PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Haq U, Khan Q, Ullah S, Khan SA,
Akmeliawati R, Khan MA, et al. (2022) Neural
network-based adaptive global sliding mode MPPT
controller design for stand-alone photovoltaic
systems. PLoS ONE 17(1): e0260480. https://doi.
org/10.1371/journal.pone.0260480

Editor: Wei Yao, Huazhong University of Science
and Technology, CHINA

Received: June 20, 2021
Accepted: November 10, 2021
Published: January 20, 2022

Copyright: © 2022 Haq et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the manuscript.

Funding: The author(s) received no specific
funding for this work.

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Neural network-based adaptive global sliding
mode MPPT controller design for stand-alone
photovoltaic systems

Izhar Ul Haq', Qudrat Khan2, Safeer Ullah®', Shahid Ahmed Khan', Rini Akmeliawati®?,
Mehmood Ashraf Khan?, Jamshed Igbal®**

1 Department of Electrical and Computer Engineering, COMSATS University, Islamabad, Pakistan, 2 Centre
for Advanced Studies in Telecommunications (CAST), COMSATS University, Islamabad, Pakistan, 3 School
of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia, 4 Department of
Computer Science and Technology, Faculty of Science and Engineering, University of Hull, Hull, United
Kingdom

* j.igbal@hull.ac.uk

Abstract

The increasing energy demand and the target to reduce environmental pollution make it
essential to use efficient and environment-friendly renewable energy systems. One of these
systems is the Photovoltaic (PV) system which generates energy subject to variation in envi-
ronmental conditions such as temperature and solar radiations. In the presence of these
variations, it is necessary to extract the maximum power via the maximum power point track-
ing (MPPT) controller. This paper presents a nonlinear generalized global sliding mode con-
troller (GGSMC) to harvest maximum power from a PV array using a DC-DC buck-boost
converter. A feed-forward neural network (FFNN) is used to provide a reference voltage. A
GGSMC is designed to track the FFNN generated reference subject to varying temperature
and sunlight. The proposed control strategy, along with a modified sliding mode control,
eliminates the reaching phase so that the sliding mode exists throughout the time. The sys-
tem response observes no chattering and harmonic distortions. Finally, the simulation
results using MATLAB/Simulink environment demonstrate the effectiveness, accuracy, and
rapid tracking of the proposed control strategy. The results are compared with standard
results of the nonlinear backstepping controller under abrupt changes in environmental con-
ditions for further validation.

1 Introduction

Due to the increased usage of electrical and electronic devices, the power demand is growing
every day. The increasing energy demand and environmental pollution worldwide develop fas-
cinations for the introduction of renewable power systems. At the same time, the use of fossil
fuels reduces their reserves. Solar energy is one of the most prominent renewable energy
sources for power generation. It dominates several other renewable energy sources like wind
power, hydro-power, geothermal energy, biofuels, and biomass due to its clean, endless and
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free nature [1, 2]. At the end of 2017, solar power generation has made a recorded history of
adding 98 Giga Watt (GW) to the global installed capacity, making it a total of 402GW [3].
The International Energy Agency (IEA) [4] estimates that by 2050, the photovoltaics (PV) will
provide around 11% of global electricity production and would avoid 2.3 Giga ton (Gt) of CO,
emissions per year.

PV arrays have the advantage of directly converting light energy into electrical energy
through semiconductors [5]. However, the main problem is its low efficiency due to varying
environmental conditions. To increase the efficiency, they must be operated at the maximum
power point (MPP). The operating point of the PV array for maximum power generation is
termed as maximum power point and the voltage at which the PV module can produce maxi-
mum power is named maximum power voltage (or peak power voltage). MPPT is an essential
part of solar power systems; therefore, intensive research work is carried out in this particular
area to develop new and more efficient MPPT techniques [6]. The power characteristics,
shown in Figs 1 and 2 of photovoltaic cells, are nonlinear that vary with the variations in the
environmental conditions [7]. For instance, variation in temperature and irradiance change
the voltage produced as well as the generated current by PV module [8]. As a result, the gener-
ated power also varies. Such variations make maximum power extraction a complex task.

