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Abstract

The increasing energy demand and the target to reduce environmental pollution make it

essential to use efficient and environment-friendly renewable energy systems. One of these

systems is the Photovoltaic (PV) system which generates energy subject to variation in envi-

ronmental conditions such as temperature and solar radiations. In the presence of these

variations, it is necessary to extract the maximum power via the maximum power point track-

ing (MPPT) controller. This paper presents a nonlinear generalized global sliding mode con-

troller (GGSMC) to harvest maximum power from a PV array using a DC-DC buck-boost

converter. A feed-forward neural network (FFNN) is used to provide a reference voltage. A

GGSMC is designed to track the FFNN generated reference subject to varying temperature

and sunlight. The proposed control strategy, along with a modified sliding mode control,

eliminates the reaching phase so that the sliding mode exists throughout the time. The sys-

tem response observes no chattering and harmonic distortions. Finally, the simulation

results using MATLAB/Simulink environment demonstrate the effectiveness, accuracy, and

rapid tracking of the proposed control strategy. The results are compared with standard

results of the nonlinear backstepping controller under abrupt changes in environmental con-

ditions for further validation.

1 Introduction

Due to the increased usage of electrical and electronic devices, the power demand is growing

every day. The increasing energy demand and environmental pollution worldwide develop fas-

cinations for the introduction of renewable power systems. At the same time, the use of fossil

fuels reduces their reserves. Solar energy is one of the most prominent renewable energy

sources for power generation. It dominates several other renewable energy sources like wind

power, hydro-power, geothermal energy, biofuels, and biomass due to its clean, endless and
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free nature [1, 2]. At the end of 2017, solar power generation has made a recorded history of

adding 98 Giga Watt (GW) to the global installed capacity, making it a total of 402GW [3].

The International Energy Agency (IEA) [4] estimates that by 2050, the photovoltaics (PV) will

provide around 11% of global electricity production and would avoid 2.3 Giga ton (Gt) of CO2

emissions per year.

PV arrays have the advantage of directly converting light energy into electrical energy

through semiconductors [5]. However, the main problem is its low efficiency due to varying

environmental conditions. To increase the efficiency, they must be operated at the maximum

power point (MPP). The operating point of the PV array for maximum power generation is

termed as maximum power point and the voltage at which the PV module can produce maxi-

mum power is named maximum power voltage (or peak power voltage). MPPT is an essential

part of solar power systems; therefore, intensive research work is carried out in this particular

area to develop new and more efficient MPPT techniques [6]. The power characteristics,

shown in Figs 1 and 2 of photovoltaic cells, are nonlinear that vary with the variations in the

environmental conditions [7]. For instance, variation in temperature and irradiance change

the voltage produced as well as the generated current by PV module [8]. As a result, the gener-

ated power also varies. Such variations make maximum power extraction a complex task.

In the context of maximum power extraction, various techniques are used, which are

divided into conventional and soft computing methods. Among the conventional techniques,

perturbation and observation (P&O) [9, 10] and incremental conductance (IC) [11] are the

most widely used techniques because of their simple structure. In the P&O method, the voltage

V and current I from the PV module are measured and the power P is calculated. If the change

in power is greater than zero, i.e. (ΔP> 0), then it measures the change in voltage. If a positive

change occurs in voltage, the duty command ratio is decreased and if a negative change occurs

Fig 1. Power characteristic curve under varying irridiance.

https://doi.org/10.1371/journal.pone.0260480.g001
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in the voltage, then the duty command ratio is increased. If the change in power is less than

zero, i.e. (ΔP< 0), then it again measures the change in the voltage. If a change in voltage is

positive, the duty command ratio is increased and if the change in voltage is negative, the duty

command ratio is decreased. If power remains the same, i.e. (ΔP = 0), then it means that MPP

is achieved. When the MPP is achieved, voltage oscillates around the MPP rather than being

steadily situated on it. This is one of the major weaknesses of this technique. Likewise, as the

voltage is tracked occasionally, a large amount of power drops. Similarly, in IC, the maximum

power point occurs when ΔV/ΔP = 0 and ΔI/ΔP = 0. IC method offers good performance

under rapidly changing atmospheric conditions [11]. It is also capable of knowing that the

MPP has reached. Consequently, no oscillations occur like those which happens in P&O

method [12]. In other words, it is relatively more efficient than P&O method. However, it

requires four sensors to perform the computation; thus, it is expensive and requires more

computational time, which results in power loss (see for instance; [13, 14]). Although IC is rel-

atively faster than P&O it is still slow and inaccurate in case of faster variations in solar irradi-

ance [15, 16]. Moreover, these conventional techniques have no capability to handle partial

shading conditions (PSC), which is a very important issue for PV systems. To address this

problem, many MPPT techniques are proposed in the existing literature like dynamic leader

based collective intelligence (DLCI), memetic salp swarm algorithm (MSSA), etc., [17–19].

