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Abstract

To study essential anterior-posterior and medial-lateral sways of the stance

caused by rotational movements about the ankle and hip joints, a mathematical

model is developed for the 3D postural kinematics and dynamics. The model

is in the form of nonlinear differential-algebraic equations corresponding to a

biomechanical system with holonomic constraints. A nonlinear feedback con-

trol law is further derived for stabilizing the upright stance, whilst eliminating

internal torques induced by the constraints on postural movements. Numerical

simulations of the model parametrized with experimental data of human body

segments illustrate the performance of postural balancing with the proposed

control. This work is an essential step towards a much improved understanding

of constrained geometry and balancing control of 3D human standing dynamics.

Keywords: biomechanics, postural dynamics, 3D modeling, nonlinear control,

Numerical simulation

1. Introduction1

The idea of modeling the human body from a biomechanical perspective2

dates back more than a century, and has been studied intensively. Under-3

standing and prevention of falls in the fast-growing global population of el-4

derly people (WHO report 2008) can benefit from studies on balancing upright5
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stance (Darkin and Bolton, 2018). The naturally evolved human postural con-6

trol mechanism is very complex, involving interactions between body dynamics,7

musculoskeletal and neurosensory systems. This work focuses on modeling of8

3D standing dynamics and synthesis of nonlinear balancing control.9

The majority of the research on balancing the upright stance (Maurer and10

Peterka, 2005; Pinter et al., 2008; Suzuki et al., 2016; Chumacero-Polanco, et11

al., 2019) have used single, double or triple inverted pendulum models. These12

2D biomechanical models describe the dynamics of anterior-posterior sways,13

but cannot reveal the essential 3D nature of postural movements. More often14

than not, postural sways are not solely back and forth or sideways motions,15

and due to interconnections of the 3D postural dynamics, they cannot be fully16

described by two separate 2D models for anterior-posterior and medial-lateral17

sways respectively.18

The complexity of dynamics of combined anterior-posterior and medial-19

lateral postural sways has long been recognized (Winter, 1995). An experi-20

mental method was proposed to obtain a general 3D robotic kinematic model21

of human postures (Desjardins et al., 2002). A kinematic model describes dis-22

placements and velocities, but not dynamics of postural movements. Developed23

using symbolic computation tools, the 3D model of sit-to-stand postural dynam-24

ics (Mughal and Iqbal, 2010, 2013) described a large number of joint variables25

and included some constraints imposed on the postural movements, but ignored26

the induced constraint forces imposed on the postural dynamics.27

In investigations of humanoid robots, various multiple-link 3D models have28

been developed for examining contact tasks in walking and running. Hybrid29

aspects of models and control of 3D bipedal robotic walking were highlighted30

in a comprehensive survey (Grizzle, et al., 2014), where handling of the double-31

support phase was mentioned as one of a few open problems in modeling and32

control of 3D robotic walking. Being about 20% of the gait, this is an impor-33

tant phase during walking, and sagittal geometries and dynamics of this phase34

were examined (Mu and Wu, 2006; Hamed et al, 2012). Although open stance35

balancing is not same as that in the double-support phase during walking or36
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sit-to-stand transiting, treatments of constraints in modeling should be similar37

in these cases.38

The current investigation on modeling and nonlinear control synthesis of 3D39

standing dynamics focuses on specification of the postural geometry, identifica-40

tion of a complete set of constraints imposed on postural movements, separation41

of free and constrained dynamic modes, synthesis of feedback control, and ver-42

ification of the stability of postural dynamics. To explore all these theoretical43

aspects, this study derives an essential model which describes the standing dy-44

namics with a minimal number of joint rotations and is not integrated with45

musculoskeletal and neurosensory models.46

Having a closed chain of body segments pivoting at the ankles, the standing47

posture is viewed as a parallel robot and its kinematics can be obtained using a48

modeling method in robotics (Sciavicco and Siciliano, 2000). Compared with the49

well-known parallel mechanism of the Gough-Stewart platform (Liu, et al., 2000;50

Khalil and Guegan 2004) as a hexapod, the standing posture has the upper body51

as the platform supported by two legs on the base at the level of ankles. A special52

treatment of kinetic and potential energies of the posture and application of the53