In the context of maximum power extraction, various techniques are used, which are
divided into conventional and soft computing methods. Among the conventional techniques,
perturbation and observation (P&O) [9, 10] and incremental conductance (IC) [11] are the
most widely used techniques because of their simple structure. In the P&O method, the voltage
V and current I from the PV module are measured and the power P is calculated. If the change
in power is greater than zero, i.e. (AP > 0), then it measures the change in voltage. If a positive
change occurs in voltage, the duty command ratio is decreased and if a negative change occurs
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Fig 1. Power characteristic curve under varying irridiance.
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Fig 2. Power characteristic curve under varying temperature.

https://doi.org/10.1371/journal.pone.0260480.9002

in the voltage, then the duty command ratio is increased. If the change in power is less than
zero, i.e. (AP < 0), then it again measures the change in the voltage. If a change in voltage is
positive, the duty command ratio is increased and if the change in voltage is negative, the duty
command ratio is decreased. If power remains the same, i.e. (AP = 0), then it means that MPP
is achieved. When the MPP is achieved, voltage oscillates around the MPP rather than being
steadily situated on it. This is one of the major weaknesses of this technique. Likewise, as the
voltage is tracked occasionally, a large amount of power drops. Similarly, in IC, the maximum
power point occurs when AV/AP = 0 and AI/AP = 0. IC method offers good performance
under rapidly changing atmospheric conditions [11]. It is also capable of knowing that the
MPP has reached. Consequently, no oscillations occur like those which happens in P&O
method [12]. In other words, it is relatively more efficient than P&O method. However, it
requires four sensors to perform the computation; thus, it is expensive and requires more
computational time, which results in power loss (see for instance; [13, 14]). Although IC is rel-
atively faster than P&O it is still slow and inaccurate in case of faster variations in solar irradi-
ance [15, 16]. Moreover, these conventional techniques have no capability to handle partial
shading conditions (PSC), which is a very important issue for PV systems. To address this
problem, many MPPT techniques are proposed in the existing literature like dynamic leader
based collective intelligence (DLCI), memetic salp swarm algorithm (MSSA), etc., [17-19].

In recent years, due to drawbacks of conventional techniques, researchers have been more
attracted by soft computing techniques, which are further classified as bio-inspired methods
and artificial intelligence methods [8, 20, 21]. In Bio-inspired techniques, particle swarm opti-
mization (PSO) [22], ant colony optimization (ACO) [23] and genetic algorithms (GA) [24]
are commonly used. These proposed controllers under varying weather conditions show fast
convergence as compared to conventional methods. The main drawbacks of the Bio-inspired
methods are that they need many parameters such as population size, mutation, selection of
chromosomes and crossover rate. The estimation of these parameters is itself a complex job.
Under varying environmental conditions, all these parameters need to be readjusted; other-
wise, one cannot track MPP correctly. In addition, adaptive/robust control algorithms are
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developed in many control applications. In a robust context, a well-known robust control algo-
rithm, named as sliding mode control (SMC), is designed in comprehensive case studies to
ensure the aforementioned control objectives [25, 26]. However, the conventional SMC may
experience some high-frequency oscillations that are dangerous in realistic applications [27].

Artificial intelligence-based techniques for the MPPT of PV modules include fuzzy logic
(FL) controllers and artificial neural networks (ANN). These techniques have advantages such
as working with variable inputs, no need for exact mathematical modeling, self convergence
and self-learning capabilities [28]. They have adaptive nature for the nonlinear behavior of the
systems. FL MPPT method has an excellent performance as compared to the conventional
techniques [29]. The drawback of the FL MPPT method is that the tracking performance and
the output efficiency are highly dependent on the engineer’s technical knowledge and the
rules-based table. Recently ANN based MPPT techniques are becoming more popular. In [30],
an ANN-based MPPT technique is proposed with the advantages of low computation require-
ment and rapid tracking speed. [31] suggests MPPT technique based on adaptive neuro-fuzzy
inference system (ANFIS). [32] have presented the ANN-based MPPT 2-stage method for
maximum power point. The ANN MPPT controllers have better performance and effective-
ness than the conventional and bio-inspired techniques. Unfortunately, the ANN-based
MPPT methods require months for training, large memory size and periodic tuning with time.

This paper proposes a nonlinear GGSMC to extract maximum power from the PV array by
tracing a reference voltage. The main contributions of this work are listed below.

1. The proposed control algorithm first generates the reference voltage via FFNN under vary-
ing temperatures and irradiances.

2. Then, a non-inverted buck-boost converter, accompanied by an output feedback GGSMC,
is used to track the FFNN generated voltage reference.

3. The modified SMC law eliminates the reaching phase so that the sliding mode exists
throughout the time. Consequently, MPPT is extracted and the system response observes no
high-frequency chattering and harmonic distortions. The overall close loop stability is pre-
sented via Lyapunov stability analysis. Furthermore, the simulation results comparison, with
existing results of the nonlinear backstepping controller under abrupt changes, demonstrates
the effectiveness and faster tracking performance of the proposed SMC over its counterpart.

