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Abstract 

This paper presents a robust scheme for fixed-time tracking control of a multirotor system. The aircraft is subjected to matched 

lumped disturbances, i.e., unmodeled dynamics, parameters uncertainties, and external perturbations besides measurement noise. 

Firstly, a novel Nonlinear Homogeneous Continuous Terminal Sliding Manifold (NHCTSM) based on the weighted homogeneity 

theory is presented. The sliding manifold is designed with prescribed dynamics featuring Global Asymptotic Stability (GAS) and 

fixed-time convergence. Then, a novel Fixed-time Non-switching Homogeneous Nonsingular Terminal Sliding Mode Control 

(FNHNTSMC) is proposed for the position and attitude loops by employing the developed NHCTSM and an appropriate reaching 

law. Moreover, the control framework incorporates a disturbance observer to feedforward and compensate for the disturbances. 

The designed control scheme can drive the states of the system to the desired references in fixed-time irrespective of the values of 

the Initial Conditions (ICs). Since the existing works on homogeneous controllers rely on the bi-limit homogeneity concept in the 

convergence proofs, the estimate of the settling-time or its upper-bound cannot be given explicitly. In contrast, this study employs 

Lyapunov Quadratic Function (LQF) and Algebraic Lyapunov Equation (ALE) in the stability analysis of both controller and 

observer. Following this method, an expression of the upper-bound of the settling-time is explicitly derived. Furthermore, to assure 

the Uniform Ultimate Boundedness (UUB) of all signals in the feedback system, the dynamics of the observer and controller are 

jointly analyzed. Simulations and experiments are conducted to quantify the control performance. The proposed approach achieves 

superior performance compared with recent literature on fixed-time/finite-time control and a commercially available PID controller. 

The comparative results witness that the developed control scheme improves the convergence-time, accuracy, and robustness while 

overcoming the singularity issue and mitigating the chattering effect of conventional SMC. 

     Keywords: Quadrotor aircraft; Trajectory tracking control; Fixed-time stability; Bounded settling-time; Weighted 

homogeneity; Nonsingular terminal sliding mode control; Real-time experiment. 

Nomenclature 

General-purpose mathematical symbols and notations 

≈, ≝, ≡ Is approximately equal to, is by definition equal to, 
is equivalent to 

ℝ, ℝ# Set of the real numbers, %-dimensional state space 

ℝ& ℝ& ≝ {x ∈ ℝ: x > 0} , is the set of positive real 
numbers 

(̇, (̈ First and second derivatives of a given entity ( 

+- Space of continuously differentiable functions  

|⋅| Absolute value in ℝ 
‖⋅‖1 , ‖⋅‖  2 -norm on ℝ# defined for a vector v ∈ ℝ#  as 

‖v‖1 ≝ (∑ |v5|1#
56- )- 1⁄ . In particular,  ‖v‖ stands

for the 2-norm

x(0) = x9 Initial Condition (IC) of a given system at ; = 0 

exp(⋅) Exponential function.∀x ∈ ℝ, exp(x): ℝ → ℝ, x ↦

AB, where the base A = 2.71828 …

sx, cx, tx sx ≝ sin x, cx ≝ cos x, and tx ≝ tan x 

x ↦ sign#(x) sign#(x) ≝ |x|#sign(x) for any x ∈ ℝ and & ∈ ℝ'

sign(⋅) Standard signum function, where

sign(x) = 1  if x > 0 , sign(x) = 0  if x = 0 , and

sign(x) = −1 if x < 0 

,  Identity matrix 

-./2(3), -.45(3)  Minimum and maximum eigenvalues of a matrix 

3 ∈ ℝ6×6 

diag(a7, a9, … , a2), 

a2 ∈ ℝ  

Diagonal matrix 

:, ;, :?, :@ Time variables 

A Subscript indicating the A -th element of a given 
vector quantity 

A = 1, BCCCCC Denotes a sequence of B element A = 1, … , B  

Notation for the rest of the manuscript 

E ≝ (DF , GF , HF , IF)  Earth-fixed (inertial) frame ‘E-frame’ 
B ≝ (!" , #" , $" , %") Body-fixed frame ‘B-frame’ 

ξ' ≝ [# $ %]'
* Aircraft position in E-frame, m 

+' ≝ [-. -/ -0]'
* Linear velocities of the vehicle, m/s  

1" ≝ [2 3 4]"
* Aircraft attitude (Euler angles) in B-frame, rad 

1̇" ≝ [2̇ 3̇ 4̇]"
* Attitude rates, rad/s 

6" ≝ [7 8 9]"
* Angular velocities, rad/s  

:
;<→>̇<
?@ (1")

∈  ℝE×E 

Skew-symmetric matrix, i.e., :
;<→>̇<
* = −:;<→>̇<,

describing the relationship between 1̇"and 6" 

R"→' ∈  ℝE×E Rotation matrix from B-frame to E-frame 

HI
", HJ

' , HK
' ∈  ℝE Total lift force, gravity force, and aerodynamic drag 

force, respectively, N 
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� 
! , �"

!, �#
� ∈  ℝ#  Motors torque, aerodynamic friction torque, and 

gyroscopic torque, respectively, N.m 

$%
& ≝ ()

*+,, -%
� ≝

(.
*+, ∈  ℝ# 

External acceleration disturbances acting on the 

quadrotor’s translational and rotational 
accelerations dynamics, respectively, e.g., wind, 

m/s2, rad/s2 

/ ≝
diag0/11, /33, /445 ∈
ℝ6

#×#  

Moments of inertia matrix, kg.m2 

g = 9.81 m/s< Gravitational acceleration constant 

> Total mass of the quadrotor, kg  

?@ ≝
diag0A1, A3, A45 ∈
ℝ6

#×#  

Diagonal aerodynamic drag matrix 

B.
≝ [BC BD BE]�

F  

Control inputs (control torques) for Euler angles, 
i.e., roll, pitch, and yaw, N.m 

B4 Thrust control (total lift force), N 

/G ∈ ℝ6 Inertia of the rotor, kg.m2 

HC , HD, HE ∈ ℝ6 Aerodynamic friction coefficients 

IJ , K = 1,4MMMM Angular speed of the rotors, rad/s 

H%, HN ∈ ℝ6 Air-drag and thrust coefficients, N/(m/s)2, N/(rad/s)2  

O ∈ ℝ6 Length of the quadrotor arm, m 

PJ ∈ ℝ6, K = 1,4MMMM  Thrust force of the K-th rotor, N 

QR
≝ IS −  I< + I#
− IV 

Overall residual angular velocity of the rotor, rad/s 

W Notation symbolizes the system’s parameters 

X, ∆ Superscripts indicating nominal and uncertain parts 

of the system’s parameters W 

(.
Z\^, (_

Z\^ ∈  ℝ# Internal unmodeled dynamics 

(.
`Z^, (_

`Z^ ∈  ℝ# Total lumped disturbances, including unmeasurable 
external disturbances and internal disturbances 

(unmodeled dynamics and parametric uncertainties)  

x, b. , b), cS, c<, xM, e State vectors 

fS, f< Vectors of the controlled states, fS ≝
[h j l]�

F , f< ≝ [n o �] 
! 

"#
$(%&, ')

$ , *), 

-#
$('&

$ , *) 

Nonlinear functions characterizing attitude 
dynamics 

./ ≝ [.1 .2 .3]! Function that describes the coupling between 

rotational and translational motions 

45(*), ξ5(*) Desired reference signals 

7)
#(*), 7)

/(*) Attitude and position tracking errors 

7&
#(*), 7&

/(*) Tracking errors dynamics 

8# , 8/ Convergence-time of attitude and position tracking 

errors, s 

8#
9:;, 8/

9:; Upper-bounds on 8#  and 8/, respectively 

8= , 8=
9:;   Convergence-time of the roll states and its upper 

bound  

8>, 8>
9:; Convergence-time and its upper bound 

8), 8)
9:; Convergence-time and its upper bound 

8?, 8?
9:; Convergence-time and its upped bound during the 

reaching phase of the sliding motion 

8@9, 8@9
9:; Sliding-time during the sliding mode  

A8BC,/, 8BC,/
9:;D,  

A8BC,# , 8BC,#
9:;D 

Convergence-time of the observers and related 

upped-bounds 

E Sliding manifold 

F, F;G
, F# , F/, H Sliding surfaces 

I, J, I# , J# , I/, J/ Intermediate variables 

K)
;G , K&

;G , KL)
;G , KL&

;G ,  
K)

# , K&
# , KL)

# , KL&
# , K)

/, K&
/ , 

KL)
/ , KL&

/ , M), M&, M̅), M̅&, 
M, M̅, O), O&,KP

;LQ , KLP
;LQ 

Positive control design parameters 

� 
!" , �#

!" , �
 

!$
, �

#

!$
 Positive control design parameters of the reaching 

law 

%, & Matrices to represent a linear system in state-space 

form, % ∈  ℝ*×* , & ∈  ℝ* 

+- , +./ , +0 Control inputs for some given systems 

1, -, 0, 10 Variables of Lyapunov Functions (LFs) 

2 (1), 2 (-),

2#(1), 2#(-), 

25(65), 

2(65 , 7 
5 , 7#

5), 

20(0), 20(10) 

LFs 

% , 8 
-, 9 

- , %#, 8#
-, 9#

- , 

%0 , 80
:
, 90

:
, 80

5, 90
5, 

8 
./ , 9 

./ , 8#
./ , 9#

./  

Matrices for constructing the ALEs 

; , ;#, ;<, = , =#, =<, =0 Degrees of homogeneity  

>? , >?,0 , (@ = 1, C/////) Weights of homogeneity  

D , D#, D0 ∈ ℝE  Positive constant 

F ∈ ℝE  Positive number 

G ∈ ℝE Arbitrarily small positive constant 

+H
5 Reaching control 

+IJ
5  Equivalent control 

K, L ∈ ℝE Positive exponents 

K/, L̅ ∈ ℝE Positive constants  

NO5
PQR, NO:

PQR ∈  ℝ<  Estimates of the lumped disturbances N5
PQR, N:

PQR 

S:
T ∈  ℝ< Desired virtual controls of the position states 

7 
UV, 7#

UV, 7<
UV Observation error 

WX, YX ∈ ℝ Bounded positive constants 

N̅5 , N̅: ∈ ℝE Upper-bounds on the lumped disturbances 

N5
PQR, N:

PQR 

Z([) 
 

Switching function defined as Z([): [0,∞) → {0.1}, 

Z([) = 0 if [ ≤ cd, Z([) = 1 if [ > cd, where cd is 
switching time 

f̅  Small positive time constant 

g 
:
, g#

:
, g<

:
  Estimates of ξ, i and N:

PQR, respectively, i.e., g 
:

≡

ξO, g#
:

≡ ik, g<
:

≡ NO:
PQR 

l� ,  � , !�
"
, !̅�

"
, ($ =

1,3%%%%), &%,  ̅, '*, '+ 

Positive parameters for observer design 

-./

0
 A Hurwitz matrix used for observer’s gains 

selection 

24,", 56
"
 Velocity of the Dryden wind model. Coefficient 

related to the Dryden wind 

1 Introduction 

1.1 Background Motivations and Context of the Study 

Quadrotors are the most popular and useful kind of 

Unmanned Aerial Vehicles (UAVs) owing to their particular 

flight mode, variety of sizes, and high maneuverability. These 

aircraft have been widely used for solving complex missions [1] 

[2] [3]. The research related to the quadrotors and their 

applications is an active and emerging domain in the scientific 

community related to aerospace, robotics, mechatronics, and 

control engineering practice. Nevertheless, despite the 

numerous merits and advantages of the quadrotors UAVs, they 

have some critical drawbacks related to stabilization and 

control. In practice, these aircraft are inevitably affected by 

various disturbances induced by parametric uncertainties, 

unmodeled dynamics, wind gusts, and load perturbations [4] [5]. 

This leads to great difficulties in tracking and control. Notably, 

Cartesian trajectory tracking is a fundamental task for the 

operation of the autonomous quadrotors. Substantially, since the 

quadrotor exhibits underactuated dynamics, the control of the 

position states is realized through the stabilization of the attitude 

states. The strongly coupled and highly nonlinear nature of the 

quadrotor’s dynamics further makes the design of the control 

system challenging [6]. Hence, the autonomous flight of 
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quadrotor aircraft requires an adequate and reliable flight 

control algorithm to achieve stability and high performance, 

thus, fulfilling the mission requirements. Convergence-time, 

disturbance rejection, and control precision are primary decisive 

features for the control algorithm during flight missions [1]. 

Substantially, convergence-time should be carefully addressed 

in the control design since it is a crucial factor for some 

applications of the quadrotors. This distinguishing feature is 

more prominent in the cooperative control of multi-agent 

systems, notably for the formation control of the quadrotors 

required to converge to the desired spatial formation pattern 

quickly. Up to date, fixed-time convergence is considered as the 

ultimate convergence rate for dynamical systems [7]. 

Unfortunately, linear control seems unable to achieve fixed-time 

convergence, robustness, and precision at the same time. Thus, 

it is natural to discuss which control methodology can achieve 

all these features simultaneously. To this end, this study aims to 

investigate the combination of the weighted homogeneity theory 

and SMC theory. Such procedure allows attaining the foregoing 

objective while avoiding chattering and singularity problems 

inherent in classical SMC. Ultimately, the homogeneity 

property allows preserving the fast (finite/fixed) convergence 

feature besides robustness and chattering alleviation. 

However, another pertinent problem consists in estimating 

the settling-time for the homogeneous-based control laws. 

Mathematical proofs based on the bi-limit homogeneity 

approach are widely used [8] [9] [10] [11] [12]. Nevertheless, 

these proofs are limited since the bi-limit homogeneity concept 

cannot estimate the convergence-time or its upper bound. 

Besides the above crucial problems, another critical issue should 

be addressed. SMC is known to be robust against parameters 

uncertainties, modeling errors, and matching disturbances. 

Nonetheless, the control performance may be threatened in the 

presence of strong external disturbances acting on the quadrotor. 

Hence, to deal with this shortcoming, an Active Disturbance 

Rejection Control (ADRC) approach is developed in this study 

to reject the strong lumped disturbances and thus preserve the 

nominal control performance.  

As a result, the present manuscript investigates the design of 

a novel flight-control system that is based on homogeneous 

SMC. This aims to address the robust tracking control problem 

for the four-rotor aircraft while ensuring good flight 

performance regarding the convergence-time, disturbance 

rejection, and control precision. 

1.2  Literature Review of Related Works 

Scientific literature reports various linear control laws for 

trajectory tracking of a quadrotor aircraft, such as Proportional 

Integral Derivative (PID) and Linear Quadratic Regulator 

(LQR) [13]. However, linear control laws are known to 

demonstrate adequate performance only in the close vicinity of 

the equilibrium point around which the quadrotor model is 

linearized. Moreover, linear controllers are sensitive to model 

nonlinearities and strong disturbances. In reality, the quadrotor 

operates in challenging flight environments and may perform 

aggressive movements leading to exhibit a strong nonlinear 

response. Thus, the linear control laws are incapable of ensuring 

the desired performance consistently during flight operating 

modes. Fortunately, modern control has the ability to address 

shortcomings of the linear control counterpart by designing 

nonlinear control laws to ensure stable and safer flights for the 

aircraft throughout the mission. 

Recently, Variable Structure Control (VSC) such as SMC has 

attracted considerable interest in designing robust controllers for 

a quadrotor system. Given the nonlinear, uncertain, and 

perturbated quadrotor dynamics, the SMC control laws are 

considered efficient and appropriate candidates [14] [15]. Such 

a method is known for its unparalleled advantages, such as 

design simplicity and robust treatment of disturbances and 

modeling uncertainties [16]. SMC-based control law consists of 

two key steps. The first step involves the design of a sliding 

manifold as per the desired dynamics, while the control law is 

designed in the second step. The control law is designed in such 

a way that the states of the system approach the sliding surface 

and remain there, finally converging to the origin [17]. Many 

research works recently reported in the literature deal with the 

disturbances on a quadrotor aircraft using SMC-based robust 

controllers [18]. Research in [19] proposes an SMC-based 

control law for a quadrotor’s attitude control system. 

Backstepping SMC-based laws are presented in [20] and [21] to 

stabilize the inner attitude loop of a multirotor aircraft. 

However, these works utilize traditional (conventional, linear) 

SMC which suffers from the so-called chattering effects. This 

phenomenon deteriorates the control performance by 

introducing abnormal switching frequencies in the control input 

[22]. Such a control signal may lead to system instability. 

Furthermore, it can inevitably damage the brushless motors of 

the multirotor. In addition, the sliding surface of the traditional 

SMC is linear which implies that the states are guaranteed to 

converge asymptotically to the origin. Therefore, the settling-

time being unpredictable cannot be estimated or adjusted in 

advance and the maximum limit of the settling-time is unknown 

[23]. 