Lagrange-d’Alembert principle (Bloch, 2003) will naturally result in a set of54

differential-algebraic equations describing constrained dynamics of the standing55

posture. As a case-by-case process, specification of the constraints imposed on56

postural movements is the key in applying the general modeling method.57

In the first step of nonlinear control synthesis, the current work uses a de-58

composition of postural dynamics to determine a manifold where the postural59

movements are free of constraints. The decomposition also facilitates numerical60

simulations of the postural dynamics. The method of decomposition was first61

used in the synthesis of stabilization and tracking control for constrained robots62

(McClamroch and Wang, 1988), and adopted in the observer design for linear63

mechanical systems with holonomic and non-holonomic constraints (Hou et al.,64

1993).65

As widely recognized, adding damping to the unstable postural dynamics by66

proportional and derivative feedback of joint angles (Hill, 1970) is an essential67
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control strategy. Based on the developed model of 3D postural dynamics and68

with verified stability, a nonlinear proportional and derivative feedback control is69

derived in the current work for balancing the standing posture. Using linearized70

2D postural models, linear feedback controls (Hemami and Wyman, 1979; Kuo,71

1995) were designed for human stance balancing. For controlling the sit-to-stand72

posture, a linear controller was derived from the linearized 3D dynamics model73

by Mughal and Iqbal (2010). Design of linear controllers based on linearized74

models has the advantage of being supported by a range of synthetic methods,75

but the stability is local. Under the Lipschitz condition, a stabilizing controller76

designed on the basis of a linearized model operates satisfactorily in the vicinity77

of an equilibrium specified by joint variables taking particular values, but has78

no guarantee on postural stability when operates away from the vicinity even if79

a switching logic is incorporated with multiple linear controllers.80

2. Modeling81

The most essential 3D movement of the upright stance is a combination82

of anterior-posterior and medial-lateral postural sways caused by rotations of83

legs and upper body about the ankle and hip joints respectively. The rotations84

correspond to variations of three angles on each body side. The postural dy-85

namics with the six interactive rotations will be shown to have only two degrees86

of freedom. Rotations of thighs about knee joints are not considered to avoid87

introducing a further angle for the knee joint and another for the hip joint on88

each body side.89

2.1. Kinematics of Displacements and Velocities90

Modeling of human postural kinematics is fairly straightforward following91

the Denavit-Hartenberg (D-H) convention in robotics (Craig, 2005). It starts92

with assignment of joint frames, then describes the relationships between them,93

and ends up with specification of linear and angular velocities of body segments.94
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2.1.1. Geometry setup with frame assignment95

Figs. 1 and 2 show two axes for each of the six joint frames plus the reference.96

In essence, a joint frame is attached to a body segment at the joint linking this97

and previous segments. Its z-axis is chosen to be the rotation axis of this98

segment with respect to the other. Once all z-axes of joint frames are specified,99

the perpendicular to the current and next z-axes defines the current x-axis, and100

the y-axis is determined by the right-hand rule. In this way, all joint frames are101

specified.102

Denoted by F0 with X-Y -Z axes is the reference frame fixed to the ground.103

Fu
w with xuw-yuw-zuw axes represents further three frames assigned to ankle and104

hip joints on each body side, for u = l, r and w = a, f, h. For instance, attached105

to the leg at the ankle joint on the left, F l
a and F l

f relate leg rotations about zla106

and zlf to F0 and F l
a respectively, while, attached to the pelvis at the left hip107

joint, Fh
l relates the upper-body rotation about zlf to F l

f .108

For simplicity and clarity, the two body sides are assumed to be symmetric109

about the sagittal plane when the posture is in the home position. Angular110

offset β0 = sin−1 d−dl

hl
between the x-axes of ankle frames Fu

a and Fu
f on either111

body side indicates how oblique the legs are to the ground when the posture is112

in the home position, where as indicated in Fig. 1, 2d is the distance between113

the legs, 2dl the distance between the origins of left and right hip frames, and114

hl the total leg length.115

2.1.2. Positions and orientations116

The postural movements in the sagittal plane (XY plane) are caused by117

rotations of the legs about zla and zra axes, and in the frontal plane (XZ plane)118

about zlf and zrf axes, and rotations of the upper body about zlh and zrh axes.119

The angles associated with these rotations are denoted by variables αu, β̄u and120

βu for u = l, r, and collectively by vector121

q =
[
αl αr β̄l β̄r βl βr

]′
, (1)

where ′ stands for the transpose.122
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The four D-H parameters associated with the joint frames are summarized in123