The rest of the paper is structured as follows. The detail of PV system modeling is given in
Section 1 and modeling of the non-inverted buck-boost converter is presented in Section 2.
The FFNN used to generate the reference voltage and analysis of the proposed control tech-
nique are discussed in Section 3. Simulation results under varying weather conditions are
given in Section 4. In Section 5, the performance of the proposed controller is compared with
the standard nonlinear backstepping approach. Finally, the conclusion and the future work are
presented in Section 6.

2 Modelling of PV module

A solar cell, the building block of the PV array, is a P-N junction semiconductor. Series and
parallel combinations of these solar cells make a PV array. The solar cell is modeled by differ-
ent equivalent circuits such as single diode model, double diode model and with or without
series and shunt resistance [33]. For modeling and simulation purposes, a single diode model
is the most commonly used solar cell model. The detailed equivalent single diode model of a
PV solar cell [33, 34] is shown in Fig 3. The labeled current equations and output voltage are
presented below.
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Fig 3. Single diode model of PV module.
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By applying Kirchhoff’s laws, the overall current across the circuit can be calculated as

I, =NJ, —1,—1, (1)

where I, is the output current of the PV module, I, is the photo current which directly
depends on the irradiance and temperature, N, is the parallel connected solar cells, I, is the
current across the diode and I, is the current passes through the shunt resistance Ry;,. The
detailed presentation of I, Ip and I, is given as follow [34]

I,=

ew + K(T = Tref) S] 2)
ref

where Igcp is the cell short circuit current at reference temperature (T, and solar irradiance

(Syp)» which are 25°C and 1000w/m? respectively, T is the cell temperature and S is the solar

irradiance at current condition and K; is the short circuit current temperature coefficient.
The diode current is expressed by Shockley’s equation as

Vv
I, =N, <expn‘§ - 1) (3)

t

V4R, I} +
=L is the voltage across the

s

where I, is the reverse saturation current of the diode, V,, =
diodeand V, = % is the thermal voltage while N; is the number of cells connected in series,

g =1.6 x 10"’ Cis the electron charge and K = 1.38 x 10™>’ J/k is the Boltzmann’s constant
Invoking the detailed values of Vp and V; in (3), one gets

q(v + RSETI )
ID = Irsz [eXPnKTNL (4)
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The reverse saturation current I, is expressed as

3
T E 1 1
I,=1|— S A - 5
(2 el ()] .

In this expression, 7 is the diode ideality factor, I,,, is the nominal reverse saturation current at
given temperature T, V'is the output voltage of the PV module, and E, = 1.12¢V is the bandgap
energy of the semiconductor used in the PV cell.

The current across shunt resistance Ry, is given as

VAR,

sh Rshm (6)
where R,,, is the series resistance in the PV module, which is produced due to series and paral-
lel joining of the cells of the module and Ry, is the shunt resistance considered due to the leak-
age current across the P-N junction of the cells of the module.

The values of R,,, = 179.94Q and R,;, = 3.1694Q used in MATLAB/Simulink PV module. is
used in our simulation. Incorporating (2), (3), and (6) in (1), a complete PV module for this
output current can be calculated as

S V+R,I V+R,I
IL — NP |:|:ISCR +K](T _ Tref) q( ser L)):| _ ser” L

> | IN 7
1000} ” P{GXP nKTN. R, @

The temperature coefficient of an open circuit voltage for a PV module V,, tells the precise
relation of open-circuit voltage V,. with temperature T specifying how V., changes with
changing temperature.

Ve at variable temperature T is expressed as

Vocr = Voc(l + B(T - 25)) (8)
while 8 = —0.36411 is temperature coefficient which means that V,; decreases at the rate of
0.36411 percent per degree rise in temperature and V,, is the short circuit current at 25C.”

Similarly, the temperature coefficient of short circuit current I, also specifies the depen-
dency of short-circuit current Isc on temperature via the following relation.

I, =I(14aT —25)) 9)

while @ = 0.057006 is temperature coefficient which means that I, increases at the rate of
0.057006 percent per degree rise in temperature and Isc is the short circuit current at 25C.”

3 Modeling of buck boost converter

In this work, a non-inverted Buck-Boost regulator is targeted [35]. It is a cascaded combina-
tion of buck converter followed by a boost converter. The converter is controlled periodically
by the switching period, T whereas; T; = t,, + t,;= These converters are widely used in many
applications such as industrial personal computers (IPCs), point-of-sale (POS) systems and
auto start-stop systems [36]. The circuit arrangement of the non-inverted buck-boost con-
verter is given in Fig 4. It is shown in the figure that V,, is the input voltage from PV, S; and S,
are insulated gate bipolar transistor IGBT switches, L represents the inductance of inductor,
D, and D, are diodes, C; and C, are capacitance of the capacitors and R is the load resistance.
The expression for the inductor L, used in Fig 4, can be computed as follow [37]

L= V"”D 10

where Al = I, — Lnin, D is the duty cycle and f; is the switching frequency.
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Load

Similarly, the final expression for the output capacitor C, carry the form [37]

C, =t p (11)
AV,

where AV, =V_ —V_ | Disthe duty cycle and f, is the switching frequency.
Cy €2, max . min ty y g q y

@

The detailed dynamics of the non-inverted buck-boost converter will be studied next.