In an attempt to improve the tracking performance, finite-

time control is considered a promising solution [24]. For 

example, authors of [25] present a finite-time distributed 

resilient control of multiple heterogeneous battery energy 

storage under denial-of-service attacks. Ning et al. proposed a 

finite-time bipartite tracking control for networked systems 

described by double-integrator dynamics in [26]. Compared to 

infinite-time SMC, finite-time SMC exhibits better control 

performance, notably faster convergence [14]. Several research 

works have employed finite-time SMC for a quadrotor control. 

Among these works, a terminal SMC-based law for a quadrotor 

featuring finite-time convergence is designed in [27]. The work 

in [28] proposed a flatness-based adaptive SMC law to deal with 

the tracking control problem of a quadrotor in finite-time. 

Finite-time stabilization of a quadrotor aircraft subjected to 

time-dependant disturbances employing a modified nonlinear 

super twisting fast SMC is discussed in [29]. In general, the 

systems demonstrating finite-time stability exhibit superior 

performance as compared to their infinite-time counterparts; 

however, the finite-time control has an unavoidable drawback. 

The ICs deviating from the equilibrium point result in 
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unbounded settling-time growth, leading to a slow convergence-

rate [30]. Besides, it is difficult, in some cases impossible, to 

obtain the ICs of dynamical systems in practice. Fixed-time 

stabilization has been introduced to address the slow 

convergence-rate problem. The fixed-time notion has been 

proposed as an extension of the finite-time stabilization in [31] 

and then formally defined in [32]. Fixed-time stability offers 

pre-definition and adjustment of a settling-time. This method 

stabilizes the states of the system in fixed-time irrespective of 

the values of the ICs. This distinguishing feature is pertinent in 

real-world flight operations of the quadrotor aircraft. Such 

temporal feature is instrumental in providing deep insight for 

both single quadrotor control and cooperative control of multi-

quadrotor systems. Particularly in the case of the formation 

control of the quadrotors required to converge to the desired 

formation pattern in a uniform short time [33]. Fixed-time 

consensus is addressed in [7] for multiple wheeled mobile 

robots under leader-follower configuration with practical 

results. The work [34] comes up with a new fixed-time protocol 

that can avoid saturation problems, save energy, and ensure 

practical fixed-time leader-following consensus and practical 

fixed-time leaderless consensus. An edge-based fixed-time 

consensus approach is investigated in [35] to address the 

problem of distributed optimization for multiagent systems 

while ensuring state agreement in a fixed-time. The authors 

indicate that the results can be used for drone rendezvous within 

a required time. Few studies have investigated the fixed-time 

control for the quadrotor system. Also, since the reported works 

have witnessed some drawbacks, more efforts are required to fill 

in the gap while dealing with the stated issues. Research in [36] 

presented the design of a backstepping fixed-time control law 

exploiting the potential of adaptive neural control. Although this 

work treated model uncertainties, external disturbances are not 

considered. Also, the inherent issue of backstepping control law, 

i.e., “explosion of complexity”, is not considered. The work in 

[8] proposed a robust homogeneous fixed-time control law for 

attitude and position variables while considering the 

disturbances acting on a quadrotor aircraft. But, the graphs of 

the attitude variables, i.e., roll and pitch angles, are not provided. 

The work [9] provides a fixed-time trajectory following for 

multi-quadrotors. Unfortunately, the convergence proofs of the 

fixed-time controllers in [8] and [9] are based on the bi-limit 

homogeneity analysis, which cannot estimate the convergence-

time or its upper-bound. Another study in [37] considered the 

faults occurring in a quadrotor’s actuators in addition to external 

disturbances and proposed a fixed-time homogeneous sliding 

mode active fault-tolerant law for attitude tracking. In this work, 

the fixed-time convergence is proved only for the reaching 

phase of the sliding manifold, and the global convergence-time, 

including the sliding phase is not provided. The work in [38] 

countered external disturbances acting on the quadrotor for 

trajectory tracking in fixed-time using a differential flatness-

based SMC. Inspired by [39], this work introduces a 

homogeneous-based virtual control law in the recursive 

backstepping design to achieve fixed-time stability. However, 

the disturbances are not considered on the attitude dynamics, 

besides model uncertainties and parameters variation are not 

addressed. On the other hand, the works [8] [37] [38] have 

considered a high-fidelity model for the quadrotor with accurate 

awareness of the system’s parameters. In reality, it is hard to 

identify the accurate values of the physical parameters precisely. 

Moreover, in most cases, the identification devices and 

equipment are not available in some laboratories. In addition, 

model uncertainties are unavoidably existing in the dynamic 

model. In contrast to the works [8] [37] [38], internal parametric 

and nonparametric uncertainties have been considered in our 

study besides external disturbances. Substantially, although the 

works [8] [9] [36] [37] [38] provide prominent simulation 

results, the experiment on a real hardware setup is not conducted 

to verify the theoretical findings. A recent motivating work that 

presents real experimental results on fixed-time tracking control 

of a quadrotor in the presence of disturbances is reported in [39]. 

However, the fixed-time convergence property has not been 

verified for different ICs. It is known that the fixed-time stability 

offers a prescribed convergence-time (within the physical limits 

of the system’s velocity) because it is independent of the values 

of the ICs. It would have been more interesting if research in 

[39] provided at least simulation results to corroborate the 

theoretical understanding for the convergence property of the 

fixed-time stability. Unlike [39], our work provides a detailed 

control methodology including theoretical design and analysis 

besides practical technological implementation. Similar to [8] 

and [37], the work [39] is limited to fixed-time stabilization of 

the 3- Degrees of Freedom (DoF) attitude dynamics.  These 

works have not investigated fixed-time control for the complete 

6-DoF dynamics of the vehicle.  The attitude states are fully 

actuated making the control design much easier. Unlike that, we 

have investigated fixed-time control of the attitude and position 

loops simultaneously, where the underactuated problem 

inherent in the quadrotor dynamics has been addressed. To the 

best of the authors’ knowledge, few works reported in the 

literature (e.g. [8] [9] [36] [37] [38] and [39]) address the design 

of fixed-time control laws for a quadrotor. Moreover, these 

works have some shortcomings that need to be stressed. 

As has been mentioned above, SMC is an efficient control 

method to achieve superior control performance. However, it 

still suffers from some shortcomings [14] that limit its 

application to a quadrotor system. Therefore, to take advantage, 

i.e., fast convergence rate and robustness, of the SMC and 

simultaneously avoiding chattering and singularity problems, 

we here employ homogeneity theory to design a fixed-time 

continuous nonsingular and chattering-free SMC controller. The 

homogeneity concept has been introduced by Andrieu et al. in 

[31]. It has been shown that if the origins of the two 

approximating functions in the bi-limit, i.e., 0-limit and ∞-limit, 

of a given system are GAS with a negative and positive degree 

of homogeneity, respectively, then the system’s origin 

demonstrates stability in fixed-time. The analyses based on the 

bi-limit homogeneity concept have been used as the basis of 

many proofs of fixed-time stability for homogeneous dynamical 

systems. For instance, in our previous work [10] and the works 

reported in [8] [9] [11] [12]. However, these mathematical 

proofs based on the bi-limit homogeneity approach are limited 

since they cannot estimate the convergence-time or its upper 
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bound. The motivating work proposed by Basin et al. in [40] 

provides interesting results on the fixed-time stability of 

homogeneous controllers by engaging another alternative.  

A fundamental conclusion deduced from the previous 

research works and analyses is that persistent and thorough 

efforts are required on the practical aspect of fixed-time stability 

and homogeneous systems. Particularly in the context of 

quadrotor aircraft to thoroughly exploit the potential of these 

advanced concepts. Owing to the importance and emerging 

nature of the fixed-time robust control laws, further real-time 

studies on experimental platforms need to be conducted. These 

experimental investigations are highly suggested as they serve 

the purpose of bridging the gap between mathematical 

foundations and technological innovations, which is essentially 

the key purpose of this research.  

1.3 Theoretical and Practical Contributions 

Motivated by the above studies and the work [40], the present 

research investigates a robust nonlinear control scheme for the 

quadrotor system. The aircraft is subjected to parametric 

variations, modeling uncertainties, and time-dependent 

disturbances externally acting on the aircraft. The following 

theoretical and practical aspects demonstrate the main 

contributions of the present research: 
 

(i) Inspired by the weighted homogeneity theory, a novel 

NHCTSM with prescribed dynamics featuring fixed-time 

convergence and GAS is designed. Next, a general methodology 

is established for designing fixed-time stabilization feedback 

controllers for uncertain nonlinear � -th order systems. 

Following the proposed design procedure, a novel control law is 

synthesized to deal with the robust tracking control of a 

multirotor aircraft. The chattering phenomenon is mitigated 

since the designed control scheme is continuous by nature. 

Moreover, the control law avoids the singularity problem since 

the design does not require the derivative of terms with 

fractional powers. 
 

(ii) The fixed-time convergence proof of the feedback-loop 

system is conducted using LQF and ALE. In contrast to the 

works [8] [9] [10] [11] [12] [41], the present research provides 

an explicit expression of the convergence-time for the proposed 

homogeneous-SMC-based controller. To the best of our 

knowledge, this is the first attempt to provide an explicit 

settling-time expression of a homogeneous SMC control law 

being designed for the nonlinear, coupled, and underactuated 

quadrotor system. Besides, the observer-controller dynamics are 

jointly analyzed to assure the Uniform Ultimate Boundedness 

(UUB) of all signals in the feedback system. 
 

(iii) A quadrotor hardware platform is built and comparative 

analyses with other robust fixed/finite-time controllers are 

carried out based on real-time experimental tests. To the best of 

the authors’ knowledge, few reported works address the 

practical implementation of the fixed-time control laws for 

quadrotor aircraft. 

 

This manuscript is organized into six sections: Section 2 

presents preliminary foundations and problem statement. The 

main results of the work are presented in Section 3. Simulation 

and hardware-based results are presented and critically 

discussed in Section 4 and Section 5, respectively. Finally, 

Section 6 concludes the manuscript. 

2 Preliminary Foundations and Problem Statement 

2.1 Preliminaries 

This section introduces related terminologies and 

mathematical lemmas required for the design of the control law 

and stability analysis conducted in the present research. 

 

Consider the following ordinary differential equation 

describing a nonlinear autonomous system 
 

ẋ(!) = "(!, x), x(0) = x#, x ∈ ℝ& and ! ∈ ℝ*. (1) 
 

where x is the state and ": ℝ* × ℝ& → ℝ  is a nonlinear 

continuous function (or vector field: ": ℝ* × ℝ& → ℝ& ) on an 

open neighborhood - ⊆ ℝ&  of the origin such that the set 

"(!, x) is non-empty for any x ∈ -, and "(!, 0) = 0 for all ! >

0. The point x(0) = x# is the IC of system (1). The solutions of 

system (1) are understood in the Filippov sense [42] if "(!, x) is 

discontinuous. Suppose that the origin x = 0 is an equilibrium 

point of (1). The following subsection introduces some 

interesting notions on the stability of the system (1).   

2.1.1 Notions on Finite-Time Stability, Fixed-Time 

Stability, and Weighted Homogeneity 

Definition 1. ( [10]). (Finite-time stability). The origin x = 0 of 

system (1) is said to be globally finite-time stable if it is GAS 

and there are an open neighborhood  ⊆ " of the origin and a 

function #$(x%):  \{0} → ℝ* ∪ {0} such that every solution 

x(-, x%) of system (1) starting from the initial point x% ∈  \{0} 

is well-defined for - ∈ [0, #$(x%)) , and lim
1→23($4)

x(-, x%) = 0 . 

#$(x%)  denotes the settling-time function (w.r.t. x% ) or a 

function corresponding to the time of convergence. If  = " =
ℝ5, the origin is said to exhibit global stability in finite-time. 
 

Definition 2. ( [32]). (Fixed-time stability). The equilibrium 

point x =  0 of the system (1) is said to be globally fixed-time 

stable if it is globally finite-time stable and the settling-time 

function #$(x%)  is bounded independently w.r.t. IC x% , i.e., 

∃#$
78$ ∈  ℝ*, such that #$(x%)  ≤  #$

78$, ∀x%  ∈  ℝ. 
 

Definition 3. ( [31]). (Weighted homogeneity). Let < =
 [<>, <?, … , <5]2  ∈ ℝ*

5  be the weight vector. The dilation 

mapping is defined by @A
B(x) = [CBDx>, CBEx?, … , CBGx5]2  for 

∀C > 0 and ∀x ∈ ℝ5. A function IJ(x): ℝ5 → ℝ  is said to be 

<- homogeneous with degree K ∈ ℝ if for ∀x ∈ ℝ5  and ∀C >
0, IJL@A

B(x)M = CNIJ(x)  holds. A vector field I(x): ℝ5 → ℝ5 , 

where I(x) = [I>(x), I?(x), … , I5(x)]2  is said to be < - 
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homogeneous with degree � ∈ ℝ if the component "#(x) is $-

homogeneous with degree of � + $# , i.e., "#%&'*(x), =
-./*0"#(x) for ∀- > 0.

Definition 4. ( [43]). (4 = {0,∞}-limit homogeneity). Let $7 be 

a generalized weight, �7 ∈ ℝ and "7(x) be a function (resp. a 

vector field). A function (resp. a vector field) "(x) is said to be 

homogeneous in the 4 -limit with associated triples %$7 , �7, "7,
if lim

'→7
sup
9∈:

;-<.?"%&'
*?x, − "7(x); = 0 , ∀- > 0 (resp. if 

lim
'→7

sup
9∈:

A-<.?%&'
*?,<B"%&'

*?x, − "7(x)A = 0) for all compact 

subsets C ∈ ℝD\{0}. A function or a vector field is said to be 

homogeneous in the bi-limit if it is homogeneous in the 0-limit 

and the ∞-limit simultaneously.

2.1.2 Mathematical Lemmas

Lemma 1. ( [1]). Suppose there exists a continuous positive-

definite Lyapunov function E(G, x): ℝ/ × ℝD → ℝ/ ∪ {0}, and 

its derivative satisfying Ė(G, x) ≤ −LBEM − LNEO , where 

LB, LN > 0,M > 1, and O < 1  are some positive constants, then 

the origin of system (1) is fixed-time stable. The settling-time 

function R9 is bounded as R9 ≤ R9ST9 ≝ B
VW(M<B)

+ B
VX(B<O)

.

Lemma 2. ( [44]). Suppose E� and  ! are continuous real-

valued functions on ℝ# , homogeneous of degrees $� > 0 and $! > 0, respectively, and  � is positive definite. Then, for every x ∈ ℝ#

& min{'̅:)*('̅)-�} ! ('̅).  �
/*/1(x) ≤  !(x) ≤ & max{'̅:)*('̅)-�} ! ('̅).  �

/*/1(x).
Lemma 3. ( [45] [46]). (Rayleigh-Ritz). Let 4 = 45 ∈ ℝ6×6 be 

a square symmetric matrix and 7 ∈ ℝ6 be any 6-dimensional 

real vector satisfying 7 ≠ 9. The Rayleigh quotient of the vector 7 is defined as

ℛ(x) ≝ x?@xx?x .
Let the eigenvalues of @ be labelable according to the increasing 

(non-decreasing size) as: A� = ABCD ≤ A! ≤ ⋯ ≤ A#G� ≤ A# =ABHI. The smallest and largest eigenvalues are characterized as 

a solution to the constrained minimum-maximum problem as 

maxI∈ℝJ:IKLℛ(x) = ABHI(@),
minI∈ℝJ:IKLℛ(x) = ABCD(@).

2.2 Problem Statement

2.2.1 Mathematical Modeling of the Quadrotor System

The quadrotor’s (Fig. 1) motion in space can be described by

two 3-D coordinate frames as illustrated in Fig. 2, namely, B-

frame and E-frame. The rotational motion is described by B-

frame, i.e., Euler angles NO = [P Q R]O? , while the 

translational motion is represented by E-frame ξT =[U V W]O? . 

Fig. 1. Experimental setup for the real outdoor flight of the quadrotor aircraft.

The experiment is conducted in a windy outdoor area.

Fig. 2. Representation of the quadcopter in both E-frame and B-frame.

The attitude rates ṄO and the angular velocities YO are 

related by the following relationship [47]

[Ṗ Q̇ Ṙ]O? ≝ Z\^→`̇^G� (NO)[b c d]O? . (2)

where  Z\^→`̇^G� is defined as in [48]

Z\^→`̇^G� (NO) ≝ e1 sPtQ cPtQ0 cP −sP0 sP/cQ cP/cQk. (3)

By employing the Newton-Euler formalism in the body and 

inertial frames, the complete 6-DoF dynamics governing the 

position and attitude motions are obtained as [10]

l�ξ̈" ≝ R$→"&'
$ + &(

" + &)
" + &*

" ,

-.̇$ ≝ −[(.$)3 × -.$] + 45
$ + 46

$ + 4)
$ + 4*

$ .
(4)

The symbol × on the right-hand side of the second equation of 

(4) stands for the cross product (vector product). The forces

&(
" , &)

" are defined as

Base station: 1. Radio controller ; 2. PC 

with QGroundControl and Putty ; 3. Radio 

telemetry module; 4. Wi-Fi router.

