predictive
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control (MPC) [9], and other nonlinear controls reported in
[10]–[12].
One of the main issues impeding the fast-tracking behavior
of robotic manipulators is friction, resulting in steady-state
tracking inaccuracy [13]. On the other hand, nonlinear fric-
tion often causes disturbances in a control system and may
even make it to unstable [14]. As a consequence, friction is
an intrinsically nonlinear occurrence that is hard to predict
[15]. Therefore, friction should be modeled for better con-
trol performance and efficiency. Various friction modeling
techniques are available in the literature, each describing
and predicting improved and more accurate friction behavior
[16]. Friction models are, generally, categorized into static
[17] and dynamic [18] friction models. Static models merely
illustrate the direct relationship between actual velocity and
friction. They ignore the friction memory effect and hys-
teresis resulting in inaccuracy near zero velocity. In [19],
an overview of static model methods based on the Coulomb
and Stribeck effects is provided. Furthermore, the dynamic
models capture physical characteristics and reactions by
adding up the extra state variables. To put it simply, the static
and dynamic friction models vary primarily in the predicted
frictional effects, computing efficiency, and implementation
complexity [20]. A suitable friction model is a fundamental
need for effective compensation outcomes. A dynamic model
known as the LuGre model has been widely utilized because
it provides a fair balance of complexity and accuracy [21]
[22]. A reasonably compact formula captures the significant
friction phenomena, such as Coulomb friction, viscous fric-
tion, stiction, and dynamic brittle behavior at the contact
surface.
Friction is a significant element influencing the accuracy
with which an actuator system places or positions itself. The
feedback linearization technique may be used to compensate
for known nonlinearities. In terms of friction compensation,
there are two types of schemes [23]: friction model-based and
friction non-model-based schemes. The concluding method-
ology is employed when precise friction modeling is compli-
cated or unnecessary, such as for variable structure control
[24], PD control [25], and neural network control [26]. The
model-based methodology [27] may be used if the friction
parameter can be accurately identified to a certain degree. For
dynamic friction compensation with backstepping control in
[28], a robust observer for friction and a recurrent fuzzy
neural network (RFNN) were designed. The generalized
Maxwell-slip (GMS) friction compensation in a two-DoF
robotic manipulator utilized an online least-squares estimator
to estimate the friction force in each joint [29]. A propor-
tional derivative (PD) controller was illustrated in [30] with
friction compensation. The adaptive sliding control (A-SC)
algorithm with friction compensation for robotic manipulator
established on fuzzy random vector function is described in
[31]. The tracking control of robotic manipulator is presented
in [32], the proportional derivative adaptive control approach
is employed for the estimation of system dynamics, and SMC
is implemented for the unknown dynamics of the robotic

manipulator. A robust adaptive control technique based on
fuzzy wavelet neural networks (FWNNs) dynamic structure
is presented in [33]. Furthermore, using a radial basis func-
tion (RBF) neural networks technique, [34] proposed an
amplitude saturation controller (ASC) that can ensure the
development of exclusively saturated unidirectional attractive
force for maglev vehicles on an elastic track. This paper’s
primary objectives and contributions are summarized as fol-
lows:

• The robot’s dynamic model for the five-DoF AUTAREP
robotic manipulator is built using the dynamic LuGre
friction model. Under the uncertainties limited by cer-
tain positive functions, the velocity of each link is
obtained using the RED observer.

• The FFNN approximates the friction torque, using the
estimated velocities of joints obtained from the RED
observer. Furthermore, a FIT-SMC scheme is proposed
to achieve the desired trajectory tracking in finite time
in the presence of uncertainties.

• Henceforth, the Lyapunov method is utilized to
strengthen the robotic manipulator’s stability. Results
obtained from the proposed approach are illustrated
in the MATLAB/Simulink environment to validate the
FIT-SMC performance.

The contents in the remaining article are organized as fol-
lows: Section II presents a robotic manipulator state-space
model, including the LuGre friction model. In Section III, the
FIT-SMC approach is designed; RED observer, FFNN, and
Lyapunov stability analysis is provided. Simulated results are
provided in Section IV. Section V provides some concluding
observations and remarks. Finally, Section VI presents the
acknowledgment.