Table 1 with ai and αi being respectively the distance and twist angle between124

z-axes of frames Fu
i−1 and Fu

i , while di and θi being the same but between125

x-axes of the two frames. Fu
1 , Fu

2 and Fu
3 are alternative notations of Fu

a , Fu
f126

and Fu
h respectively.127

Table 1: D-H parameters, where positive and negative signs are taken for u = l, r respectively.

ai αi di θi

1 e 0 ±d αu Fu
a

2 0 ±π/2 0 β̄u − β0 Fu
f

3 hl 0 0 βu Fu
h

With short notations s(·) = sin(·) and c(·) = cos(·), the rotation matrix and128

position vector129

Ru
i =


cθi −sθi 0

sθi cαi cθi cαi −sαi

sθi sαi cθi sαi cαi

 , ρui =


ai

−di sαi

di cαi

 (2)

relate the orientation and position of Fu
i to Fu

i−1. Consequently,130

R̄u
i = R̄u

i−1R
u
i , ρ̄ui = ρ̄ui−1 + R̄u

i−1ρ
u
i (3)

relate Fu
i to F0 due to the chain of frame associations, with R̄u

0 = I (identity131

matrix) and ρ̄u0 = 0 (zero vector).132

2.1.3. Linear and angular velocities, and CoMs133

Linear and angular velocities of Fu
i with respect to F0 are derived from (3)134

as (see, e.g. Sciavicco and Siciliano, 2000)135

vui =
∂ρ̄ui
∂q

q̇ , ωu
i = ωu

i−1 + R̄u
i Θ̇i (4)

with ωu
0 = 0 and Θ̇i =

[
0 0 θ̇i

]′
. As illustrated in Fig. 3, the CoM of the136

leg with respect to Fu
f is pf =

[
hcl 0 0

]′
, and that of the upper body with137

respect to Fu
h is138

ph =
[
hcuc0 + dls0 −dlc0 0

]′
(5)
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with short notations s0 = sinβ0 and c0 = cosβ0. Referring to (3), the two139

CoMs with respect to F0 are140

puf = ρ̄u2 + R̄u
2pf , puh = ρ̄u3 + R̄u

3ph , (6)

and from (4), their linear velocities are ṗuf =
∂pu

f

∂q q̇ and ṗuh =
∂pu

h

∂q q̇.141

2.2. Geometric Constraints142

Described by (2)-(4) along with the frame specifications in Figs. 1 and 2,143

and the D-H parameters in Table 1, the kinematics of segmental positions and144

orientations are subject to constraints due to the connectivity of the two body145

sides.146

The direction vectors of R̄u
3 =

[
rux ruy ruz

]
defined in (3) must satisfy147

(rlx)′rrx = cos 2β0 , (7)

(rly)′rry = cos(π − 2β0) , (8)

(rlz)′rrz = cosπ (9)

because there is no movement between F l
h and F r

h as they are attached to the148

same body segment. In view of (5), with respect to F l
h, the origin of F r

h is149

ρh =
[

2dls0 −2dlc0 0
]′
. (10)

Its coordinates with respect to F0 from one body side must be equal to those150

from the other, namely, according to (3) and (6),151

ρ̄l3 + R̄l
3ρh = ρ̄r3 . (11)

Fully describing constraints on the variations of joint variables, the six equa-152

tions in (7)-(9) and (11) have nevertheless some redundancy. Long yet elemen-153

tary manipulations of these equations lead to the simplification154

αr = αl, (12)

βr = −βl − β̄r − β̄l, (13)

βl = tan−1
a0 + sl,0
cl,0

− sin−1 b0
b1 + sl,0√
b2 + sl,0

− β̄l, (14)

β̄r = tan−1
cl,0

a0 + sl,0
− sin−1 b3

b4 + sl,0√
b2 + sl,0

+ β0 (15)
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with sl,0 = sin(β̄l − β0), cl,0 = cos(β̄l − β0), and155

b0 =

√
dhl

2dl
, b1 =

d2l + d2

dhl
, b2 =

h2l + 4d2

4dhl
, (16)

b3 =

√
d

hl
, b4 =

h2l + 2d2 − 2d2l
2dhl

, a0 =
2d

hl
. (17)

In (12)-(15), angles αr, βr, βl and β̄r are expressed explicitly as functions of156

