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ABSTRACT
We model gas-phase metallicity radial profiles of galaxies in the local Universe by building
on the ‘bathtub’ chemical evolution formalism – where a galaxy’s gas content is determined
by the interplay between inflow, star formation, and outflows. In particular, we take into
account inside-out disc growth and add physically motivated prescriptions for radial gradients
in star formation efficiency (SFE). We fit analytical models against the metallicity radial
profiles of low-redshift star-forming galaxies in the mass range log (M�/M�) = [9.0–11.0]
derived by Belfiore et al., using data from the MaNGA survey. The models provide excellent
fits to the data and are capable of reproducing the change in shape of the radial metallicity
profiles, including the flattening observed in the centres of massive galaxies. We derive the
posterior probability distribution functions for the model parameters and find significant
degeneracies between them. The parameters describing the disc assembly time-scale are not
strongly constrained from the metallicity profiles, while useful constrains are obtained for the
SFE (and its radial dependence) and the outflow loading factor. The inferred value for the SFE
is in good agreement with observational determinations. The inferred outflow loading factor
is found to decrease with stellar mass, going from nearly unity at log (M�/M�) = 9.0 to close
to zero at log (M�/M�) = 11.0, in general agreement with previous empirical determinations.
These values are the lowest we can obtain for a physically motivated choice of initial mass
function and metallicity calibration. We explore alternative choices which produce larger
loading factors at all masses, up to order unity at the high-mass end.
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1 IN T RO D U C T I O N

Within the � cold dark matter (�CDM) framework of galaxy
formation, galaxy discs grow by cooling of baryonic gas at the
centres of dark matter haloes (Silk 1977; White & Rees 1978;
White & Frenk 1991). Gas is consumed by star formation and
lost to the hot halo and the intergalactic medium via outflows
driven by supernovae, stellar winds, and radiation pressure (Naab &
Ostriker 2017). A detailed understanding of the processes driving
this ‘baryon cycle’ remains elusive, due to the difficulty of directly
observing gas flows in and out of galaxies (Sancisi et al. 2008;
Sánchez Almeida et al. 2014) and our limited understanding of the
microphysics of the different feedback processes involved. Metals,

� E-mail: francesco.belfiore@eso.org (FB); f.vincenzo@bham.ac.uk (FV)
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which are direct products of stellar nucleosynthesis, represent ideal
tracers of the baryon cycle. Studies of the metal content of galaxies
may therefore be used to indirectly probe gas accretion and the
effect of feedback mechanisms.

Observations of chemical abundances in external galaxies
demonstrate the existence of a tight relation between luminosity, or
stellar mass, and metallicity (the mass–metallicity relation, Lequeux
et al. 1979; Tremonti et al. 2004). More recently, evidence has
accumulated in favour of the existence of a secondary dependence
of the mass–metallicity relation on star formation rate (SFR, Ellison
et al. 2008; Lara-López et al. 2010; Mannucci et al. 2010). The
observed correlation goes in the sense that galaxies of a fixed stellar
mass have lower metallicity when they have higher SFR, or gas mass
(Bothwell et al. 2013; Hughes et al. 2013; Cresci, Mannucci &
Curti 2018, although see Sánchez et al. 2019 for an alternative
viewpoint).
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‘Bathtub’ models to metallicity gradients 457

These observations have motivated the development of chemical
evolution models generally referred to as ‘gas regulatory’ or
‘bathtub’ models (Finlator & Davé 2008; Bouché et al. 2010;
Dayal, Ferrara & Dunlop 2013; Dekel et al. 2013; Lilly et al. 2013;
Peng & Maiolino 2014). In this framework, the traditional closed-
box chemical evolution model (Schmidt 1963) is extended to take
inflows and outflows into account. The power of this approach
lies in its simplicity and the ability to capture the basic physics
behind galaxy scaling relations and/or abundance patterns of stars
in the Milky Way (Andrews et al. 2016; Weinberg, Andrews &
Freudenburg 2017).