3.1 Operating Modes of the buck-boost converter

Before proceeding to the mathematical modeling, the following assumption is made.

Assumption 1 Assume that the converter is operated in continuous conduction mode.

The converter has two operating modes, i.e., Switch ON mode and Switch OFF mode,
which is discussed below:

3.1.1 Switch ON mode. In Switch ON mode, both the IGBT switches S; and S, are ON,
which results in the disconnection of the load. So, the circuit on the left-hand side is shorted
and the inductor charges from the PV voltage. The schematic diagram of the Switch ON mode
is shown in Fig 5. By applying Kirchhoff’s laws, the state-space equations for the Switch ON
mode can be derived as follows.

-1 _
— 0 0
' C IL
va ! Ip T C
Y C

. 1 1

I'L = 0 Z O pv + 0 (12)
v, 1 V,

0 — 0
L RG, |
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Fig 5. Switch ON mode of the non-inverted buck-boost converter.
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3.1.2 Switch OFF mode. In Switch-OFF mode, both the switches S; and S, are off. Now,
in this case, the load is taking current from the inductor through diode D, as shown in Fig 6.
The state-space equations for this mode by applying Kirchhoff’s laws can be obtained as

ST
v, G I, 0
. 1 0
i l=10 = ofl|-v,|+ 13
i : 1+ S (13
Ve, 0 o L L RC,

L G |

Based on the inductor volt-second balance and capacitor charge balance, the overall equa-
tions for both the modes of the non-inverted buck-boost converter are expressed as follow [38]

- }
, — 0 0 I,
Ur - D D 1 I e
L |=]10 = G=|Va|+ 0 (14)
L ‘L L I I
VCZ 0 1 V, (C—L — DC—L)
| RC2 ] 2 2

Note that the duty cycle of a non-inverted buck-boost converter is used to control the out-
put voltage, which is expressed as

Vo
B Vo + Vin (15)

In the case of ideal power transfer, the losses are ignored, so the input power is equal to output
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Fig 6. Circuit diagram of non-inverted buck boost converter.
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power. i.e. P; = P, and the input impedance R;, and output impedance R are related via the fol-

lowing equation.
1-D\’
R, = (—) R (16)
D

To design our control strategy, the model is averaged over one switching period. Conse-
quently, the average value of V,,,, I; and V, is considered as x;, x,, and x3, respectively, and y is
considered as the average duty cycle. Thus,

[xl Xy X3 .“] = [va I ch D]

using the notations, one may get the final state-space form as follows

1 .
X, G 0 0 Ipv —,Uc—zl

. U .

B =10 2 G=D||x]|+ 0 (17)
Xy 0 0 —-L [Lx (& —ne)

This system can also be written in a very compact form as follows
x = F(x,u)
and
y=X%

as the output voltage. In the subsequent section, the control design strategy is presented.
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4 Reference voltage generation and design of the controller

This section presents the nonlinear controller design, which will be used in feedback mode to
track an FFNN based generated reference signal (V... Therefore, at first, the reference signal
generation is presented and then the control law designed is outlined.

4.1 FFNN based estimation of reference voltage V¢

In order to estimate the nonlinear mapping between the independent variables, i.e., tempera-
ture and irradiance, and the depending variable V,.san FENN [39], will be used. The neural
networks (NN) learn to create a mapping between these independent variables and dependent
output [40]. The training set in NN for this nonlinear approximation will include the tempera-
ture, variable irradiance and the reference voltage.

Two-layer FFNN is efficient for any particular nonlinear estimation. Thus the proposed
scheme with the schematic diagram, shown in Fig 7, is used for the estimation of the reference
voltage (V,.p), which will be tracked via the GGSMC to get MPP under varying irradiance and
temperature.