αl and β̄l, which means that the postural movements have only two degrees of157

freedom.158

2.3. Postural Geometry159

Analysis of the postural geometry also leads to constraints (12)-(15). Since160

the knees are assumed to be fully extended and locked, and rotational move-161

ment of the hips have only one degree of freedom, (12) is obvious. The convex162

quadrilateral shown in Fig. 4 has the origins of Fu
f and Fu

h as its vertices de-163

noted by Ou
f and Ou

h for u = l, r. The interior angles associated with Ou
f and Ou

h164

are γuf = π/2 + β̄u − β0 and γuh = π/2 + βu + β0. Given any particular interior165

angle, say γlf , the two adjacent interior angles can be uniquely determined by166

elementary triangle geometry, and the remaining interior angle can be obtained167

from identity γlf + γrf + γlh + γrh = 2π. This implies that β̄l uniquely determines168

angles βl, βr, and β̄r due to the one-to-one correspondence between angles in169

{γlf , γrf , γlh, γrh} and {β̄l, β̄r, βl, βr}. Hence, (13)-(15) are indirectly confirmed.170

Theoretically αl can vary in [−π/2, π/2], and the quadrilateral geometry implies171

that β̄l varies within172 [
β0 − sin−1

d2l + dlhl + d2

dhl + 2ddl
, β0 + sin−1

d2l + dlhl − d2

dhl

]
. (18)

2.4. Postural Dynamics173

An application of classical non-holonomic mechanics to particularly formu-174

lated kinetic and potential energies of the posture leads to a mathematical model175

of postural dynamics.176
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2.4.1. Kinetic and potential energies177

Induced by linear and angular velocities, the leg kinetic energy is, for u = l, r,178

Ku
f =

1

2
mu

f (ṗuf )′ṗuf +
1

2
(ωu

1 )′R̄u
1I

u
1 (R̄u

1 )′ωu
1 +

1

2
(ωu

2 )′R̄u
2I

u
2 (R̄u

2 )′ωu
2 , (19)

and that of the upper body is, for u = l or r,179

Ku
h =

1

2
mh(ṗuh)′ṗuh +

1

2
(ωu

3 )′R̄u
3I

u
3 (R̄u

3 )′ωu
3 , (20)

where, mu
f is the total mass of the leg on side u, mh the total mass of the upper180

body, R̄u
i the rotation matrix in (2), ωu

i the angular velocity in (4), puf and puh181

the CoMs in (6). Iui is the inertia tensor of the leg on side u for i = 1, 2, and182

that of the upper body for i = 3, about frame F̄u
i which is aligned with Fu

i but183

originated at puf for i = 1, 2, and at puh for i = 3.184

The total kinetic energy of the posture has two equivalent expressions: K =185

Kl
f +Kr

f +Kl
h and K = Kl

f +Kr
f +Kr

h. Averaging the two gives186

K = Kl
f +Kr

f +
1

2
(Kl

h +Kr
h) =

1

2
q̇′M(q)q̇ (21)

with positive-definite inertia matrix M(q) = Ml(q) + Mr(q), where Mu(q) can187

be readily determined from (19)-(20) in view of (4) and (6). Similarly, the total188

potential energy of the posture is given by189

P = P l
f + P r

f +
1

2
(P l

h + P r
h) (22)

with Pu
f = mu

fg
′
0p

u
f , Pu

h = mhg
′
0p

u
h, and g0 =

[
g 0 0

]′
, where g is the190

gravitational acceleration. The special formulations of the total kinetic and191

potential energies in (21) and (22) will automatically bring all angular variables192

in (1) into equations of the postural dynamics.193

2.4.2. Differential-algebraic equations194

Following the Lagrange-d’Alembert principle of non-holonomic mechanics195

(Bloch, 2003), the postural dynamics are described by the differential-algebraic196

equations197

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + F ′λ , (23)

f(q) = 0 . (24)
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Here, vector τ is the excitation torque; with F = ∂f(q)
∂q and Lagrange multi-198

plier λ, F ′λ is the internal torque vector induced by constraint (24) which is199

the compact notation of (12)-(15). The centrifugal and Coriolis matrix and200

gravitational torque vector are respectively201

C(q, q̇)q̇ = Ṁ(q)q̇ − 1

2

∂

∂q
q̇′M(q)q̇ , G(q) =

∂P (q)