II. MATHEMATICAL MODELING
The effectiveness of robotic manipulators can be improved
by combining high motion accuracy with high speed. Feed-
back robot controllers have a challenging task to accom-
plish this objective because they rely on the operating state
without taking into account the dynamic features of the
robot manipulator. In the last several years, certain model-
based controllers have been created, and the performance
of robot manipulators has been improved. The research in
this paper has been accomplished using the Autonomous
Articulated Robotic Educational Platform (AUTAREP) ED-
7220C robotic manipulator as shown in Fig. 1.
A manipulator is typically comprised of a kinematic chain,
and its dynamic model is influenced by various drawbacks,
such as coupling among the links, low rigidity, and unknown
parameters. Furthermore, nonlinear effects often induced by
the actuation mechanism include dead zone and friction.
Thus, a robotic manipulator’s motion is greatly influenced
by its dynamic modeling, which is an extremely important
consideration [35]. In order to implement control algorithms,
the mathematical system model is an essential requirement.
It is a five-DoF articulated robotic manipulator. Each joint
movement is operated by a single DC servo motor except for
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FIGURE 1. AUTAREP robotic manipulator ED-7220C.

the wrist joint, which is actuated by two motors for roll and
pitch movements. The joints’ location is provided through
optical encoders equipped on each joint actuator axis of the
robotic manipulator. Table 1 presents the robotic manipulator
parameters.

TABLE 1. AUTAREP robotic manipulator parameters.

Parameters Specifcations Units

Links length

Base: 385 mm

Shoulder: 220 mm

Elbow: 220 mm

Wrist: 155 mm

Movement speed Approx. 100 mm/s max

Range of motion (ROM)

Base: 310 deg

Shoulder: +130/− 35 deg

Eblow: ±130 deg

Wrist: 360 rotation, up-down ± 130 deg

Precision (position) ±0.5 mm

Weight 33 Kg

Load capacity 1 Kg

Construction Vertical articulated arm

Actuator DC servo motor (optical encoder)

Number of joints 5 joints + gripper

A. DYNAMIC MODEL
The forces and torques that produce robot motion are the sub-
jects of research in dynamic modeling of the robot system.
In this research, the Euler-Lagrange method is used for the
n-link robotic manipulator dynamic equation [36], and it is
illustrated by the following equation:

τrη =M (rη) r̈η +CF (rη, ṙη) ṙη +G (rη) + TF (ṙη) , (1)

where for n joints, M(rη) ∈ Rn×n is the mass ma-
trix, G(rη) ∈ Rn×1 describe the gravitational matrix,
CF (rη) ∈ Rn×n represents the centripetal and Coriolis
forces, TF (ṙη) ∈ Rn×1 represents friction torques, and total
torque of robotic manipulator joints is denoted by τrη.

The characteristics of the robotic manipulator dynamics in
Eq. (1) are as follows.
Property I
The matrix of inertiaM(rη) is symmetric, is positive definite,
and satisfies the condition given in the following equation
[37]:

Ω1Iη ≤M(rη) ≤ Ω2Iη, (2)

where Ω1 and Ω1 are constants having positive value and Iη
is the identity matrix.

Property II
The CF (ri) centrifugal and Coriolis matrix in a dynamic
robotic manipulator model justifies the following equation
[37]:

∥CF (rη, ṙη)∥ ≤ Ω3∥rη∥, ∀rη, ṙη ∈ Rn, (3)

where Ω3 is the positive constant and ∥(.)∥ is the Euclidean
norm.

Property III
The term G in Eq. (1) is defined as a gravitational quantity
[38] bounded as

∥G∥ ≤ gb ∀rη ∈ Rn, (4)

where gb is defined as a positive function of rη .

Property IV
N(rη, ṙη) = Ṁ(rη) − 2CF (rη, ṙη) is a skew symmetric
[39]; that is, the components ηjk of N satisfy ηjk = −ηkj
and assure the following equation [38]:

xT
[
Ṁ(rη)− 2CF (rη, ṙη)

]
x = 0, ∀x ∈ Rn. (5)

B. DYANMIC LUGRE FRICTION MODEL
Friction is also a significant factor in the performance of
control systems. Friction reduces the precision of positioning
and pointing systems, and it can also cause instabilities in the
system. Friction compensation can help mitigate the negative
impact of friction to a certain extent. It is beneficial to have
simple models of friction that capture the essential properties
of friction for use in control applications. The LuGre friction
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model [40], a nonlinear dynamic friction model widely used
in mechanical and servo systems, will be used to formulate
the dynamic friction TFη in this subsection [41]. The LuGre
model is defined as in Eq. (6) and Eq. (7) and Table 2
demonstrates the LuGre friction model parameters.