The temperature (one of the network inputs) is varied from 25C° to 75C" with an incre-
ment of 2C°. In contrast, the irradiance (second input of the network) is varied from (600
— 1000)w/m” with an appropriate increment of 1w/m?. The information in the input layer is
multiplied by scalar weighted, V;; with a biased value bj,. This input layer computes its net acti-
vation as

a; = Zij‘Pi + bju (18)
=1

wherej=1,2,3...., 1, represents the number of neurons in the hidden layer, p; is the input of
the input node i, bj, is the respective reconstruction error or bias. The output of the hidden
layer is given by

Vi :f(“j> (19)

Output layer

X
Vref

Fig 7. Neural network for V,.rgeneration.

https://doi.org/10.1371/journal.pone.0260480.g007
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where fis the activation function which is chosen to be tanh. The output layer computes its net
activation as

Iy
a = Zwkjyi + by, (20)
=

where k = 1 is the number of neurons in the output layer, wy; is scalar called weight between
the k™ output layer node and the j hidden layer node. The output layer produces an output
Vieras a function of its net activation as

Vi =f(a) (21)

The output of the estimated model can be expressed as the function of inputs, the weights
between input and hidden layer and the weights between the hidden and the output layer as
described by

Vref :f<i:wk,f (i:vﬂpz + bjo) + bko) (22)

For two-layer FFNN, as shown in Fig 7, consider /,, and k; are the number of neurons in
layer1 and layer2, respectively. So the above equations can also be presented in the vectors
form as

Vref :f_(WTf_(VT[) + bv) + bw) (23)
More explicitly, this expression can be expressed as follows.

V= (Wtanh (Vp+b,)+b,) (24)

After selection of the network structure, the network training is done by minimizing the cost
function, which is a function of network weights. The cost function is generally characterized
as follows

lo

Vo) =530~ 2)° (23)
i=1

where t, is the target output at the k" output node and J( Vii» wy) is the mean square error

(MSE).

The levenberg-Marquardt training algorithm is used for updating the weights of the FENN.
The MSE criterion or the maximum number of iterations decides the termination of the itera-
tive process. A range of values of the network parameters has been varied systematically to
achieve a reasonable estimate of the training data. The varying network parameters are the
number of hidden neurons in the hidden layers, with a learning rate range and the number of
iterations is used for the estimation of V.

The final FFNN structure for V,.shas ten hidden layer neurons and the learning rate is 0.1.
This choice of the network parameters yields a good match between the actual and the pre-
dicted values.

4.1.1 Simulation results of FENN. The reference voltage is Vs generated for varying lev-
els of temperature and irridiance as shown in Fig 8. The performance in terms of MSE, during
the estimation of Vg is shown in Fig 9. The regression plot of V,.¢is shown in Fig 10. The esti-
mates of V,are plotted against their target values in this figure. The regression value of R = 1
shows that the estimates are very close to the target values, indicating the success of FFNN
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https://doi.org/10.1371/journal.pone.0260480.9008

training. The estimation error histogram associated with V,.ris shown in Fig 11. It reveals a

very small error with an average very close to zero.

By providing V,.sby the FNN, the GGSM controller is then designed to steer V,, to V,sto

get maximum power from the PV array.

4.2 Generalized global sliding mode control

To get maximum power from the PV module, a nonlinear GGSMC is designed to steer V,, to

Ve by varying the duty cycle, i.e., y

Before the control law design, the system (17) can be transformed into the following canon-

ical form.

Y1 =D

. 1. . .
Yy = E[Ipv — UX, _x2:u] +A(yl?y27t)

1

(26)

where y; =x,and y, = x, = ICLI — pg-and A(yy, y, 1) is uncertainty which is assumed to be

matched and bounded i.e. |A(y,, ,, t)| < Kwith Kis a positive constant.

This system (26) is a controllable canonical form in terms of the output and its derivative
and is considered very convenient for the control design. The ultimate control objective is the
tracking of the reference voltage V.. The maximum power can be obtained by tracking this

reference voltage. Therefore, the tracking error is the mismatch between the actual and
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Fig 9. Mean square error convergence during the NN estimation.

https://doi.org/10.1371/journal.pone.0260480.9009

reference voltages, i.e.,
=)=V
where y,.r= V... Based on this error, a new variable o is defined as follows
g=¢é+ae—f(1) (27)

Where the function f{(t), called the forcing function, must be designed to meet the following
three conditions so that =0 [41].

f(0) = €, + ae,
f(t) = 0ast — oo
f(#)has a bounded first time derivative

Here €, and e, are the velocity and position errors respectively at ¢ = 0. In GGSMC the function
f(t) carry the following expression

f(t) = [(€, + ae,) cos bt — be, sin bt|exp(—at) (28)
where a and b are positive constants. This forcing function satisfy all the above three condi-

tions. The mathematical structure of (27) is made in such a way that it will result in the expo-
nentially stable error convergence.
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Fig 10. The regression plots during the estimation of V,
https://doi.org/10.1371/journal.pone.0260480.g010

when ¢ = 0 then the solution of the closed loop system will be non homogeneous differential
equation é + ae — f(t) = 0 will become

e(t) = <eo cos bt + 20 J;aeo sin bt) exp(—at) (29)

This solution can also be obtained by solving the forthcoming second-order system.
€+ 2ae+ (a>+b*)e=0 (30)

Where é(0) = é, and e(0) = e are chosen as initial conditions.
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Fig 11. The error histogram during the estimation of Vs

https://doi.org/10.1371/journal.pone.0260480.9011

This system displays that both the poles of the system are at —a+bj. This also indicates that
the system’s dynamics in sliding mode do not reduce, which implies that the system experi-
ences integral sliding mode.