∂q
(25)

with inertia matrix M(q) defined in (21) and potential energy P (q) in (22). To202

ensure the skew symmetry of Ṁ(q) − 2C(q, q̇), the components of C(q, q̇) are203

specified as (Sciavicco and Siciliano, 2000)204

cij =
1

2
ṁij +

1

2

n∑
k=1

(
∂mik

∂qj
− ∂mjk

∂qi

)
q̇k, (26)

where mij is the (i, j) element of M(q), n is the total number of joint variables205

with n = 6 in this study.206

2.4.3. Decomposition of dynamic equations207

Define a change of variables as p = p(q) with208

p =

 p1

p2

 , p1 =

 αl

β̄l

 , p2 = f(q) . (27)

Its inverse q = p−1(p1) is simply given by algebraic equation (24) with p1 in209

(27). Also, the Jacobian matrix of p(q) and its inverse can be determined as210

∂p

∂q
=

 F̄

F (q)

 , (
∂p

∂q

)−1
=
[
F1(p1) F2(p1)

]
, (28)

where the first block partition is of 2 and 4 rows, and the second of 2 and 4211

columns. Importantly, (27) with (28) brings the system (23)-(24) into212

M1(p1)p̈1 + C1(p1, ṗ1)ṗ1 +G1(p1, ṗ1) = F ′1(p1)τ , (29)

A1(p1, ṗ1)ṗ1 +A2(p1, ṗ1) = A3(p1)τ + λ, (30)

p2 = 0 (31)

10



with, by dropping the arguments of the matrices and vectors for simplicity,213

M1 = F ′1MF1, C1 = F ′1CF1, G1 = F ′1G+ F ′1MḞ1ṗ1, (32)

A1 = F ′2MḞ1 + F ′2CF1 − F ′2MF1M
−1
1 C1, (33)

A2 = F ′2G−F ′2MF1M
−1
1 G1, A3 = F ′2−F ′2MF1M

−1
1 F ′1. (34)

The decomposed system (29)-(31) consists of free dynamics for p1, explicit La-214

grangian multiplier λ, and trivial constraint p2 = 0. In general, interactions215

between the anterior-posterior and medial-lateral sways exist because M1(p1),216

C1(p1, ṗ1) and G1(p1) are normally not with any particular structures so that217

dynamics of αl and β̄l described by (29) are independent from each other.218

3. Control Synthesis219

The control task is set to regulate p1 to zero, which ensures q converging to220

zero, namely the posture is back to the upright home position. This is due to221

q = p−1(q1) = 0 for q1 = 0, which can be verified directly from the constraints222

in (12)-(15), or indirectly from the analysis of postural geometry in Section223

2.3. Besides, it is desirable, as the human body probably does, to eliminate the224

internal torques F ′λ induced by the constraints.225

Consider a Lyapunov function candidate226

v(p1, ṗ1) =
1

2
ṗ′1M1(p1)ṗ1 +

1

2
p′1Kp p1 , (35)

where the first term is the kinetic energy associated with p1 movement, while227

the second term with Kp being an arbitrary positive-definite constant matrix228

is related to the potential energy of the posture. In view of skew symmetry of229

F ′1(p1) (M(q)− 2C(q, q̇))F1(p1), the time derivative of v is230

1

2
ṗ′1Ṁ1(p1)ṗ1 + ṗ′1M1(p1)p̈1 + p′1Kp ṗ1

=
1

2
ṗ′1F

′
1(p1)Ṁ(q)F1(p1)ṗ1 + ṗ′1F

′
1(p1)M(q)Ḟ1(p1)ṗ1 +

p′1Kp ṗ1 + ṗ′1(F ′1(p)τ − F ′1(p1)C(q, q̇)F1(p1)ṗ1 −

F ′1(p1)G(q)− F ′1(p1)M(q)Ḟ1(p1)ṗ1)

= p′1Kp ṗ1 + ṗ′1 (F ′1(p1)τ − F ′1(p1)G(q)) (36)
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which suggests a feedback control τ satisfying231

F ′1(p1)τ = F ′1(p1)G(p−1(p1))−Kp p1 −Kd ṗ1 (37)

so that v̇(p1, ṗ1) = −ṗ′1Kd ṗ1 ≤ 0, where the equality holds only if ṗ1 = 0 when232

