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Abstract—Good quality of environment mapping demands
modelling the associated environment nearly to its 3D
originality. This paper presents a unified Simultaneous
Localisation And Mapping (SLAM) solution based on partial
3D structure. As compared to existing representations such as
grid based mapping, the novelty of the proposed unified
approach lies in estimation, representation and handling of
compact partial 3D features-based map model for a team of
robots that are working in an unknown environment with
unknown poses. The approach replies on a camera to perceive
the environment and a 2D laser sensor to generate a SLAM
solution with partial 3D features based representation.
Extended Kalman Filter (EKF) estimates the robot pose based
on its motion model and map of the explored environment. The
solution has been tested in an indoor environment on two
identical custom-developed robots. Experimental results have
demonstrated efficacy of the approach. The presented solution
can be easily applied on a distributed/centralized robotic
system with ease of data handling and reduced computational
cost.

Index Terms—EKEF, Grid
MonoSLAM.

FastSLAM, mapping,

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is
considered as the fundamental problem in mobile robotics
[1]. Initially both the map and the mobile robot position are
not known and the robot moves through the environment,
perceives it using on-board sensors and finally generates a
map model. Due to sensor noises and process noises
associated with motion of the robot, various probabilistic
estimation techniques are used to explicitly model different
sources of noises and their impact on measurements for
efficient robotic map building.

The applications of SLAM extend from land
environments to aerial and underwater scenarios [2]. A
number of latest findings have been reported in the present
decade. SLAM solutions have been successfully integrated
with path planning and navigation issues to enhance
autonomy of the moving robot. SLAM problem, at present,
is considered as a solved problem with different estimation
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approaches [1]. Many researchers have proposed distinct
solutions starting from late 80’s when stochastic techniques
have started to replace deterministic based approaches in
solving localization problem because of associated
uncertainties in moving robots [3]. Due to variation in
stochastic techniques, a number of SLAM versions have
been found in the literature. Researchers have used
Extended Kalman Filter (EKF), Information Filter (IF),
Sparse Extended Information Filter (SEIF) and Rao-
Blackwellised Particle Filter (RBPF) to propose SLAM
solution [4]. Various combinations of integrated on-board
sensors (e.g. 2D laser scanner, ultrasonic sensor, camera etc)
have been used for testing such solutions [4]. In [5], EKF
based SLAM solution has been presented using features for
map modeling while SEIF based solution has been proposed
in [6]. RBPF based approaches rely on map features
modeling [7] or grids based map modeling [8].

In the present research, feature based EKF SLAM
algorithm is proposed to solve localization and mapping
issues. A 2D laser sensor and a camera are used to perceive
the environment nearer to its 3D originality.

The organization of the paper is as follows: Section Il
discusses the related work. Section Il highlights the
proposed feature based representation scheme. Section IV
presents unified EKF SLAM framework and its results have
discussed in Section V. Finally Section VI comments on
conclusion and potential applications of this research.

Il. RELATED WORK

Scientific community reports several contributions to
present 3D solutions using camera [9] since it is considered
as cheapest and useful sensor to detect 3D features. Camera
provides rich set of information about the environment
which can be used for robot localization and mapping.
Numerous techniques employed to use single camera or a
group of cameras to efficiently solve SLAM problem are
reported in [10]. Most of these approaches have used point
features (using patches) extracted from the image. This
approach has been considered useful; however it cannot
efficiently produce a 3D model of the explored environment.
Another major challenge offered by this approach is in the
features initialization [9], [11]. Camera provides bearing
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only information of the feature and it is almost impossible to
extract the depth information of the features using only one
image (single view) [12]. An inverse depth concept has been
used to initialize features with depth uncertainty reaching to
infinity [12], [13]. It has been successfully demonstrated
that this scheme works well not only to localize the camera
but also to map very distant features. In an attempt to model
lines using end points, use of line segments has been
proposed in [14], [15]. Some drawbacks associated with this
solution include delayed initialization and uncertain end
points [9].