The time derivative of (27) along system (26) becomes

1.

1
LI . . .. PV
O-_a Ipv#x2x2:u:|_‘xref+a|:cl:u'

)

& | 400 61

At this stage, the main interest is that the system should evolve with full states. Thus, a propor-
tional-integral surface in term of o can be defined as follows

E=0+ cjg a(t)dr (32)
The time derivative of £ along (32) becomes

é:(}'—kca (33)

Now putting the values of o, & and then posing & = 0.
The expression of the control law, which governs the system dynamics exactly on the mani-
fold &£ = 0 can be calculated as follows

. C1 Ipv x2 . 1 - . . /
=g 22 P } — % —fl(t 34
uequ X, |:a{cl H C1 xref + C] { pv Hxy 'xref f( ) ( )

Since the practical system always operates under uncertainties, therefore, the equivalent con-
trol alone will be no more capable of enforcing sliding mode. So, the overall sliding mode
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https://doi.org/10.1371/journal.pone.0260480.g012

enforcement law appear as follows

u= + Uy

equ
while
Uy, = —k, (& + Wsign(&))

Where 0 < W < 1. The schematic diagram of the designed control technique is shown in
Fig 12.

4.3 Stability analysis

The close loop stability, i.e., the sliding mode enforcement and the actual states’ convergence
to desired equilibrium points, can be confirmed by stating the following theorem.

Theorem 1 The sliding mode will take place along the manifold (32) by the control law of the
(35), and hence the tracking will happen if the switching gain is chosen larger than the bound of
the uncertainty i.e.

k, > |A(y1>y27t)‘ +1n

and, in addition, if the internal dynamics are asymptotically converging to equilibrium.

Proof 1 We prove the theorem by first proving the asymptotic convergence of the internal
dynamics since a two-step-based input-output form (26) was developed. This approach engages
the first two dynamics equation of the system (17); thus, without loss of generality, the internal
dynamics are governed by the last dynamic equation of (17), i.e.,

1 X, X,
S (37)
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Since x1, x, are directly affected by the controlled input y, so, the zero dynamics can be obtained

by putting x,, x, and p = 0, one may get (see for details [42]).

1

Xy =— R_C2x3

(38)

Since, R and C, are positive plant typical parameters, therefore, R—éz will always remain positive.
This confirms that the system (38) has poles in the left half-plane (LHP) at — R%} Hence (38) is

the stable exponential system which implies that the system under study is the minimum phase.
Now, at this stage, we are ready to confirm sliding mode establishment. A Lyapunov function, in

terms of the sliding variable, is defined as follows.

L.,
V==
f

The time derivative of this function along (34) becomes
V = ¢E =6+ co)
Using (31) and (35) (with components given in (34) and (36), one may get

V = &(—k, (& + Wsign()) + A)
V< —k & =k WIE+[E]A|

V< k& — [E|(k,W — |A])
This expression remains true, i.e., negative definite if

KW= [A] > >0

(39)

kW >n+|Al (42)
Table 1. PV array parameters and buck-boost converter specification.
Parameters Values
Maximum power 1555W
Cells per module 72
Open circuit voltage 165.8 V
Short circuit current 17.56 A
Vipp 102.6 V
Loupp 15.16 A
Input capacitor C; 1x107°F
Output capacitor C, 48x107°F
Inductor L 20x 107 H
Load R 50 Ohm
https://doi.org/10.1371/journal.pone.0260480.t001
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Table 2. Controller parameters.

Control parameters Values
Constant k, 400
Constant W 0.0012
Constant a 500
Constant b 355
https://doi.org/10.1371/journal.pone.0260480.t002
using (41) and (42), one may get
: ()
V < —k2V —\/21V2
1
(44)

V+k2V+V2qV2 <0

The differential inequality is a fast finite time converging, which forces V to zero and when V

approaches zero, it means that & approaches zero. As £ — 0, (33) will become

6+co=0

(45)
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Fig 13. Tracking of V,,, with respect to V, cunder varying irradiance.
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https://doi.org/10.1371/journal.pone.0260480.9014

The homogeneous differential Eq (45) has a solution.
o(t) = a(0)exp(—at) (46)

It means that o will approach zero. The o convergence to zero certifies the Eq (30) with the solu-
tion reported in (29). Thus, the error converges to zero, which in turn provides us the reference
tracking. Having tracked the reference, the maximum power will be extracted via the Eq (16).