Vehicle: 1. USB Wi-Fi adapter; 2. M8N GPS; 3. NVIDIA Jetson Nano; 4. Pixhawk 

autopilot; 5. Radio telemetry module; 6. DJI 450 mechanical frame [9].

1 2 3

4

5

6

321

54

1
23

4
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� !" ≝ [0 0 $g]% , &" ≝ −(& ξ̇" .              (5) 

 

The force  -/ is defined hereafter in equation (7). The torques 

related to the attitude motion are given as 
 

⎩⎪
⎨
⎪⎧56/ ≝ [78 79 7:]/% ,                                                

5;/ ≝ − <(>/)% × @A
B

CDE
[0 0 (−1)CHEIC]% ,         

5&/ ≝ −diagJK8 , K9 , K:L[ṀN ȮN ṖN]/% .               
 (6) 

 

On the other hand,  Q" ≝ [RSTUV RWTUV RXTUV]% ,   5Q/ ≝YR8TUV R9TUV R:TUVZ%
. Besides, the thrust control (total lift force)  -/  is defined by the angular speeds IC , (\ = 1,4`̀ `̀ ) of the four 

rotors. Hence, the quadrotor’s actuators produce a total lift force 

given as [49]  
 

 -/ ≝ 7X = ∑ cCBCDE = Ke ∑ ICNBCDE . (7) 
 

Besides, the torques �� are related to the angular speeds of the 

rotors by the following expression [50] 
 

�� ≝ !�"�#�$% = &'()(−,-. + ,.. + ,0. − ,1.)'()(,-. − ,.. + ,0. − ,1.)(3(−,-. − ,.. + ,0. + ,1.)4. (8) 

 

Besides, the angular velocities of the four propellers, i.e., ,6 , (8 = 1,4;;;;), are related to �� (control torques) and �< (thrust 

control force) as [51]  
 

>�<��? ≝ @�<�"�#�$
A = @ () () () ()−'() '() '() −'()'() −'() '() −'()−(3 −(3 (3 (3

A ⎣⎢⎢
⎢⎡,-.,..,0.,1.⎦⎥⎥

⎥⎤. (9) 

 

From (2) and (4), it yields 
 IJ̇L = MNO→�̇OQ- (JL)RL ,                                          TṘL = −[(RL)U × TRL] + VWL + VXL + VYL + V3L. (10) 

 

Remark 1. (Small-Angle Approximation (SAA)). Note that for 

small Euler angles Z\ (in rad), i.e., in the limit where the angles 

approach zero, it results that ^_`a ≈ a, cd`e ≈ e, fgca ≈h − aii (≈ h), fgce ≈ h − eii (≈ h)  [49] [52]. The SAA is 

commonly used in quadrotor modeling and control as in [10] 

[53] [54]. Furthermore, in real flight missions without flips such 

as payload transportation, mapping, and inspection, the vehicle 

is intended to fly along with a dynamically feasible, i.e., 

continuous, and sufficiently smooth, Cartesian trajectory to 

ensure a safe flight mission. Consequently, abrupt reference 

changes leading to aggressive maneuvers that require large roll 

and pitch angles can be avoided [55] [56]. Thus, from (2) and 

considering SAA, we can get that jk\→Ż\Qh (Z\) ≈ l . Thus, Ż\ ≈ k\.  
 

Accordingly, we get the resulting approximative relationship 

between J̈L and ṘL as  
 J̈L = [n̈ ö p̈]LU ≈ [q̇ ṙ ṡ]LU . (11) 

 

Then, the six differential equations governing the rotational and 

translational dynamics of the quadcopter aircraft in the presence 

of external disturbances are obtained as  
 

tn̈ = TuuQ-vwTxx − T<<yȯṗ − ("ṅ. − Tz{|ȯ + �" + }� !"#,$̈ = &''()*(&-- − &//)1̇3̇ − 45$̇6 + &89:1̇ + ;5 + <5 !"#,3̈ = &--() *?&// − &''@1̇$̇ − 4A3̇6 + ;A + <A !"#,             (12) 

 

and  
 

BC̈ = −D()[(E1G$E3 + G1G3);- − H/Ċ + </ !"],Ï = −D()*(E1G$G3 − G1E3);- − H'İ + <' !"#,J̈ = −D()[(E1E$);- − H-J̇ + <- !"] + g.               (13) 

 

Remark 2. In reality, it is out of reach to precisely identify the 

physical parameters of an aerial vehicle such as the quadrotor 

aircraft. Moreover, the physical parameters such as 

aerodynamic coefficients, mass, and moments of inertia vary 

over time, making it difficult even far to obtain an accurate 

model of the system [57] [58]. Therefore, the dynamics of a 

quadrotor inevitably include parametric and nonparametric 

uncertainties. Unlike many reported works, e.g., [8] [37] [38], 

considering an ideal model with all parameters known, the 

present work takes into account time-dependent external 

disturbances as well as internal parametric and nonparametric 

uncertainties. Therefore, the following assumption is made for 

the dynamics representing the quadrotor system in (12) and (13). 
 

Assumption 1. The physical parameters of the quadrotor can be 

represented by the sum of two parts; the nominal part indicated 

by L  superscript and the uncertain part indicated by ∆ 

superscript.  
 

(i) Attitude dynamics. The uncertainties on the moments of 

inertia are defined as 
 

⎩⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪
⎧ &//()?&'' − &--@ ≝ � !! = "� #,!! ± � ∆,!!% ,'(() ('++ − '!!) ≝ � (( = "� #,(( ± � ∆,((% ,'++) "'!! − '((% ≝ � ++ = "� #,++ ± � ∆,++% ,'!!) ≝ �0!! = "�0#,!! ± �0∆,!!%,                     '(() ≝ �0(( = "�0#,(( ± �0∆,((%,                    '++) ≝ �0++ = "�0#,++ ± �0∆,++%,                       '!! ≝ '!!# ± '!!∆ ,                                                  '(( ≝ '((# ± '((∆ ,                                                 '++ ≝ '++# ± '++∆ .                                                     

 (14) 

 

The uncertainty on the rotor’s inertia is described as 
  '2 ≝ �3 = "�3# ± �3∆% = '2# ± '2∆. (15) 
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The uncertainties on the aerodynamic friction coefficients are 

described as 
 

456 ≝  �76 = "�7#,6 ± �7∆,6% =  86# ± 86∆ ,   59 ≝  �79 = "�7#,9 ± �7∆,9% =  89# ± 89∆,    5: ≝ �7: = "�7#,: ± �7∆,:% =  8:# ± 8:∆ .     (16) 

 

Then, for instance, we can obtain the roll dynamics from (12) as 
 ;̈ = � #,!!>̇@̇ + �0#,!!B6 + � ∆,!!>̇@̇ −�0!!�76;̇0 − �0!!�3CD>̇ + �0∆,!!B6 + �0!!E6GHI, (17) 

 

We assume that the unmodeled internal dynamics denoted by E6JKL  include the aerodynamic and gyroscopic effects defined 

as: E6JKL ≝ −'!!) 56;̇0 − '!!) '2CD>̇ , i.e., E6JKL ≝−�0!!�76;̇0 − �0!!�3CD>̇ . Then, we can obtain the adequate 

control model, which is composed of a nominal part and an 

uncertain part as 
 ;̈ = � #,!!>̇@̇ + �0#,!!B6 + E6MJL. (18) 
 

where the uncertain part represents the lumped disturbances, 

which are defined as 
 E6MJL ≝ � ∆,!!>̇@̇ + E6JKL + �0∆,!!B6 + �0!!E6GHI. (19) 

 

(ii) Position dynamics. The uncertainty on the mass is defined 

as 
 

� !" ≝ $% = &$%' ± $%∆), =  ' ±  ∆.                   (20) 

 

The uncertainties on the drag coefficients are defined as 
 

+-/ ≝ $0 = &$0' ± $0∆) = -/' ± -/∆,-1 ≝ $2 = &$2' ± $2∆) = -1' ± -1∆,-3 ≝ $4 = &$4' ± $4∆) = -3' ± -3∆, (21) 

 

Then, for instance, we can obtain the 5 position dynamics from 

(13) as 
 5̈ = −$%'(c9s:c; + s9s;)?3 − $%∆(c9s:c; +s9s;)?3 + $%$05̇ − $%A/BCD, (22) 

 

We assume that the internal unmodeled dynamics denoted A/EGH , is the aerodynamic drag force defined as A/EGH ≝ !"-/5̇, i.e., A/EGH ≝ $%$05̇. Then, we can obtain the adequate 

control model, which is composed of a nominal part and an 

uncertain part as 
 5̈ = −$%'(c9s:c; + s9s;)?3 + A/IEH. (23) 
 

where the uncertain part represents the lumped disturbances, 

which are defined as 
 A/IEH ≝ −$%∆(c9s:c; + s9s;)?3 + $%$05̇ −$%A/BCD. (24) 

 

Remark 3. The control performance and system’s stability are 

not threatened while considering  Assumption 1 since:  

a. The nominal model has an acceptable level of fidelity and 

it is reliable for the control design because: 

· The quadrotor in our study is intended to operate 

around a physically realizable maximum cruise speed. 

Also, the aircraft does not perform any aggressive 

maneuvers or flips (software limitation of the Euler 

angles and angular velocities, i.e., ���� ≤ � ≤
���  , "��� ≤ " ≤ "��  and  #��� ≤ # ≤#��  , $��� ≤ $ ≤ $�� , %��� ≤ % ≤ %��  ). Thus, the 

aircraft will not be exposed to strong aerodynamic 

resistance. Hence, in such operating conditions the 

phenomenon relative to the aerodynamic and 

gyroscopic effects, e.g., &'�̇) −
+--./+012"̇ and 3./4-5̇, can be ignored in the modeling 

process. Many flight missions can be accomplished 

within this operating flight mode, such as; 

transportation, mapping, inspection, to mention a few. 

Such a flight scenario is adequate for our future 

application being collaborative payload transportation 

in an urban area using multiple quadrotors. 

· The maximum tolerances on uncertainties are 30% bias 

for the moments of inertia and 20% bias for the mass. 

These tolerances are verified by simulation. 

b. The lumped disturbances 6789�, 6:89�  representing the 

uncertain part can be rejected by the robust control law 

which is based on an ADRC strategy. The ADRC includes 

a disturbance observer and a robust SMC controller. 

c. Naturally, the SMC has strong robustness against 

parameters variations and model uncertainties. 
 

Therefore, simplifying the model according to Assumption 1 is 

justifiable and is acceptable in the robust control law under 

discussion. 

 

In order to elaborate an adequate control model of the 

quadrotor, state-space representation can be used to reformulate 

the mathematical model (12)-(13). Thus, considering  

Assumption 1, we get the following model 
 

⎩⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎧

ẋ/ =  x),                                                                               
ẋ) =   @/A,--xBx + !"#,$$%& + '&()* ,                          ẋ/ =  x0,                                                                               ẋ0 =   !1#,22x"x + !"#,22%3 + '3()* ,                         ẋ4 =  x ,                                                                               ẋ =   !1#,55x"x0 + !"#,55%6 + '6()*,                          ẋ7 =  x8,                                                                              ẋ8 = −!4#(cx1sx/cx4 + sx1sx4)%5 + '$()*,              ẋ< =  x1>,                                                                         ẋ1> = −!4#(cx1sx/sx4 − sx1cx4)%5 + '2()*,             ẋ11 =  x1",                                                                           ẋ1" =  −!4#(cx1cx/)%5 + g + '5()* .                           

 (25) 

 

where x ≝  AB Ḃ C Ċ D Ḋ E Ė G Ġ H ḢI ∈ ℝ1" is the state vector.  

 

Remark 4. The quadrotor’s model (25) is a dynamical system 

of six second-order subsystems, in which the first three 
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subsystems constitute the attitude dynamics and the succeeding 

subsystems establish the position dynamics. Also, the model is 

strongly coupled, nonlinear, underactuated, and multi-input 

multi-output. In addition, it is subjected to internal uncertainties 

and external disturbances. The states are the translational and 

rotational quantities, which are also the outputs. The inputs are 

thrust force and three torques. The nature of this aircraft’s model 

brings a great difficulty and challenge in both theoretical 

development and practical implementation of the control 

algorithm. 
 

From (25), it is evident that the dynamics of the Euler angles 

and the translational position can be assimilated to a perturbated 

second-order nonlinear system. Consequently, the design of the 

control law follows from the two models given below 
 

LṀ1(N) = M"(N),                                                                                                           Ṁ"(N) = OP#QM", !1# , NR + SP#Q!"#R%P(N) + 'P()*Q!1∆, !"∆, 'PUVW, 'P)X*, NR,Y1(N) = M1(N).                                                                                                            
 (26) 

and  

� ̇"(#) =  $(#),                                                                     
 ̇$(#) = &'* + , -.

/ , #0 + 23
456*-.

∆, -8, 2'
9:;, 2'

5<6, #0,
>?(#) =  $(#).                                                                    

 (27) 

 

where  AB ≝ [ +  ?]D ∈  ℝ"×?  is the vector of states, and 

 + ≝ H = [x+ x" x.]D = [I J K]D ,  ? ≝ Ḣ = L =
[İ J̇ K̇]D = [x? x$ xM]D  (by Remark 1),  NB ≝
[NO NP NQ]D ∈  ℝ"  is the vector of control inputs, >+ ≝
[R+ R? R"]D = [I J K]D ∈  ℝ" is the controlled output 

of the attitude loop, the uncertain function 2B
456 ≝

S2O
456 2P

456 2Q
456T

D
∈  ℝ"  represents the lumped 

disturbances, and -+
∆ ≝ S-1

∆,VV -1
∆,WW -1

∆,XXT
Y

, -?
∆ ≝

S-2
∆,VV -2

∆,WW -2
∆,XXT

Y
  , -+

/ ≝ S-1
/,VV -1

/ ,WW -1
/ ,XXT

Y
, 

-?
/ ≝ S-2

/,VV -2
/,WW -2

/,XXT
Y

. Also, A' ≝ [ "  $]D ∈
 ℝ"×? is the states’ vector (the velocity �� is not available for 

measurement), � ≝ ξ = [x# x$ x%%]& = [' ( )]& ∈ , �� ≝ ξ̇ = . = [x/ x%0 x%1]& = ['̇ (̇ )̇]& =[23 24 25]& , and  61 ≝ [7� 78 79]& = [' ( )]& ∈ ℝ  is the controlled output of the position loop, and the 

uncertain function ;<>?@ ≝ A;3>?@ ;4>?@ ;5>?@B& ∈  ℝ  

represents the lumped disturbances, where CD ≝[C9 C# C/]&. The functions EGHI�1, C%H , JK and LGHIC1H , JK 

are adequately smooth functions satisfying EGHI�1, C%H , 0K = 0 

and LGHIC1H , JK ≠ 0 over the domain of definition. These can 

be written as  

EGH ≝ OEPHEQHERHS = ⎣⎢⎢
⎢⎡IW33H KX%IW44H − W55HKŻ\̇IW44H KX%IW55H − W33H K^̇\̇IW55HKX%IW33H − W44H K^̇Ż⎦⎥⎥

⎥⎤
, 

LGH ≝ ALPH LQH LRHB& = AIW33H KX% IW44H KX% IW55HKX%B& . 
 

The physical entity cd ≠ 0  describing the coupling between 

rotational and translational motions is defined as 

cdI�%, C8H , JK ≝ ec3c4c5 f = ⎣⎢
⎢⎡−g5IhHKX%(c^sZc\ + s^s\)−g5IhHKX%(c^sZs\ − s^c\)−g5IhHKX%(c^cZ) + g ⎦⎥

⎥⎤. (28) 

 

The following Definition 5 formulates the control problem of 

the study. 

 

Definition 5. (Control problem of the study). The present study 

aims to design a reliable flight control algorithm with superior 

flight performance for the perturbated, nonlinear, and coupled 

quadrotor system (25). The flight controller is based on a 

position tracking controller g5(J)  and attitude stabilization 

controller gG(J) = [gP gQ gR]&  to track a reference 

Cartesian trajectory in 3-D state-space. The controllers are 

implemented in a hierarchical scheme. The controllers are 

designed based on a robust fixed-time SMC control law. The 

control algorithm should satisfy the following points 
 

(i) The attitude and position tracking errors are driven in a fixed-

time to the origin, i.e., for ∀o%G(J) ≝  p(J) − pq(J), ∀o%d(J) ≝ξ(J) − ξq(J), there exist two constants rG , rd, such that  
 

t limy→&{ o%G(J) = 0, ∀J > rG ,limy→&} o%d(J) = 0, ∀J > rd .  (29) 

 

(ii) The controller should reject the lumped disturbances; 

(iii) The control signal is chattering-free and nonsingular; 

(iv) The stability of the overall feedback-loop system is ensured. 