To solve SLAM problem, the present work exploits
simplicity and computational efficiency of MonoSLAM i.e.
single camera based SLAM solutions [16]. The
distinguishing features of the proposed approach include
building compact map model and sharing/ processing of
information among team of robots.

I11.  PROPOSED APPROACH

In indoor environments, geometric shapes are common
such as tables, walls, chairs and cupboards etc., which need
to be modeled. In this work we are detecting these shapes
from integrated sensors and extracting lines/corners features
from them to model the environment.

Fig. 1. Robot is observing horizontal and vertical lines: (a) environment
view; (b) extracted features.

Figure 1(a) shows the custom-developed robot placed in
an indoor environment and getting perception from
integrated sensors. These sensors include 2D Hokuyu® laser
scanner and a Logitech® webcam based camera. Both of the
sensors are positioned at the front center of the robot, with
later mounted above the former. From laser scans,
horizontal lines (in brown) are extracted which are actually
sides of the tables present in the room. The intersections of
the sides are also detected as point features (or corners
shown with brown circles). From the camera image, vertical
lines (in cyan) are extracted which in this case are the end
limits of tables and window. Laser sensor has wider

horizontal Field of View (FoV) than the camera that is why
we are observing some objects with horizontal features
whose vertical counterparts are not detected. Though the
camera has smaller horizontal view but its wide vertical
sensing range permits it to observe window limits not
detected by the laser.

Figure 1(b) illustrates the desired representation of the
environment with the robot (represented by triangle) and
extracted features from both sensors. Laser sensor can
display extracted feature immediately but it is almost
impossible to display camera extracted feature exactly on
the actual location because of unavailability of depth
information. These limitations offer several challenges to
use both sensors and demand a solution to initialize camera
based features immediately and to converge them after
getting sufficient parallax [12]. Here we are proposing a
unified approach for presenting the features in a common
way and to update them in EKF SLAM.

A. Camera Features

After image capturing from a calibrated camera, inverse
depth parameterization of vertical lines has been
incorporated in EKF framework. Consider a robot moving in
an indoor environment from point A to point B with initial
pose (Xa ,ya , 6a) to final pose (xs , ys , O8) as shown in
Fig. 2. During its motion, it observes a vertical line feature
fu (as shown by solid cyan line), which is projecting on X-Y
plane at point V.

The bearing of the first vertical line feature is denoted as
a, in the robotic frame of reference as shown by arrow from
point A to point V in Fig. 2. The camera frame of reference
and robotic frame of reference (shown by Xg-Yr axis with
dashed arrows) are considered as same in this work. A 2D
unit vector describing the direction of the line feature from
the camera can be represented as (1)

| =[|,‘f J;VT = R [(g g )x(dy / o) 1", (1)
where u, is the u-axis (horizontal camera axis) central
coordinate in the image, f; is the focal length of the camera,
d, is the physical spacing of pixel on the optical sensor of
the camera, RY¢ is the rotation matrix from the camera
coordinate frame to the world coordinate frame and w, is the
detected u-axis coordinate of the vertical line feature. The
bearing a, can be represented using directional vector as

ac =arctan(l)‘{V,I;’,V). )
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Fig. 2. Vertical lines parameterization.
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The world frame is shown by XYZ arrows. The bearing
of the feature in world frame (a) can be computed using

a =Qp t+a;. (3)

The inverse depth representation for the projected feature
point can be given by

ﬁI:[XAayAva'rdTa (4)

where (x4, y,) is the location of the robot in world frame, a
is the bearing of the line in world frame and p; is the inverse
of the range (depth) information of the line feature (p) and is
initialized with a guess

r,=1/p. ()

Projected coordinates of V (x, yy) can be written as

% X cos(a
vXV{V}:{ A}{_ ( )}(1/“). (6)

yrl Lya] Lsin@)
During its motion from A to B, the robot is detecting
again vertical line f;; with different local bearing «/ in its

view as shown by arrow from B to V in Fig. 2. Point
coordinates of V take form of (7)

ng{vaxBH@s(a)}(1,”,)_ @
W yg | |sin(a’)