dzF
dt

=ω − σ0
| ω |
g (ω)

zF , (6)

TFη =σ0 zF + σ1żF + f(ω), (7)

TFη =σ0 zF + σ1żF + σ2ω, (8)

where TFη is the predicted friction torque, its internal state is
described by zF , ω is the velocity between the two surfaces
in contact, the function ω that changes with velocity is illus-
trated in Eq. (9), and σ1 and σ0 are coefficients for bristles.

gη(ω) = τcη + (τsη − τcη) exp
− (|ω/ωs|), (9)

where τcη represents the Coulomb friction torque and τsη de-
scribes the stiction torque. The ωs factor determines precisely
how gη(ω) reaches the Coulomb torque τcη immediately.

TABLE 2. Parameters of the LuGre friction model.

Parameter Description Value Unit

ωs Velocity 6.109.10−2 rad/sec

σ2 Viscous friction coefficients 1.819 Nm.sec/rad

σ1 Damping coefficient 45.2 Nm.sec/rad

σ0 Stiffness coefficient 2750 Nm/rad

τsη Static friction torque 8.875 Nm

τcη Coulomb friction torque 6.975275 Nm

III. CONTROL DESIGN AND MATHEMATICAL
PRELIMINARIES
Due to nonlinearities and uncertainties in robotic dynamical
models, adaptive control has been acknowledged as a viable
method for mechanical robotic controller design. An innova-
tive stable finite-time controller design for five-DoF robotic
manipulators is given in Fig. 2 that uses FIT-SMC-based law,
a variable-gain RED, and FFNN to achieve the ultimate aim.

The AUTAREP robotic manipulator system is presented in
Eq. (10) as a state-space model, where r1η is the state variable
of position, r2η is the velocity state variable, and rzη is the
friction state of the dynamic LuGre friction model.

ṙ1η =r2η

ṙ2η =M−1τr −M−1(CF r2η +Gr1η + σ0rzη
+ σ2r2η + σ1ṙzη )

ṙzη =r2η − σ0
|r2η|
g (r2η)

rzη


, (10)

where η = b(base/waist), s(shoulder), e(elbow), w(wrist).
The control law has three main phases. First, a robust
FIT-SMC is developed to guarantee and ensure the global

FIGURE 2. Block diagram.

boundness of the robot manipulator system in the occurrence
of uncertainty and disturbance. Secondly, the velocities of
the system are estimated by utilizing variable-gain RED
observer. In the third phase, FFNN is applied to estimate
friction torque as the friction in the robotic manipulator
model is not measurable. In the recent literature, a fast TSMC
technique has been extensively used to achieve speedy finite-
time stability.

A. VARIABLE-GAIN ROBUST EXACT DIFFERENTIATOR
A second-order nonlinear dynamics of the robotic manipula-
tor may be expressed as follows in order to demonstrate the
differentiator design:

˙̄r1η = r̄2η
˙̄r2η = Jr̄η (t, r̄η) +Kr̄η (t, r̄η)Ur̄η (t, r̄η)

}
, (11)

where r̄η = [r̄1η, r̄2η] and η = b, s, e, w.

ψ1η = ˆ̄r1η − r̄1η, (12)

ψ2η = ˆ̄r2η − ˙̄r1η. (13)

The RED observer design will provide the esti-
mated/predicted derivatives for the available positions. In
other terms, every r1η will provide r2η estimations. More-
over, the dynamics of tracking error may be described as
follows:

ψ̇1η = −Λi1(t, r̄i)|ψ1η|1/2sign(ψ1η) + ψ2η,

ψ̇2η = −Λi2(t, r̄i)

2
sign(ψ1η)− r̈1η.

(14)

To construct the control algorithm, most controllers need
all state variables. In reality, however, all state variables
are unavailable for measurement for various economic and
technological reasons. The high-frequency gain is boosted
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by a differentiator (classical). The controller design requires
the whole state to be accessible; however, in this study, only
the measurements of position states are considered to be
available. As a result, to estimate its velocities, a smooth
differentiator is used as an observer. The proposed differ-
entiator has a unique feature that reduces high-frequency
chattering compared to the conventional sliding mode-based
differentiators. The globally converging RED is taken into
account.