Focusing on our Galaxy, there is a long history of chemical
evolution models aimed at reproducing the metallicity gradient
observed in the disc (Chiosi 1980; Lacey & Fall 1985; Matteucci
1986; Matteucci & Francois 1989; Boissier & Prantzos 1999;
Chiappini, Matteucci & Romano 2001). In order to address the
G-dwarf problem (Schmidt 1963; Lynden-Bell 1975), these models
generally assume continuous accretion of gas over Gyr time-scales.
Notably, the study of the metallicity gradient of the Milky Way has
been instrumental in providing early support for the ‘inside-out’ disc
formation paradigm. In this framework, outer regions of the disc are
formed later and on longer time-scales, as expected from the theory
of disc assembly in a cosmological context (White & Frenk 1991;
Kauffmann 1996). Several classical models, however, reproduce
the properties of the Milky Way without including outflows. The
outcome is generally successful since the outflow loading factor
is highly degenerate with the value of the nucleosynthetic yields,
which are plagued by significant uncertainties (Romano et al. 2010).
We note, moreover, that a radial dependence of the yield (which
could be caused by radial changes in the initial mass function,
IMF) or of the star formation efficiency (SFE = SFR/Mgas, where
Mgas is the cold gas mass) can also generate a negative metallicity
gradient (Goetz & Koeppen 1992). The effects of these different
parameters (infall time-scale, outflow loading factor, SFE etc.)
on the metallicity gradients have been discussed qualitatively in
previous work, but the possible degeneracies between them remain
difficult to quantify.

The advent of a new generation of large integral field spec-
troscopy (IFS) surveys (including CALIFA, Sánchez et al. 2012;
and MaNGA, Bundy et al. 2015) has greatly improved the amount
and quality of data relating to chemical abundances of external
galaxies. Metallicity has been known to be a decreasing function
of galactocentric distance in disc galaxies since the 1970s (Searle
1971; Peimbert 1979; Shaver et al. 1983; Vila-Costas & Edmunds
1992), but modern IFS surveys have finally allowed studies of rep-
resentative samples of galaxies with sufficient statistics to uncover
more subtle trends. For example, Belfiore et al. (2017) demonstrated
that the shape of the gas-phase metallicity radial profiles depends on
the stellar mass of the host galaxy. In particular, low-mass galaxies
(log (M�/M�) = 9.0) have flatter gradients than galaxies with stellar
masses of log (M�/M�) = 10.5. However, the metallicity radial
profile is found to flatten again in the inner regions of the most
massive star-forming galaxies (see also Sánchez-Menguiano et al.
2017).

This mounting body of observational data justifies the develop-
ment of chemical evolution models that may successfully cross the
gap between integrated and spatially resolved properties of galaxies.
Several attempts have already been made to use variants of the
bathtub chemical evolution model to interpret resolved chemical
abundances (Ascasibar et al. 2015; Belfiore et al. 2015; Kudritzki
et al. 2015; Ho et al. 2015; Lian et al. 2018). In this paper, we
follow the same philosophy and develop an extension of the gas

regulatory formalism in order to test whether simple analytical
models can reproduce the observational trends highlighted in
Belfiore et al. (2017). We focus entirely on gas-phase metallicity,
and, in particular, on reproducing the detailed shape of the radial
metallicity profiles. We do not approximate radial profiles as linear
gradients, since the observations are not well-represented by simple
straight-line models.

Our models take into account inside-out growth and radial
variations of the SFE, but are otherwise intentionally simplistic.
Metallicity gradients in real galaxies are likely to be affected by
additional physics, which we do not include here (e.g. radial gas
flows, the effect of enriched gas inflow or galaxy mergers). Zoom-in
hydrodynamical simulations have been used to study these effects
in some detail (Pilkington et al. 2012; Torrey et al. 2012; Gibson
et al. 2013; Tissera et al. 2018). These simulations remain, however,
too expensive to study large and representative samples of galaxies
and explore variations in model parameters.

The flexible analytical models presented in this work, on the
other hand, allow for a rapid exploration of parameter space,
and are therefore ideally suited for developing physical intuition
and uncovering the degeneracies between model parameters. We
demonstrate the latter point explicitly by fitting our analytical
models to the MaNGA radial metallicity profiles presented in
Belfiore et al. (2017), and evaluating the model likelihood via Monte
Carlo Markov chain (MCMC) sampling.