2.3 Motivation 

Consider, for instance, the roll angle dynamics from the 

second-order attitude system (26) as 
 

t ẋ%(J) = x1(J),                                                                                                                          ẋ1(J) = E~�HI�1, C%H,33 , JK + L~�HIC1H,33Kg~�(J) + ;~�>?@IC%∆,33, C1∆,33, ;~��~�, ;~�?�@, JK,7%(J) = x%(J).                                                                                                                           
 (30) 

 

Let the control input g~�(J) of (30) be defined as 
 g~�(J) ≝ AL~�HBX%AgD~�(J) − E~�H − ;�~�>?@B.  (31) 
 

Then, system (30) can be rewritten in the following form 
 

tẋ%(J) = x1(J),                                                                    ẋ1(J) = gD~�(J), �0 ≝ [x%(0) x1(0)]& ∈ ℝ1    7%(J) = x%(J).                                                                     (32) 

 

The following control law, which is inspired from [44] has been 

designed in [59] for stabilizing a double-integrator system under 

the form of (32) in finite-time 
 gD~�(J) ≝ −�%~�sign��(x%) − �1~�sign��(x1).  (33) 
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where ��
�� , ��

�� are positive constants and the exponents  ! , (" =

1, #$$$$$)  for #-th order system are selected as follows:  ! ∈ (0,1) 

and  !  should satisfy  !&� =  ! !'� (2 !'� −  !)⁄ , " = 2, #$$$$$  , 

 -'� = 1, and  - =  , where  ∈ (1 − .�, 1) for a sufficiently 

small .� > 0. 

 

Remark 5. The work in [59] does not provide the estimation of 

the settling-time for the closed-loop system, including (31), 

(32), and (33). Moreover, the settling-time depends on the ICs 

/3  of system (32). The systems demonstrating finite-time 

stability exhibit superior performance as compared to their 

infinite-time counterparts, however, the finite-time control has 

an unavoidable drawback. The ICs deviating from the point of 

equilibrium result in unbounded growth of the convergence-

time [30]. Besides, it is difficult and, in some cases, impossible 

to obtain the ICs of dynamic systems in practice. 

 

The present work aims to: 
 

(i) Estimate the settling-time of the feedback system (31)-(32); 
 

(ii) Since the upper bound on the convergence-time of the 

feedback system (31)-(32) depends on the ICs of the system, we 

propose to design a novel fixed-time control law based on 

homogeneous SMC; 
 

(iii) Next, it is proved that the upper-bound on the fixed settling-

time of the proposed homogeneous SMC control law can be 

explicitly and uniformly estimated w.r.t. ICs; 
 

(iv) Finally, a flight control algorithm is proposed for the 

quadrotor aircraft. The control algorithm includes an attitude 

stabilization controller and a position tracking controller. 
 

(v) A corollary is proposed to extend the results of the current 

work to design fixed-time stabilization feedback controller for 

uncertain nonlinear high-order systems. 

 

3 Main Results 

3.1 Sliding Manifold Design and Convergence Analysis 

The design of a control strategy based on SMC involves two 

steps: (i) The selection of a sliding manifold as per the desired 

motions of states trajectories in the system’s state-space; (ii) The 

design of the control to ensure the existence of a sliding mode 

on this preselected manifold. The control aims to enforce the 

trajectories of the feedback system to reach and slide along the 

manifold toward the equilibrium point. 

Consider the perturbated nonlinear second-order system (32). 

To ensure fixed-time stabilization at the origin of the states, the 

following NHCTSM, i.e., � = �x�, x� ∈ ℝ:  !"(#, x�, x�) = 0$, 

is proposed 
  !"(#, x�, x�) ≝ x�(#) + ∫ ['(#) + *(#)]-./1 ,   (34) 

 '(#) ≝ −34!"(#) = 5�!"sign6"(x�) + 5�!"sign67(x�), (35) 
 *(#) ≝ 54�!"sign68"(x�) + 54�!"sign687(x�). (36) 

 

where  !"(#, x�, x�): ℝ; × ℝ × ℝ → ℝ is a smooth function and 

the nonnegative parameters 54�!" , 54�!" , >̅�, >̅�  are tuned by 

following the guideline in Remark 10 given hereafter. The 

subsequent theorem shows that the proposed sliding manifold 

can drive the states (x�, x�) into the origin in a bounded fixed-

time uniform w.r.t. ICs @1 of system (32). 

 

Theorem 1. For the system subject to lumped disturbances in 

(32), the sliding manifold  !" = 0 ensures the stabilization of 

the states @(#) ≝ [x�(#) x�(#)]A  at the origin in bounded 

fixed settling-time B@. The bound B@CD! on B@ is independent of 

the ICs @1 = [x�(#1) x�(#1)]A  of system (32). An explicit 

expression of B@CD! can be also derived as 
 B@ ≤ B@CD! ≝ 6�G6 HIJK(L"@)HIMNOP"@Q RCD!

"STT (U�@) + 6868G� HIJK(L7@)HIMNOP7@Q RCD!GT8S"T8 (U�@).  
 

Proof. By differentiating the sliding function (34) w.r.t. time, 

we get 
  ̇!"(#) = ẋ�(#) + '(#) + *(#). (37) 
 

After reaching the sliding manifold  !" = 0, the dynamics of ẋ� 

can be obtained from (37) as 
 ẋ�(#) = −'(#) − *(#). (38) 
 

Then, the feedback-loop dynamics can be obtained from (32) 

and (38) as  
 

@̇ ≝ W(@): Xẋ� = x�,                                                          ẋ� = −5�!"sign6"(x�) − 5�!"sign67(x�)           −54�!"sign68"(x�) − 54�!"sign687(x�).            (39) 

 

Lemma 4. ( [31]). Consider the system (39). Suppose that W(@) 

is a homogeneous vector field in the bi-limit with associated 

triples OZ1, \1, W1(@)Q  and OẐ , \^, Ŵ (@)Q . If the origins of 

systems @̇ = W(@), @̇1 = W1(@)  and @̇^ = Ŵ (@) GAS and the 

condition \1 < 0 < \^  holds true, then the origin of system 

(39) is fixed-time stable.  
 

Remark 6. Lemma 4 has been used as the basis of many proofs 

for fixed-time stability of homogeneous dynamical systems 

such as the one in (39), e.g., [10] [11] [12] [41]. However, this 

lemma being based on the bi-limit homogeneity proof is limited 

since it cannot estimate the convergence-time or its upper 

bound. Thus, in the following, we conduct the stability analysis 

of the homogeneous system (39) based on LQF and ALE.  

 

Remark 7. Note that the GAS of system (39) being derived 

from the proposed sliding function (34) can be verified by 

defining a radially unbounded positive definite Lyapunov 

function besides employing LaSalle’s invariance theorem. The 

proof is presented in our previous work (proof of Theorem 2) 

[10].  

 

System (39) can be written in the following state-space form  
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 �̇(!) = "�(!) + #$�(!), �% = [x&(0) x'(0)]* . (40) 

 

where $�(!) ≝ /(!) + 1(!), $�(!) ∈ ℝ  is the input of the 

system (40) and " = 40 1
0 06 , # = 40

16.  The estimation of the 

convergence-time 7�  is established in two steps. First, the 

closed-loop system (35)-(40) is analyzed to estimate the 

convergence-time under the finite-time control input (35). 

Second, the estimation of 7� is conducted.  

 

Step 1. Applying the input /(!) in (35) to system (40), we get 
 

�̇(!) = "&�(!) − #9:&
;<sign><(x&) + :'

;<sign>?(x')@. (41) 
 

Let the following LF be defined for system (41)  
 

A&(B) = B*C&�B, B ≝ 9x&
>< x'

>? @* . (42) 
 

where the symmetric positive definite matrix C&�  , i.e., C&� =
(C&�)* > 0, is the solution of ALE given as 
 

C&�"& + "&*C&� = −G&� , (43) 
 

where G&� > 0 ∈ ℝH×H  is an arbitrary symmetric positive 

definite matrix and "& is written accordingly to the controllable 

canonical form  
 

"& = I 0 1
−:1

x1 −:2
x1K. 

 

where :&
;< , :'

;< > 0 are such that the polynomial L' + :'
;<L +

:&
;<  is Hurwitz, which implies that the matrix "&  is certainly 

Hurwitz. Consequently, the system �̇(!) = "&�(!) is AS. Since 

C&�  is a solution of the ALE in (43), the quadratic function 

A&(�) = �*C&��, � = [x& x']*  is a Lyapunov candidate 

function for the system �̇(!) = "&�(!) . Moreover, the 

following inequality is obtained for the time derivative of A&(�) 
 

Ȧ&(�) = �̇*C&�� + �*C&��̇ = �*("&*C&� + C&�"&)� 

                                                = −�*G&�� < 0. (44) 

 

If the following two conditions are satisfied, the inequality 

Ȧ&(B) < 0 holds for A&(B) given in (42): (i) The parameter � is 

chosen in the interval (1 − !", 1), for a small positive number !" > 0. (ii) #̇"(%) is obtained along with the trajectories of the 

closed-loop system (41). Therefore, #"(%) is a LF for the system 

(41). Considering #̇"(%) < 0, the system (41) is AS. It can be 

noted that the right-hand side of (41) is a homogeneous vector 

field of degree &" = [(� − 1) �⁄ ] < 0 w.r.t. dilations (weights) *+ = 1 �+⁄ , - = 1, ./////. By using Lemma 2.2 of [60], the states of 

system (41) are guaranteed to be finite-time convergent to the 

equilibrium. By following the guidelines of Definition 4 given 

in Section 2.1.1 and Theorem 6.2 in [44], it can be verified that 

the LF #"(%)  = %34"5% is homogeneous in 5 = [x" x6]3  of 

degree 7"  =  1 >  max(−&", 0), if � is sufficiently close to 1, 

and its full-time derivative #̇"(%)  is homogeneous in 5 =[x" x6]3  of degree 7" + &"  =  1 + &"  >  0 , w.r.t. the same 

weights *+ , - = 1, .///// . Applying Lemma 2 with #6 = #̇"(%), we 

get 
 

#̇"(%) ≤ −:"#"";?@(%) = −:"#"
ABC@B (%),  (45) 

 

where 
6DE"

D  <  1 . According to Lemma 3, Rayleigh’s 

inequalities can be applied to relations #"(5) = 534"55  and #̇"(5) = 53G"55. Thus, we can obtain 
 

H#"(5) = max5∈ℝA:5LM534"55 ≤ NOPQ(4"5)‖5‖6,    
#̇"(5) = min5∈ℝA:5LM53G"55 ≤ −NOST(G"5)‖5‖6, (46) 

 

From the first inequality of (46), we get ‖5‖6 ≥ V@(5)
WXYZ\ @̂5_ . 

Replacing ‖5‖6  by its expression in the second inequality of 

(46), we get #̇"(5) ≤ −NOST(G"5) V@(5)
WXYZ\ @̂5_ . Therefore, for an 

arbitrarily small positive number ` > 0, we can get 
 

 

#̇"(5) ≤ NOST(G"5)NOPQ(4"5) #"(5) < − (NOST(G"5) − `)NOPQ(4"5) #"(5). (47) 

 
 

Considering the continuity of the right-hand side of (41) w.r.t. �, the following inequality holds for #"(%) given in (42) 
 

#̇"(%) < − (WXcd(e@5)Ef)
WXYZ\ @̂5_ #"

ABC@B (%). (48) 

 

if the following two conditions are satisfied: (i) The parameter �  is chosen in the interval (1 − !", 1) . (ii) #̇"(%)  is obtained 

along with the trajectories of the closed-loop system (41). Since ` >  0  is a small constant, the following expression can be 

obtained from (48) 
 

#̇"(%) < − WXcd(e@5)
WXYZ\ @̂5_ #"

ABC@B (%). (49) 

 

Hence, the constant ��  can be assigned as �� =  !"#($%&)
 !'*+,%&-. The 

expression of the settling-time can be obtained via solving the 

differential equation (49). This can be achieved by utilizing the 

separation of variables method. Thus, by separating the 

variables and then integrating both sides of (49), we get 
 

. 1
/�
023�2

4(5)
4(6)

7/� ≤ . − :;<>(?�&):;@A(B�&) 7C
5
6

 

 

Then, the following expression is obtained 
 1

1 − DD
E/�

1−22 +G(C)- − /�
1−22 +G(0)-I ≤ − :;<>(?�&):;@A(B�&) C 

 

Finally, we can get 
 

J6(&6) ≤ J6;@A ≝ 2
�32

 !'*(,%&)
 !"#+$%&-/�

%LM
M +G(0)-. (50) 

 J6;@A is the upper bound on the convergence-time of the closed-

loop system (35)-(40) having the finite-time control law 

designed in [59] as input. We can see that the estimate of J6;@A 

depend on the ICs of system (40). 
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Step 2. Applying the input term N(C) (36) to system (40), we 

get 
 &̇(C) = P0&(C) − QRST�A%sign2U%(x�) + � !

"#sign$%&(x!)'. (51) 
 

Let the following candidate LF be defined for system (51)  
 

*!(+) = +,-!.+, + ≝ 1x2
$%# x!

$%& ', . (52) 
 

where the symmetric positive definite matrix -!.  , i.e., -!. =
(-!.), > 0, is the solution of ALE defined as 
 

-!.6! + 6!,-!. = −9!. , (53) 
 

where 9!. > 0 ∈ ℝ<×<  is an arbitrary symmetric positive 

definite matrix and 6! is in the controllable canonical form  
 

6! = ? 0 1
−� 2

"# −� !
"#A. 

 

where � 2
"# , � !

"# > 0 are such that the polynomial B! + � !
"#B +

� 2
"#  is Hurwitz. Given that the control gains � 2

"# , � !
"#  form a 

Hurwitz polynomial B! + � !
"#B + � 2

"# , the matrix 6!  is 

necessarily Hurwitz. 6!  is the matrix of the linear system 

obtained from (51). Therefore, the linear system .̇(D) = 6!.(D) 

is AS and *!(.) = .,-!..  is a LF for this system. Moreover, 

the following inequality is obtained for the time derivative of 

*!(.) 
 

*̇!(.) = .̇,-!.. + .,-!..̇ = .,(6!,-!. + -!.6!).
= −.,9!.. < 0. (54) 

 

Considering the continuity of the right-hand side of (51) w.r.t. 

G̅. If the following two conditions are satisfied, the inequality 

(54) holds for the function *!(+) = +,-!.+ defined in (52): (i) 

The parameter �̅ is chosen within the interval (1,1 +  !),  for a 

small positive number  ! > 0. (ii) "̇!($) is obtained along with 

the trajectories of closed-loop system (51). Consequently, "!($) 

is a LF for the system (51). Considering "̇!($) < 0, the system 

(51) is AS. It can be noted that the right-hand side of (51) is a 

homogeneous vector field of degree %! = [(�̅ − 1) �̅⁄ ] > 0 

w.r.t. dilations (weights) *- = 1 �̅-⁄ , . = 1, /22222.  We can verify that 

the LF "!($) = $34!5$  is homogeneous in 5 = [x6 x!]7  of 

degree 8!  =  1 >  max(−%!, 0) , "̇!($)  is homogeneous in 5 = [x6 x!]3  of degree 8! + %!  =  1 + %! , w.r.t. the same 

weights *- , . = 1, /22222. Applying Lemma 2 with "! = "̇!($), we 

get  
 

"̇!($) ≤ −;!"!
?@ABC@A ($),  (55) 

 

where 
!DAE6

DA  >  1 . Then, similarly to (49), the following 

inequality is obtained 
 

"̇!($) ≤ − GHIJ(K!5)GHLM(4!5) "!
!DAE6DA ($), (56) 

 

Hence, the constant ;! in (55) can be assigned as ;! = NOPQ(R?5)
NOSTUV?5W.  

The expression of the settling-time can be obtained via solving 

the differential equation (56). This can be achieved by utilizing 

the separation of variables method. Thus, by separating the 

variables and then integrating both sides of (56), we get 
 

X Y"!
"!

!DAE6DA
Z(\)

Z(^) ≤ X − GHIJ(K!5)GHLM(4!5) Y_\
^ , 

Then the following expression can be obtained 
 

1
− �A − 1�A

`"2
−�A−1�A U$(_)W − "2

−�A−1�A c$(0)de ≤ − Gmin cK25d
Gmaxc425d _, 

 

Finally, the expression of _ can be deduced as 
 

_ = �̅�̅ − 1 GHLM(4!5)GHIJ(K!5) f"!
EDAE6DA U$(_)W − "!

EDAE6DA U$(0)Wg, 
 

Let h be a positive number satisfying "!U$(0)W > h. The time 

in which "!($) decreases and reaches the value h, i.e., "!($) →h can be given as 
 

_ = �̅�̅ − 1 GHLM(4!5)GHIJ(K!5) f"!
EDAE6DA U$(_)W − "!

EDAE6DA U$(0)Wg 

 

   = �̅�̅ − 1 GHLM(4!5)GHIJ(K!5) fhEDAE6DA − "!
EDAjE6DAj U$(0)Wg 

 

   ≤ �̅�̅ − 1 GHLM(4!5)GHIJ(K!5) hEDAE6DA ≝ l6. 
 