Kd is chosen as an arbitrary positive-definite constant matrix. In such a case,233

the system (29) with a control satisfying (37) is reduced to Kp p1 = 0 which is234

possible only if p1 = 0. This verifies the stability of the controlled system by235

virtue of LaSalle’s theorem (Khalil, 2002).236

As a consequence of M(q) being positive-definite and F1(p1) having full237

column rank, M1(p1) is positive-definite. Considering (28), (30), (37) and in-238

vertibility of matrix239  F ′1

A3

 =

 I 0

−F ′2MF1M
−1
1 I

 F ′1

F ′2

 , (38)

a feedback control240

τ =

 F ′1

A3

−1  F ′1G−Kpp1 −Kdṗ1

A1ṗ1 +A2


= (F̄ ′ + F ′F ′2MF1M

−1
1 )(F ′1G−Kp p1 −Kd ṗ1) + F ′(A1 ṗ1 +A2) (39)

is determined, which regulates p1 and hence q to zero, whilst, due to λ = 0,241

eliminates torque F ′λ induced by constraint (24).242

4. Model Parametrization243

For simulation studies of postural control, the mathematical model (23)-(24)244

needs to be parametrized with mass distributions and moments of inertia of the245

body segments.246

4.1. Assembly of segment data247

Consider an object consisting of segments a and b with no movement between248

them. Segment v for v = a, b, has the known mass and inertia tensor (mv, Iv)249

with Iv referring to frame Fv. (Ra, pa) relates Fa to reference frame F0, and250
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(Ra
b , p

a
b ) relates Fb to Fa. Let Fv’s origin pv be the CoM of segment v with251

respect to F0. Clearly252

Rb = RaR
a
b , pb = pa +Rap

b
a (40)

relate Fb to F0. The total mass and CoM of the object are respectively253

m0 = ma +mb, p0 =
mapa +mbpb

m0
. (41)

The inertia tensor of the object about F0 is254

I0 = RaIaR
′
a +maΩ′(pa)Ω(pa) +RbIbR

′
b +mbΩ

′(pb)Ω(pb) (42)

with255

Ω(r) =


0 −z y

z 0 −x

−y x 0

 , r =


x

y

z

 . (43)

4.2. Segment parameters256

Fig. 5 shows the segmental frames and averaged longitudinal CoM positions257

for 7 out of the 14 body segments from the 6 specimens (Chandler, et al. 1975),258

where unused feet, and due to the assumption on bilateral body symmetry, the259

arm, hand and leg on the left are not shown. Tables 2 and 3 summarize mass260

and inertial parameters used in this study. The data are given with respect to261

the first segmental frame in each table, where symbol ∗ stands for symmetric262

elements of inertia tensors. The inertia tensor of an original segment is calcu-263

lated from the segmental principal moments of inertia and the rotation matrix264

relating the principal axes to the segmental frame, while the parameters of the265

combined segments are calculated using (41) and (42).266

5. Numerical Simulations267

Based on the free dynamics described in (29) and control torque in (39),268

simulations have been carried out in the MATLAB/SIMULINK environment269
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Table 2: Data for legs
Mass (kg) CoM (cm) Inertia tensor (kg cm2)

Thigh 6.52

[
0

0

0

] [
1224.61 15.55 −62.64

∗ 1250.19 75.07

∗ ∗ 268.43

]
Shank 2.69

[
0

0

42.41

] [
393.54 3.60 7.40

∗ 390.37 6.76

∗ ∗ 29.54

]
Combined 9.21

[
0

0

12.39

] [
5043.28 19.15 −55.24

∗ 5065.69 81.83

∗ ∗ 297.97

]

Table 3: Data for upper body
Mass (kg) CoM (cm) Inertia tensor (kg cm2)

Torso with

head
37.98

[
0

0

0

] [
21172.01 −2687.27 −648.47

∗ 20744.19 −458.77

∗ ∗ 4071.38

]
Right arm

with hand
3.35

[
0

21.92

15.75

] [
1108.61 1.85 −15.67

∗ 1112.37 3.78

∗ ∗ 36.85

]
Left arm

with hand
3.35

[
0

−21.92

15.75

] [
1108.61 −1.85 15.67

∗ 1112.37 3.78

∗ ∗ 36.85

]
Combined 42.41

[
0

0

2.49

] [
28022.01 −2687.27 −679.81

∗ 24382.46 −458.77

∗ ∗ 7304.34

]
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to produce responses of angles αl and β̄l to the feedback control. Lagrange270

multiplier λ is determined from (30) and the remaining four angles in q are271

recovered from the explicit expressions in (12) to (15). The numerical solver of272

differential equations is a variable-step ode45 with relative tolerance of 10−3.273