All the robot poses at A and B are known (with nearest
global values) from the motion model. (6) and (7) show that
only inverse depth (p;) is unknown and we need to find its
value using significant changes of robotic pose as well as
feature bearing angles. The proposed approach is based on
taking the advantage of the robot successive movement and
iteratively predicting a nearer estimate for the point V
coordinates. For future matching in upcoming images, an
image patch covering all vertical portion of the image with a
small width around the line is stored to associate line in
future observations. When the robot moves to B and takes
an image then the line appears in the image on different
horizontal pixel value. To associate this line with the older
line, we need to predict a guess for the older line which
shows that the older line will probably appear in this
horizontal region of the new image shown in pixels. This
guess is generated using motion model of the robot.
Currently it is assumed that we are getting the pose

X,
prediction and Ry = [Yﬂ’ which gives the location of the

robot at point B in world frame. The older feature location
can be predicted using (8)

1° = RCW[V,XV—R;VT. ®)

Rewriting (8) in inverse depth form as

©=[ig |§JT:RCW{”@ﬂ_RgJ{Z’;E:;ﬂT. )

Equation (9) is used to find the horizontal pixel value of
the older line for the image feature. Measurement model
given by (10) shows the representation for finding the value
of predicted older line position (u,,)

(|§x fo)

(15xdy ) |

To associate new observed lines with the old ones, nearest
neighbor method is used. For each new line, it is evaluated
that new observation and old prediction satisfy (11)

Up =Up— (10)

‘up—uz‘sthu, (11)
where u, is the new observation for current feature and th,
is the threshold (in pixels). After getting matched pair, for
more robust association, new image patch belonging to a
new current feature is compared with previously stored
patch through cross correlation. In case at any step, if no line
is matching with new line and new line is far from older
lines (greater than predefined threshold) then new line is
considered as fresh candidate and is initialized immediately.

B. Laser Features

This work uses laser based horizontal geometrical (line
and corner) features and parameterize them as inverse depth
features. Consider the same scenario of the robot movement
as shown in Fig. 3. At point A, the robot observes a corner C
(as pointed by brown arrow) with range (distance from
robot) as d;. and bearing as «;.

The laser sensor frame of reference is fixed and is same as
the robotic frame of reference. Bearing of the corner feature
can be given by (12)

ajc =0a+ay. 12)
The corners can be initialized and represented by
T
fic =[Xa: Yar2ye, dic] (13)

where f;. symbolizes laser corner feature, (x4,y,) is the
location of robot at point A, «;.and d;. are bearing (in
world frame) and range of the corner from the robot
respectively. Corner point coordinates C (x., y.) in terms of
(13) can be written as

X X cos(a
C:[ c}:{ A}_’_ ) ( Ic) (dlc)-
Ye Ya Sm(alc)
During motion from A to B, the robot is detecting again
corner f;. with different range and bearing (say z,, =

(14)
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[ZZ’C]) as represented by arrow from B to C in Fig. 3.
zlc
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Fig. 3. Laser extracted corner parameterization.

We need to predict old corner feature and to associate this
with new observed corner feature. The prediction h;. of old
corner feature is given by

dp
hIc = Ll C} =
hlc

where dnic and anic are the predicted range and bearing for the
old corner from point B respectively, (xs, Ys, 8g8) is the
predicted new robot pose at point B and (xc, yc) is the old
corner coordinates as determined by (14). In this work,
nearest neighbor method is used which is detailed in [17].
Each new corner measurement is tested with (old) prediction
against threshold as given by

\/(Xc—XB)2+(Yc—yB)2

arctan (Y, — Yg. X —Xg ) —Up

(15)

|hlc - ZIc| < thlc- (16)

If the re-observed corner is found within a predefined
threshold then it firmly associates with the previously seen
corner. If no match is found then the corner is treated as new
feature and is initialized as given by (13).