˙̄̂r1η = −γ1η(t, r̄η)|ψ1η|1/2signψ1η + ˆ̄ri2, (15)

˙̄̂r2η = −γ2η(t, r̄η)
2

signψ1η, (16)

where γ1η and γ2η are the variable gains of RED observer
expressed in Eq. (15) and Eq. (16), respectively:

γ1η(t, r̄η) =χi +
1

βi

[
V 2
η (t, r̄η)

2ϵi
+ 2ϵi(βi + 4ϵ2i )

+ 4ϵiVη(t, r̄η)

]
,

(17)

γ2η(t, r̄η) = 2ϵiγ1η(t, r̄η) + βi + 4ϵ2i , (18)

where i = 1, 2, 3, 4, η = b, s, e, w and the arbitrary positive
constants are χi, ϵi, βi. It is worth noting that the error
dynamics are globally converged to zero in limited time
with the aid of this velocity observer. Now, the previously
mentioned robust global convergence differentiator can be
used to estimate the derivatives of the AUTAREP robotic
manipulator system.
For the waist (base) joint,

˙̂r1b = −γ1b|r̂1b − r1b|1/2sign(r̂1b − r1b) + r̂1b,

˙̂r2b = −γ2b
2
sign(r̂1b − r1b)

γ1b = δ1 +
1

β1

(V 2
1

2ϵ1
+ 2ϵ1(β1 + 4ϵ21) + 4ϵ1V1

)
,

γ2b = 2ϵ1γ1b + β1 + 4ϵ21


. (19)

For the shoulder joint,

˙̂r1s = −γ1s|r̂1s − r1s|1/2sign(r̂1s − r1s) + r̂2s,

˙̂r2s = −γ2s
2
sign(r̂1s − r1s)

γ1s = δ2 +
1

β2

(V 2
2

2ϵ2
+ 2ϵ2(β2 + 4ϵ22) + 4ϵ2V2

)
,

γ2s = 2ϵ2γ1s + β2 + 4ϵ22


. (20)

For the elbow joint,

˙̂r1e = −γ1e|r̂1e − r1e|1/2sign(r̂e1 − r1e) + r̂2e,

˙̂r2e = −γ2e
2
sign(r̂1e − r1e)

γ1e = δ3 +
1

β3

(V 2
3

2ϵ3
+ 2ϵ3(β3 + 4ϵ23) + 4ϵ3V3

)
,

γ2e = 2ϵ3γ1e + β3 + 4ϵ23


. (21)

For the wrist joint,

˙̂r1w = −γ1w|r̂1w − r1w|1/2sign(r̂1w − r1w) + r̂2w,

˙̂r2w = −γ2w
2
sign(r̂1w − r1w)

γ1w = δ4 +
1

β4

(V 2
4

2ϵ4
+ 2ϵ4(β4 + 4ϵ24) + 4ϵ4V4

)
,

γ2w = 2ϵ4γ1w + β4 + 4ϵ24


.

(22)

B. NEURAL NETWORK-BASED APPROXIMATION

In recent years, controllers based on neural networks (NN)
have gained significant interest. The controller uses neu-
ral networks’ capabilities to learn nonlinear functions and
handle specific problems that need large parallel comput-
ing. This subsection discusses how to approximate friction
torque (TFη) using a FFNN and it is presented in Fig.3.
The network’s information flows exclusively in the forward
direction. It starts from the level of the input layer and later
flows to the level of hidden layers, if they are any. Finally,
it concludes at the output layer. The output of feedforward
networks is entirely dependent on the network input (and,
in some instances, the output is constant while the network
input is fixed).

FIGURE 3. FFNN for robotic manipulator.

The approximation function under consideration is a three-
layer feedforward neural network (TLFFNN). The TLFFNN
consists of one input layer with one hidden layer and one
output layer. The hidden layer of TLFFNN has artificial
neurons, N=10. The artificial NN is primarily trained and
guided by mapping the input data to the output data. As
soon as the system has been trained, the estimated model
functions will adapt autonomously and then provide the
desired output under running conditions based on the training
data provided by the user. Optimization techniques are used
in the training of the artificial NN. It is worth noting that
the friction states rzη and ṙzη of the robotic manipulator
and the estimated velocity of the joints obtained from robust
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exact differentiator functioned as inputs of TLFFNN. TFη is
considered a network output. Consider TFη = Jr:

PN = N 1
N

( N∑
n=1

Q1
N,nX + d1N

)
= N 1

N

(
Q1T

N Xn + d1N

)
,

Ĵr = N 2
m

( m∑
N=1

Q̂2
Jr,NPN

)
= Q̂2T

Jr
PN


, (23)

where n = 3 and m = 1 denote the number of network
inputs and outputs for a single joint of robotic manipulator,
respectively (for all joints, n = 12 and m = 4). The hidden
layer of neurons is N = 10 and M = 4 is the number of
output layer neurons.
The tan-sigmoid N 1

N ∈ Rn → RN and pure linear activation
N 2

M ∈ RM → Rm are functions of the hidden layer
neuron and output layer neuron, respectively. b1N ∈ Rn

demonstrate the network bias that are utilized to improve
learning speed during network training. The input vector is
described as X = [rzη ṙzη ṙ1η] ∈ Rn. T̂Fη is the
desired target output.Q1

N ∈ Rn andQ2
Jr

are the hidden layer
and output layers weights vector, respectively. The suggested
NN’s output algorithm is as follows:

Jr = Q2T

Jr
P+ eJ , (24)

where eJ describes the network approximation error.

J̃r = Ĵr − Jr = T̃Fη

= Q̃2T

Jr
P− eJ

(25)

Q̃2
Jr

= Q̂2
Jr

−Q2
Jr
,

˙̃Q2
Jr

=
˙̂
Q2

Jr

. (26)

C. FIT-SMC SCHEME
The difference between the expected and reference trajec-
tories in the controller that generates the control inputs is
utilized as a performance benchmark. The speed of the
different motors fluctuates and varies as the control inputs
are supplied to the actuator. As an outcome, the underlying
system’s anticipated motion is accomplished. The reference
tracking errors expressed for the said purpose are given in the
following equation:

eη =r1η − rdη,

ėη =ṙ1η − ṙdη,

ëη =r̈1η − r̈dη.

(27)

In contrast to the conventional SMC-based designs, TSMC
has superior speedy and finite-time convergence characteris-
tics, which improves high-precision control performance by
increasing the convergence rate towards an equilibrium point.
Consider the sliding surface manifold design as described

in the following equation to accomplish the primary control
objectives:

δη = ėη + αηeη + βη

∫ t

0

|eη|γηsign(eη)dt, (28)

where δη ∈ Rn, αη , βη > 0, and 0 < γη < 1 is the positive
number. Henceforth, the time derivative of δη(t) is used to
retain the system on the integral terminal sliding surface
δη(t) = 0. The time derivative of Eq. (28) is determined as
follows:

δ̇η = ëη + αη ėη + βη|ėη|γηsign(eη). (29)

The objective is accomplished in SMC by setting δ̇η = 0.
Using this value as a substitute in Eq. (29),

0 = ëη + αη ėη + βη|ėη|γηsign(eη). (30)

Substituting the values of error dynamics from Eq. (27) into
Eq. (30),

0 =ṙ2η − r̈dη + αη(ṙ1η − ṙdη) + βη|ṙ1η − ṙdη|γη

sign(r1η − rdη),
(31)

ṙ2η =r̈dη − αη(ṙ1η − ṙdη)− βη|ṙ1η − ṙdη|γη

sign(r1η − rdη).
(32)

Replace the value of ṙ2η in Eq. (32) from Eq. (10). Therefore,
Eq. (31) after considering TLFFNN can be written as follows:

0 =M−1

[
τη − (CF r2η +Gr1η + T̂Fη

)

]
− r̈dη + αη(ṙ1η − ṙdη) + βη|ṙ1η − ṙdη|γη

sign(r1η − rdη).

(33)

Solving Eq. (33) for τη , we get

τη =M

[
r̈dη − αη(r1η − ṙdη)− βη|r1η − ṙdη|γη+

sign(r1η − rdη)

]
+ CF r2η +Gr1η + T̂Fη

(34)

The SMC law’s control input is divided into two components.
The equivalent control legislation (τηeq) is the first compo-
nent, and it is a continuous term. The signum function is used
in the second half of the discontinuous control legislation
(τηdis). The sliding phase drive system guarantees slide to
equilibrium, while the reaching phase drive system maintains
a steady manifold. Consider the robotic manipulator system’s
overall control law (τηt) as follows:

τηt = τηdis + τηeq. (35)

The discontinuous function τηdis is defined in the following
equation to compensate for the dynamic model uncertainties.