In recent years, due to drawbacks of conventional techniques, researchers have been more

attracted by soft computing techniques, which are further classified as bio-inspired methods

and artificial intelligence methods [8, 20, 21]. In Bio-inspired techniques, particle swarm opti-

mization (PSO) [22], ant colony optimization (ACO) [23] and genetic algorithms (GA) [24]

are commonly used. These proposed controllers under varying weather conditions show fast

convergence as compared to conventional methods. The main drawbacks of the Bio-inspired

methods are that they need many parameters such as population size, mutation, selection of

chromosomes and crossover rate. The estimation of these parameters is itself a complex job.

Under varying environmental conditions, all these parameters need to be readjusted; other-

wise, one cannot track MPP correctly. In addition, adaptive/robust control algorithms are

Fig 2. Power characteristic curve under varying temperature.

https://doi.org/10.1371/journal.pone.0260480.g002
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developed in many control applications. In a robust context, a well-known robust control algo-

rithm, named as sliding mode control (SMC), is designed in comprehensive case studies to

ensure the aforementioned control objectives [25, 26]. However, the conventional SMC may

experience some high-frequency oscillations that are dangerous in realistic applications [27].

Artificial intelligence-based techniques for the MPPT of PV modules include fuzzy logic

(FL) controllers and artificial neural networks (ANN). These techniques have advantages such

as working with variable inputs, no need for exact mathematical modeling, self convergence

and self-learning capabilities [28]. They have adaptive nature for the nonlinear behavior of the

systems. FL MPPT method has an excellent performance as compared to the conventional

techniques [29]. The drawback of the FL MPPT method is that the tracking performance and

the output efficiency are highly dependent on the engineer’s technical knowledge and the

rules-based table. Recently ANN based MPPT techniques are becoming more popular. In [30],

an ANN-based MPPT technique is proposed with the advantages of low computation require-

ment and rapid tracking speed. [31] suggests MPPT technique based on adaptive neuro-fuzzy

inference system (ANFIS). [32] have presented the ANN-based MPPT 2-stage method for

maximum power point. The ANN MPPT controllers have better performance and effective-

ness than the conventional and bio-inspired techniques. Unfortunately, the ANN-based

MPPT methods require months for training, large memory size and periodic tuning with time.

This paper proposes a nonlinear GGSMC to extract maximum power from the PV array by

tracing a reference voltage. The main contributions of this work are listed below.

1. The proposed control algorithm first generates the reference voltage via FFNN under vary-

ing temperatures and irradiances.

2. Then, a non-inverted buck-boost converter, accompanied by an output feedback GGSMC,

is used to track the FFNN generated voltage reference.

3. The modified SMC law eliminates the reaching phase so that the sliding mode exists

throughout the time. Consequently, MPPT is extracted and the system response observes no

high-frequency chattering and harmonic distortions. The overall close loop stability is pre-

sented via Lyapunov stability analysis. Furthermore, the simulation results comparison, with

existing results of the nonlinear backstepping controller under abrupt changes, demonstrates

the effectiveness and faster tracking performance of the proposed SMC over its counterpart.

The rest of the paper is structured as follows. The detail of PV system modeling is given in

Section 1 and modeling of the non-inverted buck-boost converter is presented in Section 2.

The FFNN used to generate the reference voltage and analysis of the proposed control tech-

nique are discussed in Section 3. Simulation results under varying weather conditions are

given in Section 4. In Section 5, the performance of the proposed controller is compared with

the standard nonlinear backstepping approach. Finally, the conclusion and the future work are

presented in Section 6.

2 Modelling of PV module

A solar cell, the building block of the PV array, is a P-N junction semiconductor. Series and

parallel combinations of these solar cells make a PV array. The solar cell is modeled by differ-

ent equivalent circuits such as single diode model, double diode model and with or without

series and shunt resistance [33]. For modeling and simulation purposes, a single diode model

is the most commonly used solar cell model. The detailed equivalent single diode model of a

PV solar cell [33, 34] is shown in Fig 3. The labeled current equations and output voltage are

presented below.
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By applying Kirchhoff’s laws, the overall current across the circuit can be calculated as

IL ¼ NpIph � ID � Ish ð1Þ

where IL is the output current of the PV module, Iph is the photo current which directly

depends on the irradiance and temperature, Np is the parallel connected solar cells, ID is the

current across the diode and Ish is the current passes through the shunt resistance Rsh. The

detailed presentation of Iph, ID and Ish is given as follow [34]

Iph ¼ ISCR þ KiðT � Tref Þ
S
Sref

" #

ð2Þ

where ISCR is the cell short circuit current at reference temperature (Tref) and solar irradiance

(Sref), which are 25˚C and 1000w/m2 respectively, T is the cell temperature and S is the solar

irradiance at current condition and Ki is the short circuit current temperature coefficient.