In Section 2, we discuss the details of our chemical evolution
model, including the prescription for inside-out growth and radial
gradients in SFE. We also comment on the resulting time evolution
of the metallicity gradient in the models and the effects of the
four model parameters on the metallicity gradient. In Section 3, we
describe our Bayesian fitting strategy and the observed degeneracies
in the inferred best-fit models. In Section 4, we discuss how the best-
fit model parameters compare with theoretical predictions, focusing
specifically on the outflow loading factor.

2 TH E C H E M I C A L E VO L U T I O N MO D E L

2.1 The bathtub chemical evolution approach

In this work, we make use of the bathtub chemical evolution
model and consider a galaxy as a collection of independent radial
annuli. Within each annulus, we adopt the instantaneous recycling
approximation (Tinsley 1980). In this simplified framework, one
assumes that all stars more massive than Mlong-lived (generally taken
to be 1 M�) die instantaneously, and those of lower masses live
forever. We further posit that the metals produced by the previous
generation of stars are immediately and uniformly mixed with the
pre-existing interstellar medium (ISM) of the region considered.
Following standard notation, we adopt the oxygen yield per stellar
generation (y) and return fraction (R) calculated by Vincenzo et al.
(2016) using the Kroupa, Tout & Gilmore (1993) IMF, respectively
(y,R) = (0.0105, 0.285). For the rest of this work, we characterize
the yield normalizing to the total mass of gas taking part in star
formation, which we denote as p and is trivially related to y by
y = p/(1 − R).

Within the instantaneous recycling approximation, denoting the
oxygen fraction (by mass) in the ISM as Z, the gas mass as �g,
the star formation rate as �SFR, the stellar mass as ��, the outflow
rate as O and the inflow rate as I, each annulus is described by the
following set of constitutive equations

d��

dt
= (1 − R) �SFR; (1)
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d�g

dt
= −(1 − R) �SFR − O + I; (2)

d(Z �g)

dt
= p �SFR − O Z − (1 − R) Z �SFR + ZaccI, (3)

where Zacc is the metallicity of the accreting gas.
Together with equations (1)–(3), we will adopt the assumptions

of the ‘ideal bathutb’ model, namely:

(i) A linear star formation relation,

�SFR = ν �g, (4)

with star formation efficiency (SFE) ν which is constant in time.
(ii) Outflow rate proportional to the SFR through a constant (in

time) outflow loading factor (λ)

O = λ �SFR. (5)

Combining equations (1)–(3), we can re-write the time evolution
of the gas-phase metallicity Z as

dZ

dt
= ν

(
p + (Zacc − Z)I

SFR

)
= p ν − Z

I
�g

, (6)

where to get to the final expression we have assumed that accretion
is pristine (Zacc = 0). This assumption is adopted for the rest of this
work.

2.2 Time dependence of the inflow rate and resulting star
formation history

Chemical evolution models aimed at reproducing the metallicity
gradient in the Milky Way generally assume a faster assembly time
for the inner disc, in order to mimic the theoretical expectation of
inside-out growth (Larson 1976). A simple way of implementing
inside-out growth is to assume an exponentially declining accretion
rate, with an infall time-scale (τinf ) which increases with galacto-
centric radius (Chiosi 1980; Matteucci & Francois 1989; Boissier &
Prantzos 1999; Chiappini et al. 2001)

I(r, t) = I0(r) e−t/τinf (r). (7)

This parametrization of the time dependence of the inflow rate
is entirely predicated on its simplicity and does not have an a
priori physical motivation. Other popular assumptions for the time
evolution of the accretion rate include taking a constant inflow rate
(Peng & Maiolino 2014), using a redshift-dependent inflow rate
which is proportional to the dark matter accretion rate computed
in numerical simulations (Forbes et al. 2014), assuming the inflow
rate necessary to reproduce the redshift dependence of the star
formation main sequence (Leitner 2012; Lilly & Carollo 2016) or
assuming that the inflow rate is proportional to the SFR. The latter
choice has been repeatedly used in recent literature (Dayal et al.
2013; Kudritzki et al. 2015) because it simplifies the equations
of chemical evolution, but prevents us from studying the non-
equilibrium behaviour of the system. In this work, we consider the
full-time evolution of the solutions to the bath-tub model and not
only their behaviour near equilibrium (i.e. d�g/dt ∼ 0). We discuss
some of the differences between these alternative assumptions and
their relation to equilibrium in Appendix A.