τηdis =−Υ1ηδη −Υ2ηsign(δη). (36)

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3139041, IEEE Access

The equivalent control input τηeq can be described as in the
following equation:

τηeq =M

[
r̈dη − αη(r1η − ṙdη)− βη|r1η − ṙdη|γη

sign(r1η − rdη)

]
+ CF r2η +Gr1η + T̂Fη

.

(37)

By invoking the values from Eq. (36) and Eq. (37) into Eq.
(35), the total control effort τηt of robotic manipulator system
is given by the following:

τηt =M

[
r̈dη − αη(r1η − ṙdη)− βη|r1η − ṙdη|γη

sign(r1η − rdη)

]
+ CF r2η +Gr1η + T̂Fη

−Υ1ηδη −Υ2ηsign(δη),

(38)

where Υ1η and Υ2η are constants with positive value. The
control input τηt will be used to execute the tracking task for
robotic manipulator joints.
The following theorem is presented to demonstrate sliding
mode enforcement and tracking errors convergence in finite
time.

Theorem 1. Consider the robotic manipulator dynamics de-
scribed by Eq. (10). In the presence of matched uncertainties,
the proposed Eq. (28), the reaching law Eq. (36), and the
robust control law Eq. (38) provide finite-time enforcement of
the sliding mode. Furthermore, the tracking errors converge
to the origin in a finite amount of time.

Proof. In order to prove the above statement theorem, the
Lyapunov function time derivative is given by function Lr,
along the dynamics Eq. (10), one gets

Lr =
1

2
δ2η, (39)

L̇r = δη δ̇η, (40)

L̇r =δη

[
M−1(τηt − (CF r2η +Gr1η + T̂Fη))

− r̈dη + αη(ṙ1η − ṙdη) + βη|ṙ1η − ṙdη|γη

sign(r1η − rdη)

]
.

(41)

Substituting Eq. (38) in Eq. (41) and then re-arranging it, one
has

L̇r =δη (−Υ1ηδη −Υ2ηsign(δη)

≤ −Υ1ηδ
2
η −Υ2η|δη|

, (42)

L̇r + 2Υ1ηLr +
√

2LrΥ2η ≤ 0, (43)

where Ῡ1η = 2Υ1η , Ῡ2η =
√
2Υ2η ,

L̇r + Ῡ1ηLr + Ῡ2η

√
Lr ≤ 0. (44)

The numerical expression of the settling time is derived from
Eq. (44) in the following form:

TS ≤ 1

2Ῡ1η
ln

(
Ῡ1η

√
Lr (sz (0)) + Ῡ2η

Ῡ2η

)
. (45)

The finite-time FIT-SMC function defined in Eq. (28) is
ensured by the differential inequality in Eq. (44) with sliding
mode convergence time in Eq. (45). Now, it is abundantly ob-
vious that δη = 0 is obtained by ensuring sliding modes along
Eq. (28). To put that into perspective, when δη approaches
zero, one must deal with

ëη + αη ėη + βη|ėη|γηsign(eη) = 0. (46)

The second-order differential equation is finite-time stable
in δη; i.e., δη −→ 0 in finite time. It is worth noting that
the estimation of frictional torque is done using FFNNs. It
is appropriate to address neural networks in the following
subsection at this stage.

D. STABILITY ANALYSIS WITH LYAPUNOV FUNCTION
For stability analysis, the enhanced Lyapunov function is
described as follows:

V =
1

2
δ2η +

1

2ζ1
Q̃2T

Jr
Q̃2

Jr
. (47)

The Lyapunov candidate function derivative is computed
as follows:

V̇ =δη δ̇η +
1

ζ1
Q̃2T

Jr

˙̂
Q2

Jr
. (48)

By substituting the values of δ̇η from Eq. (33),

V̇ =δη

[
ṙ2η − r̈dη + αη(ṙ1η − ṙdη) + βη|ṙ1η − ṙdη|γη

sign(r1η − rdη)

]
+

1

ζ1
Q̃2T

Jr

˙̂
Q2

Jr
.

(49)

By replacing the value of ṙ2η with estimated friction torque
Tzη , Eq. (49) after TLFFNN is

V̇ =δη

[
M−1(τηt − (CF r2η +Gr1η + T̂Fη))

− r̈dη + αη(ṙ1η − ṙdη) + βη|ṙ1η − ṙdη|γη

sign(r1η − rdη)

]
+

1

ζ1
Q̃2T

Jr

˙̂
Q2

Jr
.