The diode current is expressed by Shockley’s equation as

ID ¼ IrsNp exp
VD

nVt
� 1

� �

ð3Þ

where Irs is the reverse saturation current of the diode, VD ¼
VþRserIL

Ns
is the voltage across the

diode and Vt ¼
KT
q is the thermal voltage while Ns is the number of cells connected in series,

q = 1.6 × 10−9 C is the electron charge and K = 1.38 × 10−23 J/k is the Boltzmann’s constant

Invoking the detailed values of VD and Vt in (3), one gets

ID ¼ IrsNp exp
qðV þ RserILÞ

nKTNs

� ��

ð4Þ

Fig 3. Single diode model of PV module.

https://doi.org/10.1371/journal.pone.0260480.g003
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The reverse saturation current Irs is expressed as

Irs ¼ Irn
T
Tref

 !3

exp
Eg

nK
1

Tref
�

1

T

 !" #

ð5Þ

In this expression, n is the diode ideality factor, Irn is the nominal reverse saturation current at

given temperature T, V is the output voltage of the PV module, and Eg = 1.12eV is the bandgap

energy of the semiconductor used in the PV cell.

The current across shunt resistance Rsh is given as

Ish ¼
V þ RserIL

Rsh
ð6Þ

where Rser is the series resistance in the PV module, which is produced due to series and paral-

lel joining of the cells of the module and Rsh is the shunt resistance considered due to the leak-

age current across the P-N junction of the cells of the module.

The values of Rser = 179.94O and Rsh = 3.1694O used in MATLAB/Simulink PV module. is

used in our simulation. Incorporating (2), (3), and (6) in (1), a complete PV module for this

output current can be calculated as

IL ¼ Np ISCR þ KiðT � Tref Þ
S

1000

� �

� IrsNp exp
qðV þ RserILÞ

nKTNs

� �� �

�
V þ RserIL

Rsh
ð7Þ

The temperature coefficient of an open circuit voltage for a PV module Voct tells the precise

relation of open-circuit voltage Voc with temperature T specifying how Voct changes with

changing temperature.

Voct at variable temperature T is expressed as

Voct ¼ Vocð1þ bðT � 25ÞÞ ð8Þ

while β = −0.36411 is temperature coefficient which means that Voct decreases at the rate of

0.36411 percent per degree rise in temperature and Voc is the short circuit current at 25C.˚

Similarly, the temperature coefficient of short circuit current Isct also specifies the depen-

dency of short-circuit current ISC on temperature via the following relation.

Isct ¼ ISCð1þ aðT � 25ÞÞ ð9Þ

while α = 0.057006 is temperature coefficient which means that Isct increases at the rate of

0.057006 percent per degree rise in temperature and ISC is the short circuit current at 25C.˚

3 Modeling of buck boost converter

In this work, a non-inverted Buck-Boost regulator is targeted [35]. It is a cascaded combina-

tion of buck converter followed by a boost converter. The converter is controlled periodically

by the switching period, Ts whereas; Ts = ton + toff. These converters are widely used in many

applications such as industrial personal computers (IPCs), point-of-sale (POS) systems and

auto start-stop systems [36]. The circuit arrangement of the non-inverted buck-boost con-

verter is given in Fig 4. It is shown in the figure that Vpv is the input voltage from PV, S1 and S2

are insulated gate bipolar transistor IGBT switches, L represents the inductance of inductor,

D1 and D2 are diodes, C1 and C2 are capacitance of the capacitors and R is the load resistance.

The expression for the inductor L, used in Fig 4, can be computed as follow [37]

L ¼
Vpv

DILfs
D ð10Þ

where ΔIL = Imax − Imin, D is the duty cycle and fs is the switching frequency.
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Similarly, the final expression for the output capacitor C2 carry the form [37]

C2 ¼
IC2

DVC2
fs
D ð11Þ

where DVC2
= Vc2;max

� Vc2;min
, D is the duty cycle and fs is the switching frequency.

The detailed dynamics of the non-inverted buck-boost converter will be studied next.

3.1 Operating Modes of the buck-boost converter

Before proceeding to the mathematical modeling, the following assumption is made.

Assumption 1 Assume that the converter is operated in continuous conduction mode.
The converter has two operating modes, i.e., Switch ON mode and Switch OFF mode,

which is discussed below:

3.1.1 Switch ON mode. In Switch ON mode, both the IGBT switches S1 and S2 are ON,

which results in the disconnection of the load. So, the circuit on the left-hand side is shorted

and the inductor charges from the PV voltage. The schematic diagram of the Switch ON mode

is shown in Fig 5. By applying Kirchhoff’s laws, the state-space equations for the Switch ON

mode can be derived as follows.