The mass and inertia parameters of the legs and upper body are summarized274

in Section 4.2. The height of the feet is e = 6 cm, and the distance between the275

origins of left and right hip frames is half of the buttock breadth 2dl = 17.42 cm.276

The distance between the legs is set to be 2d = 20.32 cm (8in).277

In all simulations, unless indicated differently, the controller gains are chosen278

as Kp = diag(300, 300) and Kd = diag(100, 100), and the initial conditions as279

αl(0) = −β̄l(0) = 5◦, and α̇l(0) = ˙̄βl(0) = 0.280

5.1. Angular displacements and control torques in the absence or presence of281

disturbances282

To consider the response of the postural control system to disturbances,283

w =
[
w1 w2

]′
is added to the control torque in the second bracket of (39),284

with wi = 2 sin(0.6πt + φi) Nm for i = 1, 2, where phases φ1 and φ2 are two285

statistically independent Gaussian random variables with zero mean and vari-286

ance equal to 0.1. The addition of disturbances in this way avoids violating287

the constraints in (24). The controlled standing posture does not shown any288

unexpected responses when the amplitude of sinusoidal noise increases from 2289

to 10 and phase variance from 0.1 to 10, and simulation plots of those cases are290

spared for brevity.291

Fig. 6 shows the angular displacements of the sways in the two cases: pres-292

ence and absence of disturbances. The control torques applied to the joints are293

shown in Fig. 7. In the absence of disturbances, the control torques associated294

with anterior-posterior sways around the ankle joints converge to zero, while295

those associated with medial-lateral sways around the ankle and hip joints con-296

verge to constant values. This is due to the control strategy of eliminating the297

internal torques induced by the postural geometric constraints. It implies that298

gravity generates torques on the joints associated with medial-lateral sways,299

15



even if the posture is in the home position and without any influence from dis-300

turbances. Although this may be obvious, it illustrates how simulations can301

provide insights into actions and reactions of human postural control, especially302

with practical difficulties in directly measuring all joint torques in experiments.303

5.2. Effects of controller gains on postural sways304

In theory any positive definite matrices can be chosen as the gain matrices305

Kp and Kd for the control defined in (37) or (39). This means that by simply306

taking Kp = diag(kp, kp) and Kd = diag(kd, kd), kp and kd can be any positive307

numbers. Fig. 8 shows how anterior-posterior and medial-lateral sways respond308

to the postural control with different gains in the absence of disturbances. The309

oscillating frequency and convergent speed of the postural sways depend on310

combined effects of the controller gains. Despite having no effect on stability, to311

resemble real postural sways of human bodies, positive gains kp and kd should312

take values in certain ranges. Determination of these ranges requires a joint313

endeavour in simulation and experiment studies of standing postures.314

5.3. Effects of controller time delays on postural sways315

In real applications, postural balancing through feedback control is affected316

by time delays in the neurosensory signaling pathways and in the muscle con-317

tractile process. Denote the feedback control specified in (37) by τ̄(t). A simple318

way of considering effects of time delays is to assume that the postural dynamics319

described by (29) are driven by the time-delayed control τ̄(t− t0) with t0 > 0.320

Unlike in the case of the control with arbitrary positive gains kp and kd, stability321

of the standing postural dynamics under the delayed control actions is generally322

not guaranteed in theory. Nevertheless, simulation studies of a postural control323

system model help investigations of time delay effects. As expected and shown324

in Fig. 9, a small delay in control slightly affects postural sways, but with a325

large delay the control cannot balance the stance.326
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5.4. Interactions between anterior-posterior and medial-lateral sways327

It would be theoretically and practically significant if anterior-posterior and328

medial-lateral sways of the standing posture were independent from each other.329

As pointed out in Section 2.4.3, the dynamics model (29) does not show having330

a particular structure leading to sway decoupling. In fact, simulations of the331

postural control system in the absence of disturbances shows that the magnitude332

ratio of the (2,1) and (1,1) elements of the inertia matrix M1 varies between333

0.02 and 0.14, and that of centrifugal and Coriolis matrix C1 is about 0.3. While334

indicating sway interactions through inertial accelerations and centrifugal and335