(50)

The control input is built accordingly after evaluation of
TLFFNN is demonstrated as follows:

τηt =M

[
r̈dη − αη(r1η − ṙdη)− βη|r1η − ṙdη|γη

sign(r1η − rdη)

]
+ CF r2η +Gr1η + T̂Fη−

−Υ1ηδη −Υ2ηsign(δη).

(51)

By inserting the value of control input from Eq. (51), we get

V̇ =δη

[
−Υ1ηδη −Υ2ηsign(δη)− CF r2η −Gr1η − T̂Fη

−M(r̈dη − αη(ṙ1η − ṙdη)−

βη|ṙ1η + ṙdη|γηsign(r1η − rdη))

]
+

1

ζ1
Q̃2T

Jr

˙̂
Q2

Jr
.

(52)
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By solving Eq. (52) and taking Eq. (23) and Eq. (24) into
consideration, we get

V̇ = δη

(
−Υ1δη −Υ2sign(δη)− Q̃2T

Jr
P+ eJ

)
+

1

ζ1
Q̃2T

Jr

˙̂
Q2

Jr
,

(53)

V̇ =−Υ1δη
2 −Υ2δηsign(δη) + δηeJ − δηQ̃

2T

Jr
P

+
1

ζ1
Q̃2T

Jr

˙̂
Q2

Jr
,

(54)

V̇ =−Υ1δη
2 −Υ2δηsign(δη) + δη(eJ)− Q̃2T

Jr(
δηP− 1

ζ1

˙̂
Q2

Jr

)
.

(55)

The predicted weight selected from the above Eq. (55) is as
follows:

˙̂
Q2

Jr
= ζ1Pδη

.
(56)

The eJ elements are assumed to be norm bounded by a
constant Γα ∈ Rn having positive value. Therefore, Eq. (56)
can be written as follows:

V̇ =−Υ1δ
2
η −Υ2δηsign(δη) + δηΓα, (57)

V̇ ≤ −Υ1δ
2
η −

[
Υ2 − |Γα|

]
|δη|, (58)

where Υ1 is a constant with a positive value and if the gain
of controller Υ2 is selected in such a manner that Υ2 > |Γα|,
then Eq. (58) can be written as Eq. (59). Therefore, Eq. (59)
would be negatively semidefinite:

V̇ ≤−Υ1δ
2
η −∆|δη|, (59)

where ∆ in Eq. (59) is defined as ∆ = min(Υ2 −∆, Υ2 +∆).
As approximation error eJ based on NN has a minimum
value, the state of the system achieves an equilibrium point
in finite duration.

IV. SIMULATION RESULTS AND DISCUSSION
The proposed control technique has been simulated in MAT-
LAB/Simulink for AUTAREP five-DoF robotic manipulator.
A step signal is employed to the controller for the trajectory
control of the AUTAREP robotic manipulator. Fig. 4 demon-
strates the trajectory control of robotic manipulator joints
with desired step input signal. The suggested control method-
ology assures the closed-loop equilibrium convergence in a
finite time and has a fast convergence rate. The conventional
sliding mode’s asymptotic convergence of states is overcome
and it a better convergence feature than regular SMC.
The settling time of AUTAREP robotic manipulator joints
after implementing the control algorithm is approximately
between 0.2 secs and 0.3 secs. Similarly, the percentage over-
shoot of the AUTAREP robotic manipulator joints is below
1.5%. Table 3 presents the AUTAREP robot manipulator
joints’ performance parameters such as overshoot, settling
time, and rise time

FIGURE 4. Step response of robotic manipulator joints.

The control input torque (τηt) of the robotic manipulator is
illustrated in Fig. 5. Moreover, the control input for the pro-
posed control strategy is realistic, and there is no switch func-
tion in FIT-SMC; therefore, the chattering issue is avoided. In
a finite time, the tracking error converges to zero as presented
in Fig. 6. The sliding mode enforcement is achieved at the
start of the process, and the global robustness of the closed-
loop system is ensured. One of the most effective ways of

TABLE 3. Performance parameters of robotic manipulator joints. The unit of
all the times is secs.