_Vpv

_IL
_Vo

2

6
6
4

3

7
7
5 ¼

1

C1

0 0

0
1

L
0

0 0 �
1
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6
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6
6
6
6
4

3

7
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7
7
7
7
5
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2
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4
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7
5þ

�
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6
6
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3

7
7
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ð12Þ

Fig 4. Circuit diagram of non-inverted buck boost converter.

https://doi.org/10.1371/journal.pone.0260480.g004
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3.1.2 Switch OFF mode. In Switch-OFF mode, both the switches S1 and S2 are off. Now,

in this case, the load is taking current from the inductor through diode D2 as shown in Fig 6.

The state-space equations for this mode by applying Kirchhoff’s laws can be obtained as

_Vpv

_IL
_VC2

2

6
6
4

3

7
7
5 ¼

1

C1

0 0

0
1

L
0

0 0
1

C2

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

Ipv
� Vo

IL

2

6
4

3

7
5þ

0

0

�
Vo

RC2

2

6
6
6
4

3

7
7
7
5

ð13Þ

Based on the inductor volt-second balance and capacitor charge balance, the overall equa-

tions for both the modes of the non-inverted buck-boost converter are expressed as follow [38]

_Vpv

_IL
_VC2

2

6
6
4

3

7
7
5 ¼

1

C1

0 0

0
D
L
ð
D
L
�

1

L
Þ

0 0 �
1

RC2

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

Ipv
Vpv

Vo

2

6
4

3

7
5þ

� D
IL
C1

0

ð
IL
C2

� D
IL
C2

Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð14Þ

Note that the duty cycle of a non-inverted buck-boost converter is used to control the out-

put voltage, which is expressed as

D ¼
Vo

Vo þ Vin
ð15Þ

In the case of ideal power transfer, the losses are ignored, so the input power is equal to output

Fig 5. Switch ON mode of the non-inverted buck-boost converter.

https://doi.org/10.1371/journal.pone.0260480.g005
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power. i.e. Pi = Po and the input impedance Rin and output impedance R are related via the fol-

lowing equation.

Rin ¼
1 � D
D

� �2

R ð16Þ

To design our control strategy, the model is averaged over one switching period. Conse-

quently, the average value of Vpv, IL and Vo is considered as x1, x2, and x3, respectively, and μ is

considered as the average duty cycle. Thus,

x1 x2 x3 m½ � ¼ Vpv IL VC2
D �

�

using the notations, one may get the final state-space form as follows

_x1

_x2

_x3

2

6
4

3

7
5 ¼

1

C1
0 0

0
m

L
ð mL �

1

LÞ

0 0 � 1

RC2

2

6
6
6
4

3

7
7
7
5

Ipv
x1

x3

2

6
4

3

7
5þ

� m
x2

C1

0

ð
x2

C2
� m

x2

C2
Þ

2

6
6
4

3

7
7
5 ð17Þ

This system can also be written in a very compact form as follows

_x ¼ Fðx; uÞ

and

y ¼ x1

as the output voltage. In the subsequent section, the control design strategy is presented.

Fig 6. Circuit diagram of non-inverted buck boost converter.

https://doi.org/10.1371/journal.pone.0260480.g006
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4 Reference voltage generation and design of the controller

This section presents the nonlinear controller design, which will be used in feedback mode to

track an FFNN based generated reference signal (Vref). Therefore, at first, the reference signal

generation is presented and then the control law designed is outlined.

4.1 FFNN based estimation of reference voltage Vref

In order to estimate the nonlinear mapping between the independent variables, i.e., tempera-

ture and irradiance, and the depending variable Vref an FFNN [39], will be used. The neural

networks (NN) learn to create a mapping between these independent variables and dependent

output [40]. The training set in NN for this nonlinear approximation will include the tempera-

ture, variable irradiance and the reference voltage.

Two-layer FFNN is efficient for any particular nonlinear estimation. Thus the proposed

scheme with the schematic diagram, shown in Fig 7, is used for the estimation of the reference

voltage (Vref), which will be tracked via the GGSMC to get MPP under varying irradiance and

temperature.