5 Simulation results

To verify the effectiveness and fast-tracking capability of the proposed controller, simulations
are performed in MATLAB/Simulink R2018a environment under certain changes of environ-
mental conditions. The typical parameters of the PV array and buck-boost converter specifica-
tion used in the simulation are given in Table 1. The PV array has been connected to the load
through a non-inverted buck-boost converter controlled by the FFNN based GGSMC. The
simulation results are divided into two subsections. Firstly, the simulations are done with vary-
ing irradiance levels and, secondly, with varying temperature levels. The considered PV array
in this simulation has 16 PV modules (Ns = 4, Np = 4), having 72 cells per module. The details
of buck-boost converter specification and controller parameters detail are given in Table 2.
Note that the trial and error method is used to select the values of controller parameters. In the
process of parameters selection, we tried our best to choose and adjust these parameters on the
premise of satisfying the designed conditions.
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https://doi.org/10.1371/journal.pone.0260480.g015

5.1 Test under varying irradiance

In this test, the temperature is kept constant at 25C° while varying the irradiance according to
the following structure.

650w/m?,  for t < 0.2 sec
irr(t) = < 850w/m?,  for 0.2sec <t < 0.4 sec
1000w/m?, for ¢ > 0.4 sec

The reference voltage V,.ris generated via FFNN while keeping in view the aforesaid tem-
perature and irradiance profiles. The proposed controller tracks the reference voltage success-
fully, as shown in Fig 13. The corresponding output power of the PV array is also shown in Fig
14 which shows that MPP is achieved without oscillations. The performance of the newly pro-
posed controller is relatively fast (without overshoots) during the variation in the irradiance
profile. Thus, in this test, the proposed controller comes out to be a good candidate.

PLOS ONE | https://doi.org/10.1371/journal.pone.0260480 January 20, 2022 20/29


https://doi.org/10.1371/journal.pone.0260480.g015
https://doi.org/10.1371/journal.pone.0260480

PLOS ONE

Modern control of PV systems

x 104

2.5

1.5 25k

PV output power (watt)

60 £00

Fig 16. PV array power under varying temperature.

0.5 0.6 0.7 0.8 0.9
Time (seconds)

https://doi.org/10.1371/journal.pone.0260480.g016

500 ———————————

VPV(ref)

450 1

400 i

7
wn
=

[
>
=

[\*]
=
=

150
100

50

PV Voltage (V)
[\*]
wn
(—]
e e Rl S L) S ) P = e o S L

pv(GCSMC)

va b by b by v e Iy

0 PR SN TR T SN T T S AN TN T SN S N ST TN ST S AN T T SN T T ST S ST N SO SN T SN S [N T TN ST S AN T T SN T T T S R

0 0.1 0.2 0.3

0.4 0.5 0.6 0.7 0.8 0.9
Time (seconds)

Fig 17. Tracking of V), with respect to V,sunder simultaneous variation in temperature and irradiance.

—

https://doi.org/10.1371/journal.pone.0260480.9017

PLOS ONE | https://doi.org/10.1371/journal.pone.0260480 January 20, 2022

21/29


https://doi.org/10.1371/journal.pone.0260480.g016
https://doi.org/10.1371/journal.pone.0260480.g017
https://doi.org/10.1371/journal.pone.0260480

PLOS ONE

Modern control of PV systems

500 T

5.2 Test under varying temperature

For varying temperature, the irradiance is kept at 1000w/m” and the temperature is varied as
follows.
257, for t < 0.2sec
tem(t) = ¢ 45, for 0.2sec < t < 0.4 sec
657, for t > 0.4sec

Again, the reference voltage, generated by FFNN for varying temperature levels, is tracked
successfully via the proposed GGSM controller, as shown in Fig 15. The output power of the
PV array is also shown in Fig 16 which shows that MPP is achieved without oscillations.

It is also shown that the proposed controller tracks the MPP during the abrupt variation in
a short time of 0.003 sec.