Assuming equation (7) and integrating equations (1)–(3) with
respect to time, we derive analytical time-dependent solutions
for this chemical evolution model given in Table 1. Since the
constitutive equations of our model are first-order ordinary dif-
ferential equations, the solutions are trivially obtained by standard

Table 1. Exact analytical time-dependent solution of the exponential infall
models used in this paper. The relevant time-scales as the equilibrium time-
scale τeq ≡ 1

ν(1−R+λ) and the critical time-scale τ−1
c ≡ τ−1

eq − τ−1
inf .

Galaxy property Solution

�g I0 e−t/τinf τc (1 − e−t/τc )
�SFR = ν �g ν I0 e−t/τinf τc (1 − e−t/τc )
�� (1 − R)ντcI0

(
τinf (1 − e−t/τinf ) − τeq(1 − e−t/τeq )

)

Zg pν
(
τc − t e−t/τc

1−e−t/τc

)

methods and we omit the derivation.1 The solutions have four free
parameters: the star formation efficiency ν, the outflow loading
factor λ, the inflow time-scale τinf , and the normalization of the
inflow rate I0.

In Fig. 1, we show the time evolution of different physical
quantities (the inflow rate, gas mass, stellar mass, and metallic-
ity) in this model, considering three different inflow time-scales
(τinf = 2, 4, 20 Gyr). The inflow rate is normalized so that the total
mass of gas accreted between t = 0 and 14 Gyr is the same in each
model, and is set to 1 in arbitrary units. The other parameters are held
fixed at (ε, λ) = (0.5 Gyr−1, 1.0). Because of this normalization, the
total stellar mass at late times is nearly the same between different
models, with small differences due to the different final gas masses
and fraction of mass expelled due to outflows.

Since SFR ∝ Mgas in our model, the time evolution of the gas
fraction tracks the star formation history (SFH) of the system.
Exponential infall models produce SFHs similar to the popular
SFR(t) ∝ t e−t/τ ‘delayed SFH’ parameterization, which is in rea-
sonable agreement with the mean SFH obtained by inverting the star
formation main sequence (Leitner 2012; Ciesla, Elbaz & Fensch
2017) and expectations from simulations (Simha et al. 2014). In our
models, the gas mass increases linearly with time at early times, as
gas accumulates in the system faster than it can be processed. At
late times, on the other hand, the SFH follows the exponential decay
of the inflow rate, as star formation is limited by the available gas
supply.

The history of chemical enrichment in these models can also
be divided into two phases. During the first phase, metallicity
increases rapidly as the metals quickly pollute the pristine gas
and SFRs are high. At late times, however, the metallicity reaches
an equilibrium value, since chemical enrichment is balanced by
metal consumption from star formation and expulsion by outflows.
This stage of ‘chemical equilibrium’ at late times is a general
feature of gas regulatory models which include inflows and outflows
(Peng & Maiolino 2014; Weinberg et al. 2017). In our models, the
equilibrium abundance depends on the three parameters (ν, λ, τinf ).
As can be seen from Fig. 1, longer infall time-scales correspond
to more extended SFH and lower equilibrium metallicities. A
more detailed discussion of the equilibrium solutions and their
significance in our models is presented in Appendix A.