We can obtain that "!($) ≤ GHIJ (4!5)‖$‖!  thus ‖$‖! ≤q?(Z)
NOPQ UV?5W ≤ h

NOPQ UV?5W ≤ 1. Then, the states of system (51) reach 

the following set where they stay confined ℑ ≝ s5: ‖$‖! ≤
h

uOPQ UV?5Wv for _ > l6. 

 

Step 3. In this step, the global settling-time for system (40) 

under the input �(�) + �(�), i.e., (35) + (36) is analyzed as in 

[60]. Consider a positive real number   satisfying ∀  >
0, #$%&(0)' >  . The derivative of #$(&)  versus time along 

with trajectories of system (40) can be computed as  
 

#̇$(&) = -#$
-. (/. + 1�) + -#$

-. (1�) 

            ≤ #̇$(&) − -#$
-. 456

78sign98(x6) + 5$
78sign9:(x$); 

            ≤ #̇$(&) ≤ − <?@A(B$.)
<?C7(D$.) #$

$9EF6
9E (&) . 

 

According to Step 2 of the current proof, it can be shown that 

the states of system (51) reach the set ℑ = I.: ‖&‖$ ≤
 

LMNO %P:.' ≤ 1R for � ≥ T6 = 9E
9EF6

LMUV(P:.)
LMNO%W:.' <?C7

FXEY8
XE (D$.). 

 

Similarly, the derivative of #6(&)  versus time along with 

trajectories of system (40) can be given as 
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#̇6(&) = -#6
-. (/. + 1�) + -#6

-. (1�) 

            ≤ #̇6(&) − -#6
-. 45Z6

78sign9E8(x6) + 5Z$
78sign9E:(x$); 

            ≤ #̇6(&) ≤ − <?@A(B6.)
<?C7(D6.) #6

$9F6
9 (&) . 

 

From Step 1 of the proof, it is guaranteed that the input �(�) +
�(�) can stabilize system (40) at the origin in finite-time within 

a setting-time T[   defined in (50). Without loss of generality, for 

all � ≥ T6 , ‖&‖ = 1  is applied for #6%&(T$)' ≤
<?C7(D6.)‖&‖$ = <?C7(D6.) . Hence, the upper bound on the 

global settling-time can be obtained as 
 

T. ≤ T.?C7 ≝ 9
6F9

LMUV(P8.)
LMNO%W8.' <?C7

8YX
X (D6.) + 9E

9EF6
LMUV(P:.)
LMNO%W:.' <?C7

FXEY8
XE (D$.). 

 (57) 
 

Finally, the states of system (40) and thus (39) can be stabilized 

to zero   . = [x6 x$]_ → 0 within fixed-time given in (57).  ■ 

 

As mentioned in the first point of Section “1.3 Theoretical 

and Practical Contributions”, the succeeding corollary with 

interesting results on fixed-time stabilization feedback 

controller and ISS can be deduced from Theorem 1. 
 

Corollary 1. The following two results can be obtained from 

Theorem 1: (i) Fixed-time stabilization feedback controller for 

uncertain nonlinear high-order systems can be designed based 

on the proposed sliding surface (34). (ii) ISS is ensured in the 

presence of external bounded control input corrupted with 

matched nonlinear disturbances. 
 

(i) Fixed-time stabilization feedback controller. Consider the 

following uncertain nonlinear n-th order system 
 

⎩⎪
⎨
⎪⎧

x$̇&(') =  x$+('),     
x$̇+(') =  x$-('),     ⋮x$̇/0&(') =  x$/('),

                                           x$(0) = x$2,

x$̇/(') = 34$5x$(')6 + �!"#x"($)%&!"($) + '($).                 
 (58) 

 

where x" ≝ [x"-, x"0, … , x"1]2 ∈ ℝ1 is the state vector, 5!"6(x") and �!"6(x") ≠ 0 are smooth nonlinear functions representing the 

nominal dynamics of the system. The control input is denoted 

by  &!"($) ∈ ℝ  and '($) ∈ ℝ  represents the lumped 

uncertainties. Consider the following sliding surface designed 

from (34) for the n-th order system (58) 
 9($) ≝ x"1($) + ∑ ∫ <=>!"?sign@?(x">) + =">!"?sign@A?(x">)B'CDE1>F- ,  (59) 

 

where =>!"? , =">!"? ∈ ℝ+ . If the feedback &!"  is determined as 

&!"($) ≝ -
GHA6 <∑ <=>!"?sign@?(x">) + =">!"?sign@A?(x">)B1>F- − 5!"6 − 'JB , 

where 'J is the estimate of ' which is provided by a disturbance 

observer, the system (58) becomes as  
 

⎩⎪⎪
⎨
⎪⎪⎧

x"̇-($) =  x"0($),     x"̇0($) =  x"Q($),     ⋮x"̇1S-($) =  x"1($),
                                                           

x"̇1($) = − T <=>!"?sign@?(x">) + =">!"?sign@A?(x">)B1
>F- .

 (60) 

 

Thus, it follows that the states of the system (58) are stabilized 

at the zero-equilibrium point x"  =  0  in fixed-time from any 

arbitrary initial point x"E ≠ 0. The convergence-time is bounded 

as 
 

U!" ≤ U!"WX! ≝ @
-S@

YZ\H# _̂HA%
YZ`a#b_HA% cWX!

_dee (f-!") + @A
@AS-

YZ\H# ĥHA%
YZ`a#bhHA% cWX!

SeAd_eA (f0!"). 

 

(ii) ISS under external bounded control input corrupted with 

nonlinear disturbances. Consider the following nonlinear 

system  
 

x!̇ = #(x!, $), x! ∈ ℝ', $ ∈ ℝ. (61) 
 

where # ∶  ℝ' × ℝ → ℝ  is a continuous vector field or 

Lipschitz continuous function that is homogeneous in the bi-

limit and $  is bounded exogenous disturbances. It should be 

noted that if the origins of the following systems 
 x!̇ = #(x!, 0), x!̇ =  #/(x!, 0), x!̇ =  #1(x!, 0). 
 

are GAS equilibria, the system (61) is ISS w.r.t. the bounded 

matched disturbances $. 

 

Remark 8. Corollary 1 presents a control design methodology 

for systems with high-integrator dynamics. The second-order 

system is a particular case where many fundamental physical 

systems in practice can be described by a double-integrator, 

such as the quadrotor dynamics representing the position and 

attitude of the aircraft. By following the guideline of the 

findings in Corollary 1, tracking controllers, i.e., FNHNTSMC 

can be designed for attitude and position loops. By so doing, the 

tracking controllers should be adequately designed to satisfy the 

conditions of Corollary 1, thus stabilizing the system.  

3.2 Control Design 

The obtained results in the previous subsection are exploited 

to derive and synthesize a trajectory tracking control law, i.e., 

FNHNTSMC, for the second-order attitude and position 

subsystems. To deal with the strong coupling and 

underactuation nature in the four-rotor dynamics, the 

hierarchical control framework consisting of attitude-position 

(inner-outer) loops is adopted. The block diagram of the 

feedback-loop control system is shown in Fig. 3. The desired 

trajectory can be generated by a trajectory generator algorithm 

such as B-spline [56]. The trajectory generator transforms some 

given waypoints to a time-parametrized path that is represented 

by a polynomial. The waypoints can be generated by a path 

planner, e.g., rapidly exploring random tree (RRT) or A* [2] 

[61]. 
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Fig. 3. Block diagram of the feedback-loop control system of the quadrotor aircraft. The orange arrows indicate parameters variation and unmodeled dynamics. 

 

 

3.2.1 Attitude Tracking Controller 

The proposed fixed-time sliding surface in Section 3.1 is used 

to derive and synthesize a new fixed-time feedback control law, 

i.e., FNHNTSMC. Consider the perturbated nonlinear attitude 

system (26). Let the attitude tracking error and its dynamics be 

defined as 
 

�!"# ≝ % − %' ,
!(# ≝ %̇ − %̇' . (62) 

 

After differentiating (62), we get the errors dynamics as 
 

�!̇"# = !(#,         
!̇(# = %̈ − %̈' . (63) 

 

The sliding surface for the attitude tracking is defined based on 

(34) as  
 

-#(!"#, !2�, !) ≝ #2
�(!) + ∫ [%&(!) + '&(!)]*-.

/ ,   (64) 

 

%&(!) ≝ 01
&sign34(#1

&) + 05
&sign36(#5

&), (65) 
 

'&(!) ≝ 071
&sign384(#1

&) + 075
&sign386(#5

&). (66) 
 

We propose the following composite tracking control input that 

can establish fast reaching-time of the sliding surface :& and can 

achieve the sliding motion on :& = 0 
 

<& ≝ 1

>?
@ A<B

& + <CD
& E. (67) 

 

The proposed control scheme comprises two parts. The reaching 

control term <B
&  is responsible for providing fast fixed-time 

convergence to the sliding manifold :&  while the equivalent 

control term <CD
&  is responsible for maintaining the system states 

on :& and suppresses the disturbances. The reaching law <B
&  is 

appropriately designed to ensure fast fixed-time reaching of the 

sliding manifold as 
 

<B
&  ≝  −01

H?signI(:&) − 05
H?signJ(:&). (68) 

 

The design of the <CD
&  control is based on the sliding motion 

:& = 0, <B
& = 0. With :& = 0, from (64), the sliding manifold 

dynamics is governed by 
 

:̇& = #̇2
� + %& + '& = 0, (69) 

 

From (26) and (63), we get  
 

#̇5
& = L&

@ + M&
@<& + *&

NOP − �̈R, (70) 
 

By putting the expression of #̇5
&  from (70) into (69) while 

considering <B
& = 0 and <& ≡ <CD

& , yields 
 

<CD
& ≝ −%& − '& − L&

@ + �̈R − *T&
NOP. (71) 

 

 

Remark 9. It is pertinent to mention here that the proposed 

control law (67) avoids the singularity issue because the 

derivatives of the terms sign��(x�), sign��(x�), sign� !"�# with 

fractional power ($�, $�, % < 1)  are not involved in (67). Thus, 

the signal magnitude remains bounded. The singularity issue 

arises if the control signal has a term with a negative exponent. 

For instance, this issue arises if the derivative of sign��(x�) 

exists in the control law, i.e., lim
"�→*

+ -./02�("�)#

+3
=

lim
"�→*

$�|x�|��4� = ∞, since $� − 1 < 0. 

 

Remark 10. (Control parameters selection). Two classes of 

terms are used to design the fixed-time stabilization control law 

(71); one with power higher than 1, i.e., sign�8�(x�), sign�8�(x�) 

and the other with power in fractions, i.e., 

sign��(x�), sign��(x�) . In contrast to the control structures 

reported in [59], [62], and [63], the proposed control structure 

in the present work can uniformly drive the system’s states in 

fixed-time into a compact set w.r.t. the ICs. The exponents 

$̅: , (; = 1, >?????)  for >-th order system are selected as follows: $̅: >
1 and $̅:  should satisfy $̅:4� = $̅:$̅:A� (2$̅:A� − $̅:)⁄ , ; = 2, >?????  , 

$̅:A� = 1, and $̅D = $̅ , where $̅ ∈ (1,1 + G�) for a sufficiently 

small G� > 0. The selection of  H�
"� , H�

"�  is discussed above in 

Section 2.3. 

3.2.2 Position Tracking Controller  

Let the position tracking error be defined as 
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�!"# ≝ ξ − ξ',
!(# ≝ ξ̇ − ξ̇'. (72) 

 

The desired virtual controls *#' ∈  ℝ0, ξ = {1, 2, 3}  of the 

position motion can be derived similarly to the attitude motion. 

Then, *#' are designed as 

*#' ≝ −4# − 5# − 67#89: + ξ̈' + >?#. (73) 

 

where ��
� ≝  − !"#sign$%&�' −  ("#sign)%&�' , &�(+) ≝ -(ξ(+) +

∫ 12�(+) + 3�(+)45678 , 2�(+) ≝  !�sign9: ;-!�< +  (�sign9= ;-(�< , and 

3�(+) ≝  >!�sign9?: ;-!�< +  >(�sign9?= ;-(�<. Next, the lift control and 

the reference attitude signals need to be computed. Thus, by 

combining the expressions of A� from (28) with those of A�B in 

(73), and after some manipulations, the lift control �C and the 

desired roll and pitch angles (DB , FB) can be obtained as: �C ≝
GHI%AJB'( + %AKB'( + %ACB − g'(

, DB ≝ arcsin L− MH
NO %AJBsPB −

AKBcPB'Q, and FB ≝ arctan L !ROSTU %AJBcPB + AKBsPB'Q. 
3.3 Observer Design  

The unknown disturbances 5VWXY, 5�WXY  are considered 

sufficiently smooth (differentiable) uncertain functions where 

their first-time derivatives are bounded, as shown in the 

following assumption. 

 

Assumption 2. The disturbances 5VWXY, 5�WXY  are matched 

Lipschitz continuous, i.e., applied in the control channel with 

bounded derivatives satisfying Z5̇VWXYZ ≤ 5̅V and  Z5̇�WXYZ ≤ 5̅� 

where 5̅V , 5̅� ∈ ℝ` are known Lipschitz constants.  

 

Remark 11. The observer designed for a surface vessel in [64] 

is inspired by the work conducted by Basin et al. in [65]. 

Although the interesting work [64] provides promising results, 

some shortcomings are found in the observer part of this work: 
 

(i) Stability proof and convergence-time: A through stability 

proof for the convergence of the observer is not provided 

explicitly. Moreover, the stability analysis of the observer with 

the structure (13) in [64] cannot be conducted. The stability 

study should be conducted in two consecutive steps. Therefore, 

to achieve strict stability and convergence analyses, a switching 

function bN is necessarily introduced in the observer dynamics. 

Thus, the convergence-time of the observer would be more 

accurate than the one given by expression (20) of [64];  
 

(ii) Parameters selection: The condition on parameters tuning 

for the finite-time part of the observer is not provided in a strict 

way. These parameters are only assumed to satisfy that a given 

square matrix and its characteristic polynomial are Hurwitz. In 

contrast to that, we provide a tuning condition based on the 

bounds of the perturbation 5̅V , 5̅� given in Assumption 2, which 

is more practical. 
 

(iii) Rejection of non-vanishing perturbation during the 

convergence: The introduction of the term dsign(e − ê) in the 

right-hand side of equation 3 in expression (19) of [64] and [66] 

has not been justified by the authors. It might be used to cancel 

the disturbances. To reduce the chattering effect of the term dsign(e − ê), the authors have replaced the sign function with 

a hyperbolic tangent function. However, this method does not 

seem to be very accurate in dealing with the non-vanishing 

perturbation 5�WXY. Non-vanishing means that the disturbances 

do not become zero when the error vanishes. In contrast to that, 

we have employed the Equivalent Control Method (ECM) to 

approximate and reject the non-vanishing perturbation during 

the convergence of the observer. 

 

In the following, an Enhanced Fixed-time Extended State 

Observer (EFESO) is designed for the position dynamics. 

Similarly, another observer can be derived for the attitude 

system. Let the estimation error be defined as -!hj ≝ ξ − ξk . 

Given the perturbated translational dynamics described in (27), 

the EFESO is designed as 
 

⎩⎨
⎧ṗ!� = p(� + u!�v(+)signw:%-!hj' + u̅!�%1 − v(+)'signy:%-!hj',                                              

ṗ(� = pz� + u(�v(+)signw=%-!hj' + u̅(�%1 − v(+)'signy=%-!hj' + A�,                                     
ṗz� = uz�v(+)signw{%-!hj' + u̅z�%1 − v(+)'signy{%-!hj' + 15�WXY4|}~.                                  

 

 (74) 
 

The term 15�WXY4|}~ represents the approximation of the 

disturbances 5�WXY by the ECM. It is defined as 
 

15�WXY4|}~ ≝ 15̅�sign%-!hj'4|}~ ≡ 5�WXY, (75) 

 

where 15̅�sign%-!hj'4|}~  is an average value of the 

discontinuous function 5̅�sign%-!hj' . For the implementation 

reason, 15�WXY4|}~ can be approximated by a low-pass filter as 
 

15̇�WXY4|}~ ≈ 16̅ %5̅�sign%-!hj' − 15�WXY4|}~'. (76) 

 

 The exponents w� , � = 1,3>>>>  are selected as follows: w� ∈(0,1), � = 1,3>>>>  satisfy the recurrent relations w� = �w> − (� −1), � = 2,3>>>>, and w� = �� where �� ∈ (1 − #$, 1) for a sufficiently 

small #$ > 0. The exponents %& , ' = 1,3���� are selected as follows: %& > 1, ' = 1,3���� , satisfy the recurrent relations %& = '%̅ − (' −1), ' = 2,3����, and % = %̅  where %̅ ∈ (1,1 + #-) for a small #- >0. The parameters .&/, ' = 1,3���� are selected based on the bound 

of the perturbation as .�/ = 24̅/(� $⁄ ) , .6/ = 1.5.$/ , .$/ = 1.14̅/ . .̅&/, ' = 1,3���� are chosen such that the following matrix is Hurwitz 
 

9:;< ≝ @−.̅�< 1 0−.̅6< 0 1−.̅$< 0 0A. 
 