The temperature (one of the network inputs) is varied from 25C˚ to 75C˚ with an incre-

ment of 2C˚. In contrast, the irradiance (second input of the network) is varied from (600

− 1000)w/m2 with an appropriate increment of 1w/m2. The information in the input layer is

multiplied by scalar weighted, Vij with a biased value bjo. This input layer computes its net acti-

vation as

aj ¼
Xn

i¼1

Vjipi þ bjo ð18Þ

where j = 1, 2, 3.. . ., lo represents the number of neurons in the hidden layer, pi is the input of

the input node i, bjo is the respective reconstruction error or bias. The output of the hidden

layer is given by

yi ¼ f ðajÞ ð19Þ

Fig 7. Neural network for Vref generation.

https://doi.org/10.1371/journal.pone.0260480.g007
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where f is the activation function which is chosen to be tanh. The output layer computes its net

activation as

ak ¼
Xlo

j¼1

okjyi þ bko; ð20Þ

where k = 1 is the number of neurons in the output layer, ωkj is scalar called weight between

the kth output layer node and the jth hidden layer node. The output layer produces an output

Vref as a function of its net activation as

Vref ¼ f ðakÞ ð21Þ

The output of the estimated model can be expressed as the function of inputs, the weights

between input and hidden layer and the weights between the hidden and the output layer as

described by

Vref ¼ f
Xlo

j¼1

okjf
Xn

i¼1

Vjipi þ bjo

 !

þ bk0

 !

ð22Þ

For two-layer FFNN, as shown in Fig 7, consider lo, and k1 are the number of neurons in

layer1 and layer2, respectively. So the above equations can also be presented in the vectors

form as

Vref ¼
�f ð �WT�f ð�VT�p þ bvÞ þ bwÞ ð23Þ

More explicitly, this expression can be expressed as follows.

Vref ¼ ðW tanh ðV�p þ bvÞ þ bwÞ ð24Þ

After selection of the network structure, the network training is done by minimizing the cost

function, which is a function of network weights. The cost function is generally characterized

as follows

JðVji;okjÞ ¼
1

2

Xlo

i¼1

ðtk � zkÞ
2

ð25Þ

where tk is the target output at the kth output node and J(Vji, ωkj) is the mean square error

(MSE).

The levenberg-Marquardt training algorithm is used for updating the weights of the FFNN.

The MSE criterion or the maximum number of iterations decides the termination of the itera-

tive process. A range of values of the network parameters has been varied systematically to

achieve a reasonable estimate of the training data. The varying network parameters are the

number of hidden neurons in the hidden layers, with a learning rate range and the number of

iterations is used for the estimation of Vref.

The final FFNN structure for Vref has ten hidden layer neurons and the learning rate is 0.1.

This choice of the network parameters yields a good match between the actual and the pre-

dicted values.

4.1.1 Simulation results of FFNN. The reference voltage is Vref generated for varying lev-

els of temperature and irridiance as shown in Fig 8. The performance in terms of MSE, during

the estimation of Vref, is shown in Fig 9. The regression plot of Vref is shown in Fig 10. The esti-

mates of Vref are plotted against their target values in this figure. The regression value of R = 1

shows that the estimates are very close to the target values, indicating the success of FFNN

PLOS ONE Modern control of PV systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0260480 January 20, 2022 11 / 29

https://doi.org/10.1371/journal.pone.0260480


training. The estimation error histogram associated with Vref is shown in Fig 11. It reveals a

very small error with an average very close to zero.

By providing Vref by the FNN, the GGSM controller is then designed to steer Vpv to Vref to

get maximum power from the PV array.

4.2 Generalized global sliding mode control

To get maximum power from the PV module, a nonlinear GGSMC is designed to steer Vpv to

Vref by varying the duty cycle, i.e., μ
Before the control law design, the system (17) can be transformed into the following canon-

ical form.

_y1 ¼ y2

_y2 ¼
1

C1

½_I pv � m _x2 � x2 _m� þ Dðy1; y2; tÞ
ð26Þ

8
><

>:

where y1 = x1 and y2 ¼ _x1 ¼
Ipv
C1
� m

x2

C1
and Δ(y1, y2, t) is uncertainty which is assumed to be

matched and bounded i.e. jDðy1; y2; tÞj � K� with K� is a positive constant.

This system (26) is a controllable canonical form in terms of the output and its derivative

and is considered very convenient for the control design. The ultimate control objective is the

tracking of the reference voltage Vref. The maximum power can be obtained by tracking this

reference voltage. Therefore, the tracking error is the mismatch between the actual and

Fig 8. Vref for different values of irradiance and temperature.

https://doi.org/10.1371/journal.pone.0260480.g008
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reference voltages, i.e.,

e ¼ y � yref

where yref = Vref. Based on this error, a new variable σ is defined as follows

s ¼ _e þ ae � f ðtÞ ð27Þ

Where the function f(t), called the forcing function, must be designed to meet the following

three conditions so that σ = 0 [41].

f ð0Þ ¼ _e0 þ ae0

f ðtÞ ! 0 as t!1

f ðtÞhas a bounded first time derivative

8
>>><

>>>:

Here _e0 and e0 are the velocity and position errors respectively at t = 0. In GGSMC the function

f(t) carry the following expression

f ðtÞ ¼ ½ð _e0 þ ae0Þ cos bt � be0 sin bt�expð� atÞ ð28Þ

where a and b are positive constants. This forcing function satisfy all the above three condi-

tions. The mathematical structure of (27) is made in such a way that it will result in the expo-

nentially stable error convergence.