Parameter
AUTAREP robotic manipulator joints

Waist Shoulder Elbow Wrist

Settling time (ts) 0.2060 0.2340 0.2950 0.2418

% overshoot 1.0766 1.5118 0 8.2 × 10-8

% undershoot 0 0.1064 0.0015 0

Rise time (ts) 0.1411 0.1567 0.2002 0.1624

Peak time (tp) 0.2512 0.2886 5 4.9992

tackling uncertainties appears to be the SMC methodology.
Sliding mode, as widely known, is precise and insensitive
to disturbances [42], [43]. The joints friction torque of the
robotic manipulator is estimated and trained using FFNN,
as depicted in Fig. 7. However, in the dynamic model of
a robotic manipulator, the friction state is not measurable;
therefore, FFNN is implemented to estimate joints friction
torque. Fig. 8 presents the estimated velocities of the robotic
manipulator through variable-gain differentiator observer. In
this methodology, it is understood that merely the mea-
surements of position states of the robotic manipulator are
accessible. The dynamics error under differentiators will con-
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FIGURE 5. Control effort (τηt) of the robotic manipulator joints.

FIGURE 6. Error signals of the robotic manipulator joints.

verge to zero after the convergence procedure. It means that
the estimated states reach the original states of the robotic
manipulator in finite time. Fig. 9 and Fig. 10 present the
step response of the waist and shoulder joints of the robotic
manipulator with the RED observer and without the RED
observer. The results obtained using the RED observer are
compared with those when velocities of waist and shoulder
joints are available for control design.
Various parameters have been identified for the performance
achieved by the controller. It is important to be as accurate
and comprehensive as possible; the comparative findings
are summarized based on the step input signal in Table 4.
This table takes into the consideration the characteristics,
such as settling time, maximum percentage undershoot and
overshoot, rise time, and peak time. More crucially, due to

the robust behavior and excellent performance (compared to
noisy information) shown by the suggested RED, the control
algorithm appreciably accomplished stable tracking perfor-
mance asymptotically. Hence, the newly proposed controller
is chosen as the excellent candidate in the most recent control
approaches because it eliminates the dependence on the
corresponding sensors. Therefore, it decreases the reliance
on the sensor in case of sensor failure.

FIGURE 7. Friction torque (TF ) of the robotic manipulator joints.

FIGURE 8. Estimated velocity of the robotic manipulator joints.

V. CONCLUSION
In this article, an AUTAREP robotic manipulator of five
DoFs is, firstly, modeled using the dynamic LuGre friction
model. Then, a finite-time FIT-SMC is proposed for five-
DoF AUTAREP robotic manipulators, followed by a RED
observer and FFNN approach. As an observer, a variable-
gain RED is employed to estimate the velocity states of
five-DoF AUTAREP robotic manipulator joints, which are
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TABLE 4. Comparison of performance parameters. The unit of all the times is
secs.

Parameter

AUTAREP Robotic Manipulator Joints

With RED Without RED

Waist Shoulder Waist Shoulder

Settling time (ts) 0.2060 0.2340 0.28630 0.3640

% overshoot 1.0766 1.5118 2.5677 3.5982

% undershoot 0 0.1064 0 0.1483

Rise time (ts) 0.1411 0.1567 0.1431 0.1574

Peak time (tp) 0.2512 0.2886 0.2568 0.2987

FIGURE 9. Step response of the base joint of the robotic manipulator with and
without RED observer.

FIGURE 10. Step response of the shoulder joint of the robotic manipulator
with and without RED observer.

vital for developing the suggested controller methodology.
The friction is considered an unmeasurable internal state in

the dynamic model of the AUTAREP robotic manipulator;
therefore, FFNN is developed in which the friction torque
is trained and approximated. The FIT-SMC method is em-
ployed to the AUTAREP robotic manipulator that provides
finite-time convergence to the equilibrium points and guar-
antees good trajectory tracking performance. Furthermore, it
enhanced the robust performance of the AUTAREP robotic
manipulator. The proposed approaches keep the benefits of
classic SMC, such as speedy response, ease of implementa-
tion, and robustness to disturbances/uncertainties, and allow
the system states to reach the objective control point in a
finite amount of time. The disadvantage of adopting a NN
model in the proposed technique development is that it is a
computationally complicated function that takes a long time
to execute. It can take time for a network to converge to
an optimum learning state with minimal error using conven-
tional personal computer hardware and the backpropagation
algorithm. Simultaneously, the Lyapunov candidate function
is used to present the finite-time stability analysis. The
simulation findings and comparison of the proposed control
algorithm with RED and without RED observer validate the
effectiveness of the proposed scheme.
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