5.3 Test under simultaneous variation in irradiance and temperature

To show more effectiveness of the proposed work, the simulation results in Fig 17 investigate
the MPPT performance of the proposed algorithm with simultaneous changes in irradiance
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Fig 18. Comparison of PV array voltage under varying irradiance.

https://doi.org/10.1371/journal.pone.0260480.9018
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and temperature. In this case, the temperature and irradiance are varied as follows

25", for t < 0.5 sec
tem(t) =< 45, for 0.5sec <t < 0.7 sec
65, for t > 0.7 sec

650w/m?,  for t < 0.5 sec
irr(t) = < 846w/m?,  for 0.5sec < t < 0.7 sec
1000w/m?, for ¢ > 0.7 sec

From the above three tests, it is clear that the proposed controller provides maximum power
in the case of varying irradiance and temperature. It is also evident that the transients are quite
fast and acceptable. Hence, the proposed control law is a good and appealing algorithm for
extracting maximum power in the variable scenario. The tracking performance of the FENN
based GGSMC is compared with the standard literature results in the subsequent subsection.

6 Comparison with standard literature results [38]

To effectively demonstrate the performance of the GGSMG, it is compared with backstepping
controller [38]. Both the controllers are compared under varying temperature and irradiance
levels, as shown below.

4
x 10
3 T T T T T T T T T
- Back-stepping
Proposed controller(GGSMC)

25
(3
«
£ 2} -
.
5 =
3 \
[~ /
(=7 | q
~Nd |
j=3!_1.5 x 10 =
= 1.9
5
E 1.8 /
B 1 1.7 i
>
4 1.6

1.5 y
0.01 0.02 0.03 0.04
0.5 -
0 1 1 L 1 1 1 1 L 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time(sec)
Fig 19. Comparison of PV array output power under varying irradiance.
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6.1 Comparison test under varying irridiance

For the same irradiance profile as in Section 6.1, the comparison of both the controllers is
made as shown in Fig 18. It is seen clearly that the proposed controller reaches the MPP in a
minimum time than the backstepping controller (one may see the zoomed view). Similarly,
the proposed controller traces the MPP quickly when the irradiance level is stepped up after
each 0.2 sec. The comparison of the output power of the PV array module with varying irradi-
ance is displayed in Fig 19.

It is evident that the FFNN based GGSMC reaches the MPP rapidly, having low power
losses as compared to backstepping controller [38].

6.2 Comparison test under varying temperature

For the same temperature profile as in Section 5.2, this test is adapted for the comparison of
both controllers. The comparative reference tracking is shown in Fig 20. It can be seen from
the figure that the proposed controller reaches the MPP rapidly than the backstepping at the
start and during the variation in temperature after each interval of 0.2 sec. In Fig 21, the com-
parison of the output power of the PV array module for both the controller shows that the pro-
posed controller provides MPP rapidly with low power losses as compared to the backstepping
controller.
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Fig 20. Comparison of PV array voltage under varying temperature.
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Fig 21. Comparison of PV array output power under varying temperature.

https://doi.org/10.1371/journal.pone.0260480.9021

6.3 Comparison test under simultaneous variation in temperature and
irradiance

For varying profiles of temperature and irradiance (shown in Section 5.3), the simulation
results of both controllers are compared. In Fig 22, the comparison of the output power of the
PV array module for both the controller demonstrates that the proposed controller provides
MPP rapidly with low power losses as compared to the reported backstepping controller.

7 Conclusion

Developing efficient and environment-friendly renewable energy systems is necessary to fulfill
the energy demand and reduce environmental pollution. PV is one of such systems which gen-
erates energy under varying temperature and solar radiations. Therefore, in such varying sce-
narios, the maximum power extraction via a maximum power point tracking controller is very
appealing and fascinating. In this work, a nonlinear GGSMC is derived from harvesting maxi-
mum power from a PV array with the help of a DC-DC buck-boost converter. For this pur-
pose, FFNN is used to provide a reference voltage in the presence of varying environmental
conditions. Having developed a reference voltage, a GGSMC is designed to track the generated
reference voltage. The proposed control strategy eliminated the reaching phase, which resulted
in enhanced robustness. The simulation results are developed in MATLAB/Simulink environ-
ment, demonstrating the proposed control’s effectiveness, accuracy, and rapid tracking. The
results are compared with standard results of nonlinear backstepping controllers under abrupt
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changes in environmental conditions for further validation. Hence, it is concluded that our
proposed control law demonstrates solid fast convergence with enhanced robustness with low
power losses. In a nutshell, the FENN based GGSMC is an appealing candidate for the PV sys-
tems operations. The future direction of this work includes GSMC based velocity observer
design, adaptive control design against the system parametric variations, the practical imple-
mentation of the proposed controller on PV system, an efficient inverter design to inject har-
monics free power of the PV system to the grid and its integration with the grid as well as
other energy sources like fuel cell energy, biomass energy, etc.
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