1Some details regarding the derivation of our analytical solutions are
presented in the Appendix A. Recently Spitoni, Vincenzo & Matteucci
(2017) and Weinberg et al. (2017) have presented similar analytical solutions
and further details on their derivation. Notably, the Spitoni et al. (2017)
solution are identical to the ones derived in this work, after taking the
difference in notation into account. The solutions in Weinberg et al. (2017)
are slightly different because the authors regard star formation history, and
not the mass accretion rate, as fundamental, and the star formation history
obtained in our model does not match exactly any of the simple cases
discussed in their paper.
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Figure 1. The time evolution of several physical parameters (I, Mgas,M�, 12 + log(O/H)) in our adopted chemical evolution model with exponentially
decreasing inflow rate. Model tracks with different colours have different infall time-scales. In this model, after an initial period of gas accumulation, where
the inflow rate is larger than the SFR, the gas mass decreases with time and part of the mass is converted into stars. The total mass of the inflow is the same
for all the models, leading to galaxies with very similar stellar masses at late times. The metallicity increases rapidly at early times but quickly reaches an
equilibrium value.

2.3 Radial dependence of model parameters

2.3.1 Infall rate and time-scale

In this work, we use the parametrization of the infall time-scale
adopted for the Milky Way models of Matteucci & Francois (1989)
and subsequent revisions thereof. This formalism adopts an infall
time-scale which increases linearly with radius,

τinf (r) = a + b r, (8)

where a is the infall time-scale at the galaxy centre (r = 0) and b
represents the linear gradient of the infall time-scale. A positive
b is required to mimic inside-out growth. The choice of this
particular functional form is again dictated by its simplicity and
is only weakly constrained post-facto by its ability to fit current
abundance and gas fraction data in our Galaxy. We note that even
when radial flows are explicitly modelled, the inclusion of radial
flows does not lead to inside-out growth, but simply to a different
‘effective accretion’ profile (see the discussion in e.g. Pezzulli &
Fraternali 2016).

In addition to the infall time-scale, our model depends on the
normalization of the accretion rate profile I0(r). This normalizing
factor must have a radial dependence in order to generate a
negative gradient in the stellar mass surface density. While most
models assume I0(r) = A exp(−r/h), where h is a scale-length
determined by fitting to the data, no simple prescription for the
radial dependence of I0(r) is capable of generating a disc which
remains exponential at all times. However, for suitably high values
of a and b, this standard choice of the normalization parameter
generates discs which are roughly exponential, especially at large
radii.

Fortunately, the normalization of the inflow rate only has an effect
on extensive quantities (like Mgas or M�), but not on quantities which
are ratios of the above (like sSFR = SFR/M�, fgas or 12 + log(O/H)).
We can demonstrate this explicitly in the case of metallicity by

noting the solution in Table 1 does not depend on I0.2 In this work,
we only fit the metallicity gradient and therefore do not consider
the normalization of the inflow rate as a free parameter.

2.3.2 The star formation law and efficiency

While star formation is most directly associated to the molecular
phase of the ISM (Kennicutt & Evans 2012), for the purposes of
chemical evolution the relevant gas mass to consider is the total
mass of gas diluting the metals. We assume that this consists of
both atomic and molecular gas, with negligible mass in the ionized
phase. Since atomic and molecular gas have different radial profiles,
with the molecular gas being more centrally concentrated (Leroy
et al. 2009; Bigiel & Blitz 2012), our model must take into account
the different radial profiles of the star forming and the total gas
component. In this work we parametrize this by using a linear star
formation law (equation (4)), and a star formation efficiency which
decreases with radius.3

We consider two alternative parametrizations of the star forma-
tion efficiency and its radial dependence. The first is based on
the orbital time-scale, while the second assumes a fixed SFE for
molecular gas and a radially decreasing molecular gas fraction. In
the following, we describe these models in more detail.

(i) A classical implementation of the star formation law is ob-
tained assuming that the depletion time is proportional to the orbital
time-scale (Silk 1997; Kennicutt 1998). Under this assumption, one

2Note that this is only true for a linear star formation law of the form of
equation (4) and is not the case if one assumes the relation between SFR
and gas mass to be given by a power law of the type SFR ∝ Mk

gas.
3A super-linear star formation law could also be used to a similar end, but
this would prevent us from generating analytical solutions to the constitutive
equations of the bathtub model, and is therefore not considered here.
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Figure 2. The star formation efficiency (ν) as a function of radius for
different models considered in this work. The blue curve corresponds to the
assumption ν ∝ V/r. The rotation curve is parametrized using a tanh model,
leading to the SFE expression presented in equation (10). The red curve
shows an alternative model where the SFE decreases linearly with r/Re. This
model is a good representation of the observed SFE radial gradient in nearby
galaxies (red data points, from Bigiel et al. 2008). For illustration purposes,
the red curve shown in figure represents the best fit to the observational data,
and the blue curve is fixed to have the same SFE at r = 0.