Theorem 2. The observer (74) can precisely estimate the 

velocity B of the quadrotor system and the lumped disturbanceS 
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�����  within a fixed-time, i.e., !"� = �#���� ≡ �����  and !%� =&' ≡ &. 

 

Proof. Define the observation errors as  
 

()*+, ≝ ξ − ξ#,              )%+, ≝ & − &',           )"+, ≝ ����� − �#����, (77) 

 

After differentiating (77) versus time, we get the dynamics of 

the observation error as 
 

⎩⎨
⎧)̇*+, = )%+, − 6*�7sign89:)*+,; − 6̅*�(1 − 7)signA9:)*+,;,                          )̇%+, = )"+, − 6%�7sign8B:)*+,; − 6̅%�(1 − 7)signAB:)*+,;,                          )̇"+, = �̇���� − C�����D|EF − 6"�7sign8G:)*+,; − 6̅"�(1 − 7)signAG:)*+,;. 

 (78) 
 

For I ≤ KL , we have 7 = 0  and C�����D|EF → �̇���� . Thus, 

system (78) becomes 
 

()̇*+, = )%+, − 6̅*�signO9:)*+,;,)̇%+, = )"+, − 6̅%�signOB:)*+,;,)̇"+, = −6̅"�signOG:)*+,;.         (79) 

 

Similar to (40), the system (79) can be written in the following 

state-space form 
 Ṗ(I) = QPP(I) + SPTP(I). (80) 
 

where P(I) = C)*+,(I) )%+,(I) )"+,(I)DU
, PV =C)*+,(0) )%+,(0) )"+,(0)DU

 are ICs of the system, and QP, SP , TP are given as 
 

QP = W0 1 00 0 10 0 0X , SP = W1 0 00 1 00 0 1X , TP = ⎣⎢⎢
⎡−6̅*�signO9:)*+,;−6̅%�signOB:)*+,;−6̅"�signOG:)*+,;⎦⎥⎥

⎤
.  

 

We can select a LF as 
 _P:`P,*; ≝ P̀,*U (P)aP� P̀,*(P). (81) 
 

where  P̀,*(P) ≝ b)*+, :)*+,; 9c9 :)*+,; 9cBdU
. The symmetric 

positive definite matrix aP  satisfies the ALE aP�QP + QPUaP� =−eP  with eP being a positive definite matrix. Since the matrix QP is Hurwitz, the linear system Ṗ(I) = QPP(I) is AS. Since the 

matrix aP� is defined as the solution of aP�QP + QPUaP� = −eP�, the 

function _P(P) ≝ PUaP�P  is a LF for system Ṗ(I) = QPP(I) . 

Moreover, the following inequality is obtained for the time 

derivative of _P(P) 
 _̇P(P) = ṖUaP�P + PUaP�Ṗ = PU fQPUaP� + aPQPh P                                               = −PUeP�P < 0. (82) 

 

The inequality _̇P(P) = −PUeP�P < 0  remains valid for the 

function _P: P̀,*; given in (81). Hence, the system (80) is AS. 

The right-hand side of  (80) is a homogeneous vector field of 

degree kP = A̅ − 1 > 0 w.r.t. dilations mo,P = pA̅ − (p − 1), (p =1, qrrrrr), which implies the uniform convergence of system (80) 

[67]. By following the guidelines of Definition 4 given above in 

Section 2.1.1 and Theorem 6.2 in [44], it can be obtained that 

the LF _P: P̀,*; = P̀,*U (P)aP� P̀,*(P)  is homogeneous in P =C)*+, )%+, )"+,DU
 of degree t" =  2 >  max(−k", 0) , if A̅  is 

sufficiently close to 1, and its full time derivative _̇P: P̀,*; is 

homogeneous in P = C)*+, )%+, )"+,DU
 of degree ty = t" +kP =  1 + A̅ >  0 , w.r.t. the same weights mo , (p = 1, qrrrrr) . 

Applying Lemma 2 with _% = _̇P: P̀,*;, we get 
 _̇P: P̀,*; ≤ −zP_Pc{}9B : P̀,*;,  (83) 
 

Considering the continuity of the right-hand side of (80) w.r.t. �̅, the following inequality holds 
 !̇#$%#,&' ≤ − *+-./0#123*+45/6#12 !#789:; $%#,&'. (84) 

 

if �̅  is chosen in the interval (1,1 + ?@)  for a small ?B > 0 . 

Therefore, the constant E# can be assigned as E# = *+-./0#123*+45/6#12. 
 

When G = HI, the LF !#$%#,&' satisfies 
 

!#(HI) ≤ JK8L&@ *+-./0#12*+45/6#12 HI + !#:M78; (0)N ;:M78
, 

              < JK8L&@ *+-./0#12*+45/6#12 HIN ;:M78
. 

 

For G > HI, we have Q = 0 and system (78) becomes 
 

RṠ&TU = S3TU − V&WsignX:$S&TU',Ṡ3TU = SBTU − V3WsignX;$S&TU',ṠBTU = −VBWsignXY$S&TU'.         (85) 

 

A LF can be selected as 
 !#$%#,3' ≝ %#,3\ (#)]#W%#,3(#). (86) 
 

where  %#,3(#) ≝ ^S&TU $S&TU' :_: $S&TU' :_;`\
 

The time derivative of  !#$%#,3' is given as 
 !̇#$%#,3' ≤ − *+-./0#123*+45/6#12 !#_89:; $%#,3'. (87) 

 

Since the exponent ab is smaller than 1, the LF (87) with the IC !#(HI) is guaranteed to converge to zero in finite-time. Overall, 

system (85) can converge to the origin within fixed-time upper 

bounded as 
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HTU,W ≤ HTU,Wcde = 3*+45/6#12*+-./0#12 3&La8 J�8L&3 *+-./0#123*+45/6#12 HIN:Ma8:M�8 + HI. (88) 

 

Thus, completing the proof.                                                       ■ 

3.4 Stability Analysis of the Feedback-Loop Control 

System 

In this subsection, the overall stability of the inner and outer 

tracking loops is investigated. Besides, the observer-controller 

dynamics are jointly analyzed to assure the UUB of all signals 

in the feedback system. 

 

Theorem 3. Consider the nonlinear perturbated attitude system 

(27) and the designed control law �� given in (67). Then, the 

attitude states reach the sliding surface !�(64) in fixed-time and 

consequently converge to the origin in a uniformly bounded 

settling-time by sliding along !� = 0. 

 

Proof. The first step proves that the reaching time is uniformly 

bounded, i.e., the states’ trajectories reach the sliding manifold 

!� = 0  in fixed-time. After reaching the sliding surface, the 

second step demonstrates the fixed-time convergence of the 

tracking error to the origin, i.e., "#
�($) → 0  along with the 

sliding manifold !� = 0. 

 

Step 1. Recalling the dynamic of !� (64) from (69). Putting 

&̈ from (26) into (69), we get 
 

!̇� = +�
, + .�

,�� + /�
123 − &̈5 + 6� + 7� , (89) 

 

Replacing the designed control law �� by its expression given 

in (67) into (89), we get 
 

!̇� = �9
� + /�

123 − /:�
123, (90) 

 

Moreover, the lumped disturbances /:�
123 can be estimated by 

the EFESO, hence /�
123 − /:�

123 = 0. Thus, for $ ≥  >?@ we get 
 

!̇� = �9
� = −A#

BCsignD(!�) − AE

�!sign"(#$),      (91) 
 

Defining the positive-definite LF as &$(#$) ≝ #$* 2⁄ . After 

differentiating &$(#$) and replacing (91), it yields 

&̇$(#$) = #$#̇$ = #$.−01
�!sign3(#$) − 0*

�!sign"(#$)4,
           = −01

�!#$sign3(#$) − 0*
�!#$sign"(#$),           (92) 

 

By noting that #$sign3(#$) = |#$||#$|3  and #$sign"(#$) =
|#$||#$|", we have 
 

&̇$(#$) ≤ −01
�!|#$|361 − 0*

�!|#$|"61
 

              ≤ −01
�! 72 1

2 #$*7
361

* − 0*
�! 72 1

2 #$*7
"61

*             

   ≤ −201
�!&$

361
* − 20*

�!&$
"61

* .                 
 (93) 

 

where the power rule is used in the second step. Let :; ≝
(: + 1) 2⁄  and >̅ ≝ (> + 1) 2⁄ . Let : > 1 and > ∈ (0,1), thus 

(: + 1) 2⁄ > 1  and (> + 1) 2⁄ < 1 . By using Lemma 1, it 

results that the states’ trajectories reach the sliding manifold 

#$ = 0  in fixed-time upper bounded as  DE ≤ DEFGH ≝
1

*IJ
K!(3LM1) + 1

*IN
K!O1M"LP.  

 

Step 2. In this step, we demonstrate the boundedness of all 

signals within the closed-loop system. Thus, we show that the 

observation error ���� ≝  !"#$ −  &!"#$ , the sliding variable '! , 

and the tracking errors will not drive the closed-loop system to 

instability, i.e., (�)! , �*!) ↛ ∞. Recalling the errors dynamics 

given in (63). The dynamics of the feedback-loop can be written 

as 
 

/�̇)! = �*! ,                                           
�̇*! = 1!2 + 4!25! +  !"#$ − 6̈8 . (94) 

 

Considering the dynamics of the sliding surface designed in 

(64), the perturbated system (94) can be rewritten as 
 

/�̇)! = �*!,                                   
�̇*! = '̇! + ���� − :! − ;! . (95) 

 

From this expression, we can note that the dynamics of the 

sliding function '̇! and the estimation error ���� are part of the 

error dynamics �̇*!. Let the following candidate LF be defined 

for the feedback loop-system (95) 
 

<('! , �)! , �*!) ≝ 1
2 ('!* + �)! + �*!), (96) 

 

The time derivative of < along the trajectories of system (95) is 

obtained as 
 <̇ ≝ '!'̇! + �)!�̇)! + �*!�̇*! 

 

= '!@−A)BCsignD('!) − A*BCsignE('!)F + �)!�*! +
G�*! H−A)BCsignD('!) − A*BCsignE('!)I + �*!���� −
�*!A)!signJK(�)!) − �*!A*!signJL(�*!) − �*!AM)!signJNK(�)!) −
�*!AM*!signJNL(�*!)O  
 

    ≤ −A)BC|'!| − A)BC|'!||'!| − A*BC|'!| − A*BC|'!||'!| + |�)!||�*!| −
A)BC|�*!| − A)BC|�*!||'!| − A*BC|�*!| − A*BC|�*!||'!| + |�*!|Q����Q −
A)!|�*!| − A)!|�)!||�*!| − A*!|�*!| − A*!|�*!||�*!| − AM)!|�*!| −AM)!|�)!||�*!| − AM*!|�*!| − AM*!|�*!||�*!|,  
 

By employing Young’s inequality, it yields 
 

<̇ ≤ −A)BC )RBCL
* − A)BC *BCL

* − A*BC )RBCL
* − A*BC *BCL

* + STKCULRSTLCUL
* −

A)BC )RSTLCUL
* − A)BC STLCULRBCL

* − A*BC )RSTLCUL
* − A*BC STLCULRBCL

* +
STLCULRHTVWXIL

* − A)! )RSTLCUL
* − A)! STKCULRSTLCUL

* − A*! )RSTLCUL
* −
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���
��� !�"��� !�

� − �$%� %"��� !�
� − �$%� ��& !�"��� !�

� − �$�� %"��� !�
� −

�$�� ��� !�"��� !�
�   

 

    ≤ )−3�%* − 3��* − �%* − ��* + * �� + )1 − �%� − �$%�+ ��& !�
� +

)−2�%* − 2��* + 2 − 2�%� − 3��� − 2�$%� − 3�$��+ ��� !�
� +

-�.&/ -�.�/ "0�4567�-.& -.� -.$ & -.$ �   
�   

     ≤ −89: + ;9. (97) 
 

where  89 ≝ max)1 − �%� − �$%� , −2�%* − 2��* + 2 − 2�%� − 3��� −2�$%� − 3�$�� , −3�%* − 3��* − �%* − ��* + ∈ ℝ+ , and ;9 ≝
max @-�.&/ -�.�/ "��456!�-.& -.� -.$ & -.$ �   

� A < ∞ . The expression (97) 

can be associated with a first-order linear differential equation 

with constant coefficients. It can be verified that the solution of 

(97) is given as 
  

:(E) ≤ exp�−89(E − EG)!:(EG) + ;9exp(−89E) H exp(89I)JIK
KL

 

          = exp�−89(E − EG)!:(EG) + ;9exp(−89E)89 �exp(89E) − exp(89EG)! 

          = exp�−89(E − EG)!:(EG) + ;989 01 − exp�−89(EG − E)!7. 
 

Then by calculating the limit of :(E)  we get  limK→P :(E) ≤ QRSR.  Thus :(E)  is convergent to a finite bounded 

value 
QRSR ∈ [0,∞) . Consequently, it can be concluded that 

:(U� , V%� , V��)  and so U� , V%�, V��  will not escape to infinity. 

Hence, it follows that the tracking error is UUB, which ensures 

the boundedness of the signals of the feedback system. 
 

Step 3. When the sliding motion occurs (i.e., U� = 0), we 

have U̇� = 0. Hence, the control input in (67) becomes 
 

X� = %
Y Z \−]� − ^� − _�Z + `̈c − Jd�fghj. (98) 

 

Given the dynamics of the tracking error from (94) and 

substituting (98) into them, we get 
 

@V̇%� = V2̀ ,                 V̇�� = −]� − ^� . . (99) 

 

By utilizing the proposed Corollary 1, it can be concluded that 

the error dynamics (99) settle at the zero equilibrium, i.e.,  (V%�, V��) → 0 , during the sliding motion U� = 0  in a fixed 

sliding-time k*. The upper bound on the global settling-time is 

given as k� ≤ k�hno ≝ kqr,� + ks + kth , where kqr,�  is the 

convergence-time of the observer, ks is the reaching-time of the 

sliding manifold during the reaching phase, and kth  is the 

sliding time during the sliding mode (phase). kqr,�, ks, kth are 

defined as 
 

⎩⎪⎪
⎨
⎪⎪⎧kqr,� ≤ kqr,�hno ≝ �z{|}�~� !

z{����� !
�

%-�� ���-%
�

z{����� !
�z{|}�~� ! k��&���&��� + k� ,              

ks ≤ kshno ≝ %
�.&/ (��-%) + %

�.�/ �%-��!,                                                    
kth ≤ kthno ≝ �

%-�
z{|}�~& !
z{����& ! �hno

&��� (���) + ��
���� !"#$%&'

(*

!",-%.'
(*
/012
�3
�45
3� (78

�).

. 

 

Thus, completing the proof.                                                       ■ 

 

Remark 12. By following the same arguments in the proof of 

Theorem 3, it can be demonstrated that the tracking errors of the 

position system settle at the origin :�
; = <:�> :�

? :�@A
B
→ 0 

along E; = 0 within fixed-time upper bounded as F; ≤ F;
012 . 

Furthermore, it is worth to mention that the reported works on 

homogeneous-SMC of quadrotor system do not provide an 

explicit estimation of the sliding time HIJ, i.e., [8] [9] [10] [11] 

[12]. The convergence proofs of these works are based on the 

bi-limit homogeneity approach, which cannot estimate the 

settling-time or its upper bound. 

4 Simulation Results and Discussions 

To demonstrate the effectiveness of the developed controller, 

a processor-in-the-loop (PIL) simulation is performed. In the 

PIL scheme, the C++ code of the controller runs onboard the 

Pixhawk® autopilot hardware, while the aircraft model is 

simulated in Simulink® in the host computer (see Fig. 28). The 

nominal physical parameters of the quadrotor are summarized 

in Table 1. The moments of inertia have been estimated by the 

bifilar pendulum experiment, as depicted in Fig. 4 [10]. The 

control parameters are chosen based on Remark 10 as follows:  
 

(i) Attitude controller: ��� =  ��� = ���� = ���� = 4, ��
 =3, �!� = �!� = ��!� = ��!� = 3, �!

 = 2 , ��
"# =  ��

"$ = �!
"# =

 �!

"$ =  8, �
�

"%
= �

!

"%
= 4.  

 

(ii) Position controller: ��
& = ��

'
= 1.75, ��

( = 3.2, �!
& = �!

'
=

2.28, �!
( = 1.2, ��

") = �
�

"*
= ��

"+ = �!
") = �

!

"*
= �!

"+ = 1.2. 

The parameters tuning is as follows: for instance, the larger the 

value of ��
� = ���

� the faster is the rise time, but more overshoot 

and oscillations appear during the response’s transient phase, 

leading to larger settling-time. The parameters �!
� = ��!

� act as 

oscillations damper. Thus, a tradeoff should be made to attain 

the best response behavior.  
 