At the starting location (point A), the robot is observing
horizontal lines (in brown) shown in Fig. 4. One such line is
pointed by brown arrow from point A in the figure. The
detected line is making a global bearing of «; with range
of d;;. Feature initialization is given by

fi =[X,4,J/A,a|r,dlz]T, a7
where f;; represents the laser line feature, (x4,y,) is the
location of the robot and «;; and d;; are bearing and range
(in world frame) of the observed line respectively. The end
points global coordinates for the lines are saved to associate
them in future.

fu Horizontal line v
O(x,, 1)
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\
Fig. 4. Laser extracted line parameterization.

As the robot moves, the line feature will re observe with
different range and bearing (say z; = [dz”]) as indicated

by arrow from point B in Fig. 4. The prediction h; of old
line feature is given by

dp || £

hll
where dni and ann are the predicted range and bearing for the
old line from point B respectively, (xs, vs 8g) is the

predicted new robot pose at point B, d;; and «;; are the old
line global range and bearing respectively. Each new line

(dy —xg cosay, —yg sinay; )

+(ay —ag) } 1o

feature measurement is tested with old line feature
prediction for validating threshold given by
[y — 2| <thy. (19)

IV. UNIFIED EKF SLAM

Based on fusion of features extracted from both kinds of
sensors in the same algorithm, a unified EKF SLAM
solution has been proposed.

A. State Vector and Covariance Matrix

The state vector X of the EKF SLAM consists of the robot
state and features states. All the features are used in the
same state vector as shown in (20)

= |:varfilTrflcT’yfllT :lT ' (20)

where x,, = [x, Y, 6,0y, vy, W]T represents the robot pose and
its linear and angular velocities, f;;, fic and f;; are given by
(4), (13) and (17) respectively. The covariance matrix P
associated with the state vector X is

v oo PXv fn

’ : (21)
Frxy an

where P, represents variances associated with moving robot
pose and its velocities, Py, represents variances associated
with n feature (n™ feature can be from camera or from
laser) and remaining elements show cross co-variances
among robot state and feature state.

B. Prediction Update

In this work, the prediction step of the EKF SLAM uses
constant velocitics motion model [12]. It is assumed that the
linear (ay,a,) and the angular (ay) accelerations produce
impulses of the linear (a, X At, a,, X At) and angular (ag X
At) velocities respectively with zero mean and known
Gaussian distribution during time period of At which affect
the robot state. It gives an update on state vector and
covariance matrix which becomes X~ and P~ given by (22)
and (23) respectively:

X~ :[xv‘T

.
RN A A J : (22)
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P~ =(FxPxFT)+(GxQxG"). (23)

The motion prediction only affects the robot state during
motion without changing the features state. F and G are
represent the Jacobians of motion function f (x,],ax_y_g)
state x, and w.rt. noise

w.rt.  system

Axy0 =

T . . .
[ax, ay,ag] At respectively, Q is represents the covariance
matrix for the noise a,, ¢ as stated in [12].

C. Measurement Update

After prediction, in the measurement update step of the
algorithm, Kalman gain K is determined by [3]

-1
K:(P_XH)((HXP_XHT)+R) , (24)
where H is Jacobian of the measurement prediction function
w.r.t. the state vector. Three different functions for

predicting different sensors as given by (10), (15) and (18)
are used in this work. The overall Jacobian is given by (25)

H =[Hj, Hic, Hn]T- (25)

In (24), R is the observation noise matrix, which deals
with uncertainty of the observations [14]. After determining
Kalman gain K, state vector and covariance matrix are
updated:

X =X"+K(z-h),
P=(1-KH)P",

(26)
(27)

where h and z represent the predictions associated with the
features and current measurements respectively [12]. This
procedure involves final state estimations and its covariance
in the current iteration. New features are added after these
steps. Though all kinds of features are distinguished w.r.t.
different measurements and associated models but a
balanced state and covariance updates result in a peaceful
and unified solution.