Fig 9. Mean square error convergence during the NN estimation.

https://doi.org/10.1371/journal.pone.0260480.g009
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when σ = 0 then the solution of the closed loop system will be non homogeneous differential

equation _e þ ae � f ðtÞ ¼ 0 will become

eðtÞ ¼ e0 cos bt þ
_e0 þ ae0

b
sin bt

� �

expð� atÞ ð29Þ

This solution can also be obtained by solving the forthcoming second-order system.

€e þ 2a _e þ ða2 þ b2Þe ¼ 0 ð30Þ

Where _eð0Þ = _e0 and e(0) = e0 are chosen as initial conditions.

Fig 10. The regression plots during the estimation of Vref.

https://doi.org/10.1371/journal.pone.0260480.g010
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This system displays that both the poles of the system are at −a±bj. This also indicates that

the system’s dynamics in sliding mode do not reduce, which implies that the system experi-

ences integral sliding mode.

The time derivative of (27) along system (26) becomes

_s ¼
1

C1

_I pv � m _x2 � x2 _m
h i

� €xref þ a
Ipv
C1

� m
x2

C1

� _xref

� �

� _f ðtÞ ð31Þ

At this stage, the main interest is that the system should evolve with full states. Thus, a propor-

tional-integral surface in term of σ can be defined as follows

x ¼ sþ c
R t

0
sðtÞdt ð32Þ

The time derivative of ξ along (32) becomes

_x ¼ _s þ cs ð33Þ

Now putting the values of σ, _s and then posing _x ¼ 0.

The expression of the control law, which governs the system dynamics exactly on the mani-

fold ξ = 0 can be calculated as follows

_uequ ¼
C1

x2

a
Ipv
C1

� m
x2

C1

� _xref

� �

þ
1

C1

_I pv � m _x2

n o
� €xref �

_f ðtÞ
� �

ð34Þ

Since the practical system always operates under uncertainties, therefore, the equivalent con-

trol alone will be no more capable of enforcing sliding mode. So, the overall sliding mode

Fig 11. The error histogram during the estimation of Vref.

https://doi.org/10.1371/journal.pone.0260480.g011
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enforcement law appear as follows

_u ¼ _uequ þ _udis ð35Þ

while

udis ¼ � k1ðxþWsignðxÞÞ ð36Þ

Where 0<W< 1. The schematic diagram of the designed control technique is shown in

Fig 12.

4.3 Stability analysis

The close loop stability, i.e., the sliding mode enforcement and the actual states’ convergence

to desired equilibrium points, can be confirmed by stating the following theorem.

Theorem 1 The sliding mode will take place along the manifold (32) by the control law of the
(35), and hence the tracking will happen if the switching gain is chosen larger than the bound of
the uncertainty i.e.

k1 > jDðy1; y2; tÞj þ Z

and, in addition, if the internal dynamics are asymptotically converging to equilibrium.

Proof 1 We prove the theorem by first proving the asymptotic convergence of the internal
dynamics since a two-step-based input-output form (26) was developed. This approach engages
the first two dynamics equation of the system (17); thus, without loss of generality, the internal
dynamics are governed by the last dynamic equation of (17), i.e.,

_x3 ¼ �
1

RC2

x3 þ
x2

C2

�
x2

C2

m ð37Þ

Fig 12. Proposed control scheme for PV power system.

https://doi.org/10.1371/journal.pone.0260480.g012
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Since x1, x2 are directly affected by the controlled input μ, so, the zero dynamics can be obtained
by putting x1, x2 and μ = 0, one may get (see for details [42]).

_x3 ¼ �
1

RC2

x3 ð38Þ

Since, R and C2 are positive plant typical parameters, therefore, 1

RC2
will always remain positive.

This confirms that the system (38) has poles in the left half-plane (LHP) at � 1

RC2
. Hence (38) is

the stable exponential system which implies that the system under study is the minimum phase.
Now, at this stage, we are ready to confirm sliding mode establishment. A Lyapunov function, in
terms of the sliding variable, is defined as follows.

V ¼
1

2
x

2 ð39Þ

The time derivative of this function along (34) becomes

_V ¼ x _x ¼ xð _s þ csÞ ð40Þ

Using (31) and (35) (with components given in (34) and (36), one may get

_V ¼ xð� k1ðxþWsignðxÞÞ þ DÞ

_V � � k1x
2
� k1Wjxj þ jxjjDj ð41Þ

_V � � k1x
2
� jxjðk1W � jDjÞ

This expression remains true, i.e., negative definite if

k1W � jDj � Z > 0

k1W � Zþ jDj ð42Þ

Table 1. PV array parameters and buck-boost converter specification.