The exponents are chosen as:  
 

(i) Reaching control: - = 1.2, / = 0.8.  
 

(ii) Equivalent control: �� = 0.25, � = 0.75, �� = 0.6, �� =

0.75, �� = 0.25, �̅ = 1.25, �̅� = 1.67, �̅� = 1.25. 
The parameters of the observer are selected to be: �! = 0.3, �" =

0.2,#$ = 0.7,%$ = 1.2, &' = 0.1, (�
)
= 4.3, (�

)
= 6.96, (!

)
= 11, (̅*

)
=

5, (̅*
)
= 10, (̅*

)
= 12, +̅) = 10. 
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Table 1. Nominal parameters of the vehicle.

Parameter Value Unit

-/ 1.80 kg
8 0.225 m
g 9.81 m/s�

;<<
/ 0.0232 kg.m�

;>>
/ 0.0249 kg.m�

;??
/ 0.0342 kg.m�

Fig. 4. Bifilar pendulum setup for estimating the moments of inertia.

4.1 Validation of the Fixed-Time Convergence 

To confirm the theoretical findings regarding the fixed-time 

convergence of the designed controller, two scenarios for 

different initial positions of the quadrotor are considered as 

Case 1: ξA = [20 30 0]B
C m; Case 2: ξA =

[−50 −60 8]B
C m. Simultaneously, initial states of 

quadrotors are chosen as FA = [0 0 0]B
C m/s, GA =

[0 0 0]H
C deg, IA = [0 0 0]H

C deg/s. To illustrate the 

improvement attained with the proposed fixed-time control 

approach, we have conducted a comparative study with some of 

the recently proposed fast fixed/finite time convergent 

controllers, i.e., [9] [59] and [68]. The gains of the controllers 

are tuned as best as possible according to the conditions that 

guarantee a good transient response, precise reference tracking, 

and quick disturbance rejection.

Unlike the comparative study in [9], we have considered the 

measurement noise (Fig. 8) and parameters variations in the 

simulation process. This aims to make the simulation process 

closer to reality so as to better assess the performance of the

controllers. First, the validation of the fixed-time convergence 

is conducted for the nominal case of the system’s parameters. 

Second, parameters uncertainties and noise are considered.  

4.1.1 Fixed-Time Convergence Under Nominal Values of 

the System’s Parameters 

Fig. 5. Convergence of position tracking error under nominal values. 

                  
1 Data related to [9] and [68] is taken from Table 2 of [9].

From Fig. 5, it is observed that the tracking error is stabilized 

at the origin in the same settling-time even different initial 

positions are set for the quadrotor. This result confirms the 

valuable fixed-time convergence property of the developed

control law. The convergence-time of the quadrotor to the 

desired position is not affected by its initial positions or how far 

it is from the desired set-point. However, in practice, 

convergence-time is still constrained by the maximum 

admissible physical velocities of the motors (see Remark 13

below). A comparison between our controller and the 

controllers [9] [59] [68] regarding the settling-time is displayed 

in Table 2. Compared to the finite-time controllers [59] [67], the 

proposed controller exhibits enhanced performance since (i) the 

convergence rate has been reduced considerably, (ii) the 

settling-time remains almost the same and it shows weak 

dependence on the ICs. Compared to the fixed-time controller

[9], the convergence-time has been improved. These results 

verify the prominent feature of the presented control algorithm

in terms of an enhanced and uniform convergence rate. The 

estimations of lumped disturbances in both translational and 

rotational subsystems are depicted in Fig. 6 and Fig. 7, 

respectively. The observer can precisely estimate the 

disturbances besides reconstructing the unmeasured velocity.

Remark 13. A faster settling-time for larger initial positions is 

achieved at the expense of the larger velocity of the multirotor.

This can surpass the admissible physical constraints imposed on 

the motors’ velocities. In practice, a tradeoff should be made 

between velocity/motors constraints and a fast convergent-time

since no physical system has infinite velocity.

Table 2. Convergence-time for different initial positions of the quadrotor.

Control

strategy

Convergence 

rate

Initial 

positions

Performance index

Convergence-time (s)

Controller [59] Finite-time 
Case 1 15
Case 2 21

Difference 6

Controller [68] Finite-time

Case 1 12

Case 2 14

Difference 2

Controller [9]1 Fixed-time
Case 1

12
Case 2

Proposed Fixed-time
Case 1

10.22
Case 2

�!! estimation �"" estimation
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Fig. 6. Estimations of lumped disturbances in the inner attitude-loop. 

 

 

 

 
Fig. 7. Estimations of lumped disturbances in the outer position-loop. 

4.1.2 Fixed-Time Convergence Under Parameters 

Variations and Measurement Noise 

a) Parametric uncertainties: To verify the claims of 

Assumption 1 and Remark 3, uncertainties of 20% and 30% are 

considered on the mass and the moments of inertia as:  �∆ =

+0.2�� , !""
∆ = +0.3!""

� , !##
∆ = −0.3!##

� , !%%
∆ = +0.3!%%

� , i.e., 

� = 2.16 kg , !"" = 0.0302 kg m' , !## = 0.0174 kg m' , 

!%% = 0.0445 kg m'. 
 

 

b) Measurement noise:   

b.1) Gyroscope signal:  ((*) = (-(*) + (/8 + 9(*)      rad/s , 

where ( = [; < >]?
@   rad/s is the final signal used in control, 

(- is the true measurement in rad/s, (/8 is the measurement bias 

in rad/s, 9(*) is a random noise with the standard deviation 

9AB  in rad/s and the mean 0, i.e., 9 = 9ABrand(⋅) , where 

rand(⋅) generates a random number in the interval (0,1).  
 

b.2) GPS and barometer signals: ξ(*) = ξE(*) + rand(⋅)ξF     m, 

where ξE is the real measurement and ξF is the position deviation 

error. 
 

 
Fig. 8. Measurement noise. 

 

 

Fig. 9. Convergence of position tracking error under parameters variations and 
measurement noise.  

 

The evolution of the position tracking error in the presence of 

sensors’ noise and parameters variations is depicted in Fig. 9.  

The convergence-time of the proposed control algorithm 

remains almost the same with a small reasonable increase of 

0.63 s compared to the convergence-time in Table 2, i.e., 10.22 

s. This confirms that the convergence-time of the proposed 

control law is not largely affected by measurement noise and 

parametric uncertainties of 20% on the mass and 30% on the 

moments of inertia. However, large variation beyond these 

limits may lead to a significant increase in the convergence-

time. 

4.1.3 Fixed-Time Convergence of the Attitude States 

To better illustrate the fixed-time feature for the rotational 

subsystem of the quadrotor, three scenarios for different initial 

states of the roll motion are considered as Case 1: {�� =

10 deg, �� = −70 deg/s} ; Case 2: {!� = −30 deg, �� =

300 deg/s} ; Case 3: {!� = −50 deg, �� = 0 deg/s} . A 

Comparison of convergence-time between our controller and 

the controller in [59] is displayed in Fig. 10. This figure 

indicates that the convergence-time of the finite-time control 

law given in [59] grows with the increase in the values of the 

ICs or deviation of the values from the origin. Hence, the ICs 

dictate the upper limit on the convergence time of the finite-time 

stable control law under discussion. We can notice the ability of 

the designed fixed-time control law in terms of convergence of 

the state. Compared to the control law [59], it is observed that 

the convergence-time remains fixed at 1.12 s for different ICs 

even the control parameters for both control schemes are set to 

demonstrate the best performance. A comparison between our 

controller and the controller [59] regarding the settling-time is 

displayed in Table 3. Similar to the previous comparative study 

on translational position, the proposed control algorithm 

exhibits faster fixed convergence-time of the roll angle within 

the physical limits on the angular velocity of the quadrotor. The 

plot of the phase portrait of the plant states !, � is depicted in 

Fig. 11, while the time evolution of the states !, � , and the 

sliding surface "# is displayed in Fig. 12. It can be seen from 

these two figures that the states and the sliding surface converge 

to zero. Hence the states’ trajectories reach the sliding manifold 

"# = 0 where they are confined and then driven to the origin by 

sliding along "#. 

 
Table 3. Convergence-time for different ICs of the roll states. 

 

 

Control 

strategy 

Convergence 

rate 

Initial 

positions 

Performance index 

Convergence-time 

(s) 

  

Controller 
[59] 

Finite-time  

Case 1 1.81 

Case 2 2.45 

Case 3  2.79 
    

Proposed Fixed-time 

Case 1 

1.12 Case 2 
Case 3 
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Fig. 10. Comparisons of convergence-time of the roll angle for different ICs. 
 

 
Fig. 11. Phase portrait of the roll states � and !. 

 

 

Fig. 12. Time evolution of the states �, �, and sliding surface !": Case 1. 

4.2 Robustness Evaluation in Cartesian Trajectory 

Tracking  

To evaluate the robustness and disturbance rejection 

capabilities of the proposed flight control systems (FCS), a 

comparative study is performed by considering four FCSs (see 

Table 4). FCS 1 is a commercially available flight controller of 

the Pixhawk® autopilot. FCS 2 [21] combines the classical linear 

SMC and the backstepping technique. FCS 3 combines two 

finite-time controllers, namely, Continuous Nonsingular 

Terminal Sliding Mode Control (CNTSMC) from [59] and a 

Continuous Twisting Controller (CTC) from [14]. FCS 4 is the 

proposed flight controller being based on the FNHNTSMC. 
 

Table 4. Different FCSs used in Cartesian trajectory tracking. 
 

FCS Position controller Attitude controller 

FCS 1 (Pixhawk® 

autopilot) 
PID PID 

FCS 2 [21] IBSMC IBSMC 

FCS 3 [59] + [14] CNTSMC [59] CTC [14] 
FCS 4 FNHNTSMC FNHNTSMC 

 

The Cartesian reference trajectory is as follows 
 

ξ� = [�� �� ��]�
 

= [6 sin(0.2") 6 sin(0.2")0.5 cos(0.2") 8 + 2 sin(0.2")]�
  m. 

 

 In Order to test the FCSs in the most challenging situation 

that could be encountered in a real flight scenario, disturbances, 

uncertainties, measurement noise, and measurement errors are 

simultaneously considered in the numerical simulation as: 
 

a) External disturbances: We suppose that the aircraft enters a 

windy area at " = 32 s during the flight mission. The external 

perturbations #$
%&' affecting the position states are generated by 

a more realistic Dryden wind model compared to the ordinary 

sin(⋅)  wave-based models. The components #$
%&'  along the 

three axes ξ ∈ {�, �, �} are expressed as [69] 
 

#$
%&'(") ≝ −4�

$ 79$(") − 9:,$(");
<

sign79$(") − 9:,$(");. 
 

A specific MATLAB® bloc can generate the Dryden wind, i.e., 

“Dryden Wind Turbulence Model (Continuous)”. Since the 

quadrotor has coupled dynamics, the attitude states are 

inevitably affected by the Dryden wind being applied to the 

position dynamics. Fig. 13 presents the wind velocities. At 

maximum, the wind gusts can reach a velocity of 12 m/s, which 

is reasonable in practice. 
 

b) Internal disturbances: b.1) Nonparametric uncertainties: 

This is represented by the unmodeled dynamics accordingly to 

Assumption 1. b.2) Parametric uncertainties: Similar to 4.1.2. 
 

c) Measurement noise: Similar to 4.1.2. 

 

The simulation results are presented from Fig. 14 to Fig. 25. 

Fig. 14 presents the 3-D flight trajectory tracking for the 

quadrotor with different FCSs, and the corresponding 2-D 

trajectory tracking profiles are depicted in Fig. 15. The 

responses of the position variables are depicted in Fig. 16. A 

preliminary analysis of the graphs in  Fig. 14, Fig. 15, and Fig. 

16 shows that the proposed FCS enjoys better tracking 

capabilities compared to the other FCSs. However, the 

difference may still be unclear from these graphs. Therefore, by 

inspecting the position tracking errors in Fig. 17, it can be 

observed that the suggested FCS exhibits accurate tracking and 

better disturbance rejection than the other FCSs. Noticeable 

ripples can be seen in the graphs of the FCS 3. This can be 

explained by the existence of the term (� + �|��|)sign(�) in 

the control law (35)-(38) of [59]. Since the author of [59] did 

not provide the tuning conditions of the parameters �, � ∈ ℝ#, 
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we noticed that the larger are �, �, the robust is the system, but 

this leads to an undulatory behavior in the position states. Thus, 

the tuning of these two parameters should be made by 

considering a robustness-chattering tradeoff. FCS 2 [21] is 

found to be sensitive to large external disturbances. This 

controller provided excellent results for wind speed less than 2 

m/s, as shown in simulation Scenario III of [21]. However, in 

the actual challenging flight conditions in the presence of other 

perturbations such as parameters variation, the controller being 

not observer-based, it cannot counteract the strong lumped 

disturbances. Moreover, from Fig. 5(c) of [21], the controller 

does not accurately track the pitch angle. This is due to the 

sensitivity of the backstepping technique to the matched 

uncertainties even it compensates theoretically exactly 

uncertainties decreasing together with the state variables (good 

attenuation of unmatched disturbances). The Pixhawk® 

controller (FCS 1) is more affected by disturbances with large 

tracking errors compared to the other FCSs. Overall, the 

proposed FCS provides an enhanced disturbance rejection 

feature. This improved robustness is due to the adopted AADC 

that integrates a robust SMC law and a disturbance observer. 

The Integral-Square-Error (ISE) and the Root-Mean-Square 

Error (RMSE) are calculated to deliver an accurate quantitative 

evaluation. These indexes are given as 
 

RMSE = �1� ! "#$1ξ &'"2(
)*+                 , ISE = . $1ξ (0)245

4'
60. 

where  ξ = {8, 9, :}, � is the dimension of the $+; array. The ISE 

and RMSE results are given in Table 5. Compared to the other 

controllers, the analysis of these results demonstrates that the 

proposed controller assures accurate tracking for all 

translational states of the quadrotor. This result confirms the 

superiority and effectiveness of the suggested control method 

regarding precision and disturbance rejection. For better 

understanding, the results of Table 5 are represented by bar 

graphs in Fig. 18 (ISE) and  (RMSE) Fig. 19. 

 
Table 5. Analysis of RMSE and ISE for the trajectory tracking (Simulation 
results). 
 

FCS 

Performance index 

RMSE ISE $+< $+> $+? $+< $+> $+? 

FCS 1 (Pixhawk® autopilot) 0.350 0.238 0.410 9.800 4.549 13.43 

FCS 2 [21] 0.211 0.122 0.200 3.575 0.819 3.216 

FCS 3 [18], [59] 0.164 0.101 0.178 2.171 1.198 2.544 

FCS 4 (Proposed) 0.113 0.074 0.100 1.029 0.438 0.813 

 

The responses of the attitude variables of the proposed 

FNHNTSMC are depicted in Fig. 20. It follows from this figure 

that the designed attitude controller ensures precise tracking of 

the reference signals.  

The observation outputs are displayed in Fig. 21, Fig. 22, and 

Fig. 23, respectively. Fig. 21 and Fig. 22 display the estimated 

lumped disturbances along the three axes of translational and 

rotational systems. It is evident from these figures that the 

perturbations have been timely identified, and thus enhancing 

the robustness of the control system against strong lumped 

disturbances. It can be observed from Fig. 23 that the observer 

delivers an accurate estimation of the linear velocity in a short 

time. Along with the estimation of the velocities, an output-

feedback control is achieved. Thus, the proposed control scheme 

relying on unmeasurable velocities is robust against the 

accelerometer’s faults. This important finding resulting from the 

developed velocity-free control circumvents the deficiency of 

the full-state feedback-based controllers. Fig. 24 and Fig. 25 

display the angular velocities of the motors for FCS 4 

(proposed) and FCS 2, respectively. These velocities are related 

to the control inputs by expression (9). Thus, they indicate the 

chattering propagation from the control signals to the physical 

actuators (brushless motors). Owing to the designed continuous-

SMC control law, the angular velocities related to the proposed 

control signal are less corrupted by the chattering compared to 

the FCS 2 being based on the classical SMC (Fig. 25). Such a 

control law allows to significantly alleviate the high frequencies 

in the control signal, avoiding the undesirable shaking of the 

quadrotor, which may lead to instability. It can be observed from 

the plot of Fig. 25 that the FCS 2 demonstrates a high oscillatory 

motors’ signal in comparison with the proposed continuous-

SMC control law. Further characterization of the performance 

comparison among the controllers under discussion is based on 

the Integral of the Absolute value of the Derivative of the input � (IADU). This criterion is defined as IADU = ∫ "#$%(&)
#& " '*+,

+-
. 

The IADU index for the thrust force �/ of FCS 2 and FCS 4 is 

as follows: IADU[(�/)012 4] = 5.12, IADU[(�/)012 8] = 1.15. 

To precisely quantify the chattering alleviation, the Relative 

Percentage Difference (RPD) criterion is employed to 

characterize the IADU criterion. The RPD is defined as  
 

RDP012 8
�9 ≝

|IADU012 4 − IADU012 8|
IADU012 4

100  % ↓ .    
 