V. EXPERIMENTS AND RESULTS

An indoor office like environment is selected for
experiments having objects with orthogonal and non-
orthogonal orientations. The robots are moved manually
from different start-end positions to get different trajectories
and corresponding laser range data and images have been
recorded. The frequency of both sensor inputs is fixed to
10 Hz. Maximum linear speed of each robot is around
0.1 m/sec and maximum angular speed is around
0.03 rad/sec. The different data sets obtained are then used
independently in EKF algorithm. The algorithm is
developed by combining standard MATLAB functions with
various open source functions such as openSLAM
developed by research community. Hough transformation
function is used to extract image lines while Split and Merge
algorithm is used to extract laser lines.

In first experiment, the robot is initialized with pose (0, 0,
0). Figure 5(a) illustrates the first image from the camera

recorded at the starting location with the vertical lines
(shown in green) observed from the image. Figure 5(b)
indicates the corresponding results of laser lines (in blue)
and corner features (in cyan) extracted from the first scan. In
this figure, vertical image lines representing inverse-depth
projected points (in green with numbering) and current robot
location (in red) are also shown. All the vertical lines are
just initialized with a predefined value and these positions
are not showing the actual locations. Laser scan is covering
210 degrees around the robot, so number of horizontal
features is more than extracted vertical line features (which
have only 120 degree view).

:

(@ c (b)

Fig. 5. First image with lines (a); First scan and lines (axes are in m) (b).

The robot continues its motion. Figure 6(a) shows final
location of the robot (having black square as its identity)
while Fig. 6(b) illustrates 2D map with trajectory. The
updated laser lines (in blue), laser lines corners (in cyan),
vertical image lines showing inverse-depth points (in green)
and current robot pose (in red) can be seen in the figure.
New vertical lines (in green) are also observed which were
not detected at the beginning. Each inverse-depth point,
initially initialized with a default value, has now converged
to its nearest world location. Successive observations lead to
depth estimation and points shift to almost correct locations.
Some lines are not converged correctly due to low parallax
and problems in data association. Figure 7 presents the
resultant partial 3D updated map of the environment and
trajectory within it as shown by red marks.

Fig. 6. Robot final location (a); final updated map (axis are in m) (b).

= o oo -

Fig. 7. Robot trajectory and partial 3D updated map (axis are in m).
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In second experiment, another similar robot is also
deployed. Assuming that this robot is moving from a known
location with a known orientation in the same environment,
the first image view from the second robot is shown in
Fig. 8(a) with the corresponding laser scan illustrated in
Fig. 8(b). In the image, the first robot can also be seen in the
view of the second robot (red mark).

z . )
(b)
Fig. 8. Second robot first view from camera (a); first laser scan (axes are in
m) (b).

Fig. 9. Partial 3D Global map and robots trajectories (axes are in m).

Second robot continues its motion and keeps building its
map. Due to known location of the second robot w.r.t. the
first one, the second robot poses and its map can be plotted
in the same map model of the first robot (shown in Fig. 7).
Figure 9 shows trajectories of the first and second robot in
red and blue respectively in the resultant partial 3D global
map of the environment. It is important to note that vertical
and horizontal lines are increased as second robot has
explored environment with different views as compared to
first robot exploration. Table | shows the mean features
position error when compared with their actual locations in
the environment with the developed map model.

TABLE I. FEATURES MEAN POSITION ERRORS.

Robot no. | Laser feature error (in cm) | Image feature error (in cm)
1 15 27
2 17 35

VI. CONCLUSIONS

A unified EKF SLAM framework is proposed and tested
in an indoor environment for building partial 3D map by
using more than one robot. The proposed method provides a

compact map model as compared to other representations. It
is easy to process and to handle during computation and
sharing. Based on experiments, results are found nearly
accurate for both kinds of sensors extracted features. For
better performance of the proposed method, it is noticed that
for image features, extraction and association of more
features are required. The developed map model finds its
potential in various applications requiring real-time survey
of environment, 3D modeling, building map for robot
navigation and path planning. Results can also beneficiate
human assistance to accomplish various tasks.
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