Parameters Values

Maximum power 1555W

Cells per module 72

Open circuit voltage 165.8 V

Short circuit current 17.56 A

Vmpp 102.6 V

Impp 15.16 A

Input capacitor C1 1 × 10−3 F

Output capacitor C2 48 × 10−3 F

Inductor L 20 × 10−3 H

Load R 50 Ohm

https://doi.org/10.1371/journal.pone.0260480.t001
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using (41) and (42), one may get

_V � � k12V �
ffiffiffi
2
p

ZV
1

2
ð43Þ

_V þ k12V þ
ffiffiffi
2
p

ZV
1

2 � 0
ð44Þ

The differential inequality is a fast finite time converging, which forces V to zero and when V
approaches zero, it means that ξ approaches zero. As ξ! 0, (33) will become

_s þ cs ¼ 0 ð45Þ

Table 2. Controller parameters.

Control parameters Values

Constant k1 400

Constant W 0.0012

Constant a 500

Constant b 355

https://doi.org/10.1371/journal.pone.0260480.t002

Fig 13. Tracking of Vpv with respect to Vref under varying irradiance.

https://doi.org/10.1371/journal.pone.0260480.g013
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The homogeneous differential Eq (45) has a solution.

sðtÞ ¼ sð0Þexpð� atÞ ð46Þ

It means that σ will approach zero. The σ convergence to zero certifies the Eq (30) with the solu-
tion reported in (29). Thus, the error converges to zero, which in turn provides us the reference
tracking. Having tracked the reference, the maximum power will be extracted via the Eq (16).

5 Simulation results

To verify the effectiveness and fast-tracking capability of the proposed controller, simulations

are performed in MATLAB/Simulink R2018a environment under certain changes of environ-

mental conditions. The typical parameters of the PV array and buck-boost converter specifica-

tion used in the simulation are given in Table 1. The PV array has been connected to the load

through a non-inverted buck-boost converter controlled by the FFNN based GGSMC. The

simulation results are divided into two subsections. Firstly, the simulations are done with vary-

ing irradiance levels and, secondly, with varying temperature levels. The considered PV array

in this simulation has 16 PV modules (Ns = 4, Np = 4), having 72 cells per module. The details

of buck-boost converter specification and controller parameters detail are given in Table 2.

Note that the trial and error method is used to select the values of controller parameters. In the

process of parameters selection, we tried our best to choose and adjust these parameters on the

premise of satisfying the designed conditions.

Fig 14. PV array power under varying irradiance.

https://doi.org/10.1371/journal.pone.0260480.g014

PLOS ONE Modern control of PV systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0260480 January 20, 2022 19 / 29

https://doi.org/10.1371/journal.pone.0260480.g014
https://doi.org/10.1371/journal.pone.0260480


5.1 Test under varying irradiance

In this test, the temperature is kept constant at 25C˚ while varying the irradiance according to

the following structure.

irrðtÞ ¼

650w=m2; for t � 0:2 sec

850w=m2; for 0:2 sec < t � 0:4 sec

1000w=m2; for t > 0:4 sec

8
><

>:

The reference voltage Vref is generated via FFNN while keeping in view the aforesaid tem-

perature and irradiance profiles. The proposed controller tracks the reference voltage success-

fully, as shown in Fig 13. The corresponding output power of the PV array is also shown in Fig

14 which shows that MPP is achieved without oscillations. The performance of the newly pro-

posed controller is relatively fast (without overshoots) during the variation in the irradiance

profile. Thus, in this test, the proposed controller comes out to be a good candidate.

Fig 15. Tracking of Vpv with respect to Vref under varying temperature.

https://doi.org/10.1371/journal.pone.0260480.g015
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Fig 16. PV array power under varying temperature.

https://doi.org/10.1371/journal.pone.0260480.g016

Fig 17. Tracking of Vpv with respect to Vref under simultaneous variation in temperature and irradiance.

https://doi.org/10.1371/journal.pone.0260480.g017
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5.2 Test under varying temperature

For varying temperature, the irradiance is kept at 1000w/m2 and the temperature is varied as

follows.

temðtÞ ¼

25
�

; for t � 0:2 sec

45
�

; for 0:2 sec < t � 0:4 sec

65
�

; for t > 0:4 sec

8
><

>:

Again, the reference voltage, generated by FFNN for varying temperature levels, is tracked

successfully via the proposed GGSM controller, as shown in Fig 15. The output power of the

PV array is also shown in Fig 16 which shows that MPP is achieved without oscillations.