The RDP indicates that the disrupting chattering of traditional 

SMC in the IBSMC of FCS 2 has been noticeably alleviated by 

the proposed continuous-SMC scheme (RDP012 8
�9 = 77.53% ↓). 

 

 
Fig. 13. Dryden wind model represented by the velocities along the three axes. 

 

 
 

Fig. 14. 3-D trajectory tracking for different FCSs. 
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Fig. 15. Quadrotor’s trajectory in the C − E plane for different FCSs.

Fig. 16. Responses of the translational position states (C, E, 9).

Fig. 17. Evolution of the position tracking errors (GH
J, GH

K , GH
/).

Fig. 18. Bar graph of the ISE index.

Fig. 19. Bar graph of the RMSE index.

Fig. 20. Responses of the rotational attitude states (L, M, N).

Fig. 21. The estimated lumped disturbances in the translational position.

'J
OQS,!"#$%, !&#$% !'(#$% !'"#$% !'&#$%
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Fig. 22. The estimated lumped disturbances in the rotational position.

Fig. 23. The estimated velocities of the quadrotor )*+(, *+", *+&-.

Fig. 24. Angular velocities of the motors: FCS 4 (Proposed).

Fig. 25. Angular velocities of the motors: FCS 2.

5 Experimental Results and Discussions

Real-time experiments are performed to validate the 

proposed control strategy better. To verify the feasibility of the 

developed controller besides ensuring the safety of individuals

and equipment, the experiment is divided into two parts. First,

the attitude controller is validated separately on the ground. 

Second, an outdoor flight experiment is carried out to check 

Cartesian trajectory tracking in a 3-D flight environment.

Remark 14. Scientific literature has reported few works on 

robust fixed-time control of quadrotors, i.e., [8] [9] [36] [37]

[38]. However, these studies demonstrate evidence of the 

control performance in a simulation environment only. Unlike 

these studies, the present research presents a concrete and 

complete investigation on the subject topic, including but not 

limited to; design, simulation, and realization of a proposed 

control algorithm on real hardware, thus completing the study.

5.1 Attitude Experiment

Detailed experimental scenarios, including origin 

stabilization, attitude tracking, and attitude regulation, are 

conducted. The block diagram of the proposed attitude control 

scheme is depicted in Fig. 26. In addition, a comparative study 

is performed to show the improvement attained by the designed

controller. Firstly, a stabilization experiment is introduced to 

assess the capability of the proposed controller in stabilizing the 

attitude from any random initial configuration to the origin. 

Secondly, regulation and tracking experiments that are more 

commonly encountered in practice are performed. This aims to 

better show the robust control law’s effectiveness and 

workability in the presence of abrupt changes of references and 

time-varying trajectory. To experimentally characterize the 

performance of the proposed controller, a convenient Model-

Based Design (MBD) framework is established. MBD approach 

is very popular in the control community to design controllers 

and to validate them in real-time owing to its attracting salient 

features like reliability, robustness against errors in code, and 

ability to offer time-saving.

Fig. 26. The proposed attitude control scheme – Block diagram. The orange 

arrow indicates parameters variation and unmodeled dynamics.

5.1.1 Experimental Setup

The quadrotor-based setup illustrated in Fig. 27 has been 

used to conduct the real-time tests. The aircraft is attached to a 

3-DoF spherical joint in the developed test-bed. Mechanically, 

the experimental setup is centered on a DJI 450 frame. For more 

hardware descriptions, the reader can refer to reference [10].

�!"#$, �%"#$, �&"#$ �'!
"#$ �'%

"#$
�'&
"#$
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Fig. 27. The experiment setup for the attitude control.

The presented control scheme has been validated using the

MBD, which is illustrated in Fig. 28. The validation procedure 

consists of two steps; the first step involves simulation of the 

control law in R2019b MATLAB®/Simulink®, which is 

interfaced with an open-source FlightGear® simulator (2018.3.1 

version). FlightGear® offers a realistic rendering and dynamic 

simulation environment for the visualization of states of a 

quadrotor. In the second step, a C++ code realizes the control 

law in the real autopilot to experimentally characterize the 

control performance based on real-time tests. Simulink® toolbox 

“UAV Toolbox Support Package for PX4® Autopilots” (The 

recently released version: “UAV Toolbox Support Package for 

PX4® Autopilots”) facilitated the realization procedure by 

automatically converting the source MATLAB® code to a 

readily-deployable C++ code. Moreover, the toolbox offered to 

communicate between the quadrotor and MATLAB® for 

visualization of data and monitoring purpose. The external 

mode of Simulink® is used for connecting the target autopilot to 

MATLAB®. The control performance is based on analysis of 

data logged on a controller-interfaced SanDisk Ultra micro-SD 

card of 8GB capacity.

Fig. 28. MBD framework structure and interconnection of various elements to 

realize simulation and hardware implementation.

5.1.2 Stabilization Experiment

This experiment aims to validate the fixed-time feature of the 

presented controller. Therefore, two scenarios with different 

initial states of the roll and pitch angles are considered as Case 

1: {�! = 15 deg, "! = −15 deg} ; Case 2: {�! = 8 deg, "! =

−8 deg}. In practice, this scenario may correspond to a hovering 

flight for taking photos or recording videos. The attitude 

response is depicted in Fig. 29 and the phase portrait is presented 

in Fig. 30. It can be observed that the controller can drive the 

states to the origin in fast convergence-time. The states converge 

to the origin almost in the same settling-time for different ICs. 

The difference is still reasonable and small, i.e., 22 ms. This can 

be explained by the adopted simplification of SAA in Remark 1

besides the considered simplifications in the dynamics of the 

attitude system (Assumption 1 and Remark 2). Overall, these 

practical interesting results validate the theoretical finding of

fixed-time stability as demonstrated by simulation in Fig. 10 and 

Fig. 11.

Fig. 29. Convergence of the states to the origin.

Fig. 30. Phase portrait of attitude’s states.

5.1.3 Robustness and Disturbance Rejection 

Experiments

Series of comparative experiments are conducted to 

characterize the performance of the presented control law by 

considering four different robust controllers, i.e., FNHNTSMC-

EFESO (proposed), Robust Backstepping Sliding Mode 

Controller (RBSSMC) [21], CTC [14] and Robust Adaptive 

Nonsingular Fast Terminal SMC (RANFTSMC) [70]. 

Moreover, the experiments have been carried out while 

considering the external disturbances (load perturbations and 

wind gusts). Additionally, considering Assumption 1, the 

unmodeled dynamics also exist as disturbances. Besides, 

parametric uncertainties are inevitably present as additional 

perturbations due to the estimation inaccuracy.

5.1.3.1 Comparative Experiment Under Load 

Disturbances 

A 140 g load is attached to the quadrotor’s front left arm, as 

mentioned in Fig. 31. Fig. 32 shows that all the control methods
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guarantee the convergence of the states to the reference set-

points. The orientation errors are shown in Fig. 33, which 

confirms the proposed control law’s ability to eliminate the 

steady-state error, even if the vehicle is affected by lumped 

disturbances. Fig. 34 displays the control inputs. Owing to the 

designed continuous-SMC control law, the proposed control 

signal is less corrupted by the chattering compared to the rest of

the controllers. Such a control law allows to significantly 

alleviate the high frequencies in the control signal, avoiding the 

undesirable shaking of the quadrotor, which may lead to 

instability. It can be observed from the graphs of Fig. 34 that the 

BSSMC demonstrates a high oscillatory control signal in 

comparison with other counterparts. Further characterization of 

the performance comparison among the controllers under 

discussion is based on the ISE and IADU criteria. ISE and IADU 

are computed and presented in Table 6.

Fig. 31. Quadrotor with a load disturbance in the front left arm.

Fig. 32. Orientation (!, �, &): Comparison under load disturbance.

Fig. 33. Orientation errors '*+- , !"# , !"$%: Comparison under load disturbance.

Table 6. Performance comparison of the attitude controllers based on ISE and 

IADU criteria.

Control strategy Performance index

ISE IADU!"& !"# !"$ !"& !"# !"$
CTC [14] 0.089 0.076 0.023 3.02 1.82 0.81

RBSSMC [21] 0.091 0.082 0.035 4.92 2.18 1.01

RANFTSMC [70] 0.048 0.034 0.013 1.52 1.35 0.65

FNHNTSMC-

EFESO
0.033 0.032 0.012 1.12 1.33 0.25

It is evident that the proposed control law based on 

FNHNTSMC-EFESO has improved the control precision for all 

the states. The superiority of the proposed controller is 

explained by the adopted ADRC approach, where the estimation 

of the lumped disturbances has significantly improved the 

robustness of the controller. Also, the control smoothness is 

enhanced by the suggested controller for all the control signals 

comparably to other SMC-based controllers. Fig. 35 displays the 

estimated disturbances by the EFESO where it can be noticed

that the oscillations and swinging caused by the slung load are 

well estimated. The identified disturbances are fed to the 

FNHNTSMC controller, which timely compensates them.

Fig. 34. Control torques '(), (*, (+%: Comparison under load disturbance.
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Fig. 35. Estimates of the disturbances ()*$+,-, )*%
+,-, )*&

+,-/.

5.1.3.2 Comparative Experiment Under Wind 

Disturbances

The wind is generated at the beginning of the experiment, 

i.e., from 0 = 0s, using a 140W industrial electric fan of 0.5m 

diameter. The desired time-varying trajectory for testing the 

attitude states is written as: �! = −5sin(2#$%), &! =
5sin(2#$%), '! = 7.5cos(2#$%), where $ is the frequency in 

Hz. Fig. 36 illustrates footage of the experiment. It is evident

from Fig. 37 and Fig. 38 that the proposed attitude controller 

exhibits better disturbance rejection capability, which ensures

accurate tracking of the reference trajectory with the smallest 

tracking error compared to the other controllers. The control 

torques are depicted in Fig. 39. Similar to the previous case, the 

chattering is significantly reduced in the continuous control 

signal of the proposed control law. 

Fig. 36. Footage of the tracking experiment under wind gusts.

Fig. 37. Orientation (�, &, '): Comparison under wind disturbance.

Fig. 38. Orientation errors *+-/ , +-0 , +-
13: Comparison under wind disturbance.

Fig. 39. Orientation errors *46
8, 46

9, 46
:3: Comparison under wind disturbance.

5.2 Outdoor Trajectory Tracking Experiment

5.2.1 Hardware and Software Configuration

After conducting a Robot Operating System (ROS)/Gazebo 

simulation not presented here for the sake of space, a real 

outdoor flight experiment is performed. The complete 

experimental setup is shown in Fig. 1 in Section 2.2.1. The 

overall hardware and software configuration built for the 

quadrotor control in our experiment is depicted in Fig. 41. An 

onboard companion computer (Nvidia Jetson Nano computer 

(NJNC)) is connected through the Universal Asynchronous 

Receiver-Transmitter (UART) serial port to the Pixhawk®

autopilot. The NJNC is running Ubuntu Bionic 18.04 operating 

system while the Pixhawk® autopilot is flashed by the PX4 

firmware version 1.11.3. The autopilot communicates with other 

hardware using “MAVLink” protocol. The NJNC exchanges the 

data with the autopilot through a ROS package called 

“MAVROS”. This package is the officially supported bridge 

between ROS and the “MAVLink” protocol. It enables 

“MAVLink” extendable communication between computers 

running “ROS” and “MAVLink” enabled autopilots. The control 

algorithm is implemented in the NJNC using ROS-melodic/C++ 

code. TP-LINK TL-AP1201P AC1200 dual-band outdoor 

wireless Wi-Fi router with omnidirectional antenna covering 

�! "
#$
%

(r
ad

/s
2
)

�! "
#$
%

(r
ad

/s
2
)

Time (s)

�!
&#$
%

(r
ad

/s
2
)

'
(d

eg
)

(
(d

eg
)

)
(d

eg
)

Time (s)

Reference CTC RANFTSMC FNHNTSMC-EFESO

* +
&

(d
eg

)
* +
,

(d
eg

)
* +
"

(d
eg

)

Time (s)

-
,

(N
m

)
-
"

(N
m

)
-
&

(N
m

)

Time (s)

CTC RANFTSMC FNHNTSMC-EFESO



28

200 m radius is used to create a wireless network. The quadrotor 

has been set to connect to this network using a USB Wi-Fi 

dongle automatically. An ASUS computer with the following 

specifications is used in the ground base station; Intel(R) Core 

(TM) i5-7300HQ CPU @ 2.50GHz 2.50 GHz, 20.0 GB RAM, 

and the operating system is Windows 10 Pro 64-bit. The ground 

computer can remotely access the onboard companion 

computer, i.e., NJNC, through its IP address over the Wi-Fi 

network using “Putty” software version 0.70 through SSH 

connection. This allows manually running the control 

algorithms by taping a shell command that initiates a “.launch” 

script that executes a C++ file containing the controller codes. 

For the sake of safety, the data monitoring, e.g., battery level, 

flight modes, localization, sensors of the quadrotor need to be 

displayed in real-time. To this end, radio telemetry modules are 

used to transmit the states of the quadrotor to 

“QGroundControl” software version 4.1.3 installed on the 

ground computer. The horizontal position (�, �) of each 

quadrotor is provided by M8N GPS module while the vertical 

position ! is measured by a Benewake TF02-Pro 40m IP65 

lidar. The attitude variables, i.e., (", #, $), (%, &, ') , are 

provided by the Inertial Measurement Unit (IMU) of the 

Pixhawk®. It is to be noted that a radio controller can also be 

used to control the quadrotor manually. Fig. 40 presents the 

hardware and software configuration layers in our experiment. 

Fig. 41 describes the implementation procedure of the proposed 

trajectory tracking controller for the quadrotor. The controller’s 

outputs are the desired angular velocities which are sent to the 

Pixhawk® autopilot in “Offboard Flight Mode (OFM)”. OFM is 

one of the automatic flight control modes of the Pixhawk®

autopilot. 

The trajectory tracking results of our proposed controller are 

presented from Fig. 42 to Fig. 44. In this experiment, the 

proposed FCS 4 is compared with the commercially available 

FCS 1 described in Table 4. The way in which the quadrotor 

follows the reference flight trajectory is presented in the 3-D 

state-space in Fig. 42. It is evident from this figure that the 

Cartesian trajectory is tracked accurately by FCS 4. Fig. 43

depicts the translational variables and Fig. 44 displays the 

profiles of the tracking errors for the Cartesian position. As 

illustrated in these two figures, the suggested FCS allows to 

precisely maintain the vehicle on the reference time-varying 

Cartesian trajectory compared to FCS 1. These practical results 

confirm the simulation findings drawn above in Section 4.2. The 

tracking errors are converging to the origin, where they steadily 

maintain their values in the close vicinity. Both ISE and RDP 

are computed and represented in Table 7. As a result, compared 

to the FCS 1, the tracking error has been considerably reduced 

as (*+
- ↓ 68.17%, *+

2
↓ 92.94%, *+

5 ↓ 50.69%). 

Table 7. Analysis of the ISE performance index for the trajectory tracking using 

the RDP criterion (Experimental results).

FCS

Performance index

ISE

*+
- *+

2
*+
5

FCS 1 (Pixhawk®) 5.97 6.24 2.59
FCS 4 (proposed) 1.90 0.44 1.27

Improvement (RDP) (%) 68.17 92.94 50.69

Fig. 40. Control system architecture, including hardware and software 
configuration layers in our experiment.

Fig. 41. Block diagram of the implementation procedure of the proposed 

trajectory tracking controller. The controller is implemented in the NJNC using 
ROS/C++ code. The orange arrow indicates parameters variation and 

unmodeled dynamics.

Fig. 42. 3-D trajectory tracking of the quadrotor.

Fig. 43. Profiles of the position of the quadrotor (�, �, � ).
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Fig. 44. Evolution of the position tracking errors (!"#, !"$ , !"%).
6 Conclusion

In this study, the robust fixed-time tracking control problem 

for the multirotor system in the presence of various disturbances 

has been investigated. A Corollary that presents a control design 

methodology for systems with high-integrator dynamics has 

been established. Following this design procedure, a new 

observer-based control scheme has been proposed for the 

position and attitude loops within a hierarchical control 

framework. The developed control scheme drives the states of 

the system to the desired references in fixed-time uniformly 

w.r.t. the values of the ICs. Moreover, the control signal is 

nonsingular and smooth without switching frequencies. The 

convergence proofs of the developed fixed-time convergent 

algorithms have been analyzed based on proper LQF and ALE. 

Numerical simulations and real outdoor flight experiments have 

demonstrated the superiority of the designed controller in terms 

of performance improvements compared to other related 

controllers.

Further work could extend our results on fixed-time control 

of a single quadrotor to the fixed-time cooperative control of a 

group of quadrotors. This distinguishing feature is potentially 

vital in practical scenarios of the cooperative control of multi-

agent systems, particularly those involving formation control of 

the quadrotors that are required to converge to the desired 

formation pattern in a short time.
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