Coriolis forces, this does not however necessarily imply inherent coupling of the336

sways because the proposed nonlinear control has not been particularly designed337

to introduce coupling or decouple the sway dynamics. If the sway dynamics were338

naturally decoupled, an uncontrolled standing posture with only one non-zero339

initial sway angle would fall in that sway direction without inducing the other340

sway. This does not happen as shown in Fig. 10, where an anterior-posterior341

sway induces a medial-lateral sway during a free fall, and vice versa.342

6. Concluding Remarks343

Modeling and control of the standing posture in the 3D environment is con-344

siderably more complicated than its 2D counterpart. The difficulties lie in exact345

specification of the postural geometry, identification of the imposed constraints,346

separation of free and constrained dynamic modes, synthesis of feedback con-347

trol, and verification of the stability of postural dynamics. All these theoretical348

aspects have been covered in this investigation of anterior-posterior and medial-349

lateral sways of the standing posture. The key findings are the explicit expres-350

sions for constraints on postural movements, discovery of the manifold dynamics351

(i.e. the subsystem without constraints), and a nonlinear feedback control sta-352

bilizing the stance. This study has built a good foundation for adding further353

complexity to the model through inclusion of more joint variables and integra-354

tion with musculoskeletal and neurosensory models.355
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In parametrization of a postural model with mass centers and inertial pa-356

rameters given in body segmental frames, an axis about which a segment rotates357

needs to be specified with respect to the segmental frame. This study has used358

the mass distribution and inertial data of body segments from six male cadavers359

reported by Chandler, et al. (1975), where a segmental rotation axis becomes360

known to be parallel to a particular axis of the segmental frame. Use of many361

other datasets for postural model parametrization could however be a problem.362

This is because the information on segmental rotation axes is often not pro-363

vided, for instance in the original datasets (McConville et al. 1980; Young et364

al. 1983) and their adjustments (Dumas, et al. 2007, 2015) of the 31 male and365

46 female living specimens. Moreover, for combining multiple segments into one366

when there is no movement among them, it needs to know how a pair of adja-367

cent segmental frames are related to each other, but this information cannot be368

deduced from these datasets. Among many other datasets, the dataset of Chan-369

dler et al (1975) is not without deficiency as it implies, for several segments, the370

segmental mass center is located on the straight line connecting the proximal371

and distal centroids of the segment.372

In terms of the shapes and ranges of responses of joint angles and torques,373

the basic simulation results in Section 5.1 are consistent with other simulated374

and experimental results (e.g. Cahouëta, et al., 2002; Ferry et al., 2007; Bon-375

neta et al., 2011; Moraux et al., 2013), and the additional simulation results in376

Sections 5.2-5.4 show further interesting and expected behaviours of postural377

dynamics. The derived control with verified postural stability also confirms that378

both stiffness and damping effects are needed in the feedback control mechanism379

as suggested before (e.g. Hill, 1970; Maurer and Peterka, 2005; among others).380

Beside ensuring postural stability, the nonlinear control developed in the cur-381

rent work also nullifies internal torques. The internal torques are passive torques382

induced by the constraints on movements of body segments due to connectivity383

of two body sides and act as additional torques on these segments, while the384

excitation torques are active torques generated from muscle-tendon units by385

neurosensory stimulus. In theory, postural movements normally induce internal386
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torques affecting segmental dynamics. The proposed active control cancels out387

these passive torques. It is however unknown whether or not elimination or388

reduction of internal torques happens in real postural dynamics.389

Within the framework undertaken in this study and with further complex-390

ity added to the developed essential model, many interesting and challenging391

problems in 3D postural control can be rigorously studied. A good mathe-392

matical model is essential for simulations and control synthesis. Theoretical393

analysis and simulation studies of a postural dynamics model integrated with394

musculoskeletal and neurosensory models can bring insights into roles of muscle395

stimulus, force-length relationships, neurosensory signalling played in postural396

control. To derive a model with more joint variables, the general modeling397

method developed in this study can be followed. The key of this generalization398

is to determine whether or not the six position and orientation constraints im-399

posed on postural movements are redundant, and, if they are, simplification of400

them is needed to remove the redundancy. An integration of musculoskeletal401

and neurosensory models into the postural dynamics model only requires re-402

placement of the excitation torque by the products of muscle-tendon forces and403

their moment arms. The integration is not considered as a significant challenge,404

but synthesis of an overall nonlinear feedback control for the combined system405

probably is.406
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