It is also shown that the proposed controller tracks the MPP during the abrupt variation in

a short time of 0.003 sec.

5.3 Test under simultaneous variation in irradiance and temperature

To show more effectiveness of the proposed work, the simulation results in Fig 17 investigate

the MPPT performance of the proposed algorithm with simultaneous changes in irradiance

Fig 18. Comparison of PV array voltage under varying irradiance.

https://doi.org/10.1371/journal.pone.0260480.g018
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and temperature. In this case, the temperature and irradiance are varied as follows

temðtÞ ¼

25
�

; for t � 0:5 sec

45
�

; for 0:5 sec < t � 0:7 sec

65
�

; for t > 0:7 sec

8
><

>:

irrðtÞ ¼

650w=m2; for t � 0:5 sec

846w=m2; for 0:5 sec < t � 0:7 sec

1000w=m2; for t > 0:7 sec

8
><

>:

From the above three tests, it is clear that the proposed controller provides maximum power

in the case of varying irradiance and temperature. It is also evident that the transients are quite

fast and acceptable. Hence, the proposed control law is a good and appealing algorithm for

extracting maximum power in the variable scenario. The tracking performance of the FFNN

based GGSMC is compared with the standard literature results in the subsequent subsection.

6 Comparison with standard literature results [38]

To effectively demonstrate the performance of the GGSMC, it is compared with backstepping

controller [38]. Both the controllers are compared under varying temperature and irradiance

levels, as shown below.

Fig 19. Comparison of PV array output power under varying irradiance.

https://doi.org/10.1371/journal.pone.0260480.g019
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6.1 Comparison test under varying irridiance

For the same irradiance profile as in Section 6.1, the comparison of both the controllers is

made as shown in Fig 18. It is seen clearly that the proposed controller reaches the MPP in a

minimum time than the backstepping controller (one may see the zoomed view). Similarly,

the proposed controller traces the MPP quickly when the irradiance level is stepped up after

each 0.2 sec. The comparison of the output power of the PV array module with varying irradi-

ance is displayed in Fig 19.

It is evident that the FFNN based GGSMC reaches the MPP rapidly, having low power

losses as compared to backstepping controller [38].

6.2 Comparison test under varying temperature

For the same temperature profile as in Section 5.2, this test is adapted for the comparison of

both controllers. The comparative reference tracking is shown in Fig 20. It can be seen from

the figure that the proposed controller reaches the MPP rapidly than the backstepping at the

start and during the variation in temperature after each interval of 0.2 sec. In Fig 21, the com-

parison of the output power of the PV array module for both the controller shows that the pro-

posed controller provides MPP rapidly with low power losses as compared to the backstepping

controller.

Fig 20. Comparison of PV array voltage under varying temperature.

https://doi.org/10.1371/journal.pone.0260480.g020
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6.3 Comparison test under simultaneous variation in temperature and

irradiance

For varying profiles of temperature and irradiance (shown in Section 5.3), the simulation

results of both controllers are compared. In Fig 22, the comparison of the output power of the

PV array module for both the controller demonstrates that the proposed controller provides

MPP rapidly with low power losses as compared to the reported backstepping controller.

7 Conclusion

Developing efficient and environment-friendly renewable energy systems is necessary to fulfill

the energy demand and reduce environmental pollution. PV is one of such systems which gen-

erates energy under varying temperature and solar radiations. Therefore, in such varying sce-

narios, the maximum power extraction via a maximum power point tracking controller is very

appealing and fascinating. In this work, a nonlinear GGSMC is derived from harvesting maxi-

mum power from a PV array with the help of a DC-DC buck-boost converter. For this pur-

pose, FFNN is used to provide a reference voltage in the presence of varying environmental

conditions. Having developed a reference voltage, a GGSMC is designed to track the generated

reference voltage. The proposed control strategy eliminated the reaching phase, which resulted

in enhanced robustness. The simulation results are developed in MATLAB/Simulink environ-

ment, demonstrating the proposed control’s effectiveness, accuracy, and rapid tracking. The

results are compared with standard results of nonlinear backstepping controllers under abrupt

Fig 21. Comparison of PV array output power under varying temperature.

https://doi.org/10.1371/journal.pone.0260480.g021
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changes in environmental conditions for further validation. Hence, it is concluded that our

proposed control law demonstrates solid fast convergence with enhanced robustness with low

power losses. In a nutshell, the FFNN based GGSMC is an appealing candidate for the PV sys-

tems operations. The future direction of this work includes GSMC based velocity observer

design, adaptive control design against the system parametric variations, the practical imple-

mentation of the proposed controller on PV system, an efficient inverter design to inject har-

monics free power of the PV system to the grid and its integration with the grid as well as

other energy sources like fuel cell energy, biomass energy, etc.
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