may write the star formation efficiency as

ν ∝ τ−1
orbit ∝ V(r)

r
, (9)

where V(r) is the rotational velocity at radius r.
The rotation curve is a direct observable, which can be derived

from the MaNGA data, but for simplicity we use a hyperbolic
tangent model to represent a galaxy’s rotation curve. While not
strictly physically motivated, this model is found to reproduce
the shapes of rotation curves of local galaxies to high accuracy
(Andersen & Bershady 2013; Westfall et al. 2014). We fix the scale
length of the rising part of the rotation curve to be the same as the
exponential disc scale length, which is close to the relation observed
to hold in local galaxies (Amorisco & Bertin 2010). Our model for
the SFE is therefore given by

ν = ν0 h/r tanh(r/h), (10)

where h is the exponential disc scale length and ν0 is a free parameter
of the model, and corresponds to the star formation efficiency at r
= 0. In Fig. 2, we show the SFE as a function of radius for a model
galaxy using this SFE parametrization (solid blue line). In the rest
of the paper, we refer to this model as the ν ∝ V/r model.

(ii) If the SFE depends on the free fall time of individual
molecular clouds, and the mass spectrum of giant molecular clouds
is roughly independent of the galactic environment the clouds live
in, then we expect SFR ∝ MH2. This model is broadly supported
by observations of the gas content of local galaxies on kpc-scales
(Bigiel et al. 2008; Leroy et al. 2009). The ability of the ISM to
form a molecular component is likely driven by the hydrostatic gas
pressure and the interstellar radiation field. Analytical recipes exist
to compute these quantities based on other observables (Elmegreen
1993; Blitz & Rosolowsky 2006; McKee & Krumholz 2010). In this
work, however, we wish to use the simplest possible prescription
motivated by available data. To this end, we fit the radial dependence
of the SFE from Bigiel et al. (2008) with a linear model, which is
found to be a good representation of the data. In particular, we
assume SFR/MH2 = 2.0 Gyr and take the radial dependence of
MH2/MHI from fig. 13 of Bigiel et al. (2008). The radial dependence

of the SFE is therefore determined entirely by the radial variation
in MH2/MHI.

In Fig. 2 we show the SFE from the Bigiel et al. (2008) data (red
dots) and our best linear fit. In order to convert the R25 (radius where
the galaxies reaches 25th magnitude in r-band) values used in Bigiel
et al. (2008) to an effective radius (Re), we assume the galaxies in the
Bigiel et al. (2008) sample to be exponential discs with canonical
central surface brightness of 21.65 magnitude arcsec−2 (Freeman
1970). In this model, the SFE is therefore set to vary linearly with
radius according to

ν = ν0,c − ν ′
0r/Re. (11)

The best-fit parameters obtained fitting the Bigiel et al. (2008) data
are ν0,c = 0.45 Gyr−1 and ν ′

0 = 0.15 Gyr−1.
While this SFE model has two free parameters, ν0,c and ν ′

0, in this
work we take ν ′

0 as a free parameter and fix ν0,c to its best-fit value
from the Bigiel et al. data. This choice is motivated by the desire to
keep only one free parameter in the star formation law and by the fact
that fixing ν ′

0 generates a radial SFE dependence very similar to the
ν ∝ V/r star formation model (equation (10), see Fig. 2). By using a
model with free ν ′

0, on the other hand, we are able to test whether real
metallicity gradients are best described by a steeper or shallower (or
even flat) SFE gradient. The second SFE parametrization used in this
paper is therefore given by equation (11) with ν0,c = 0.45 Gyr−1. In
the following, we refer to this as the linearly decreasing SFE model.

2.3.3 The outflow loading factor

The outflow loading factor may be expected to depend on galac-
tocentric distance, increasing towards the galaxy outskirts, where
the local escape velocity may be lower. In this work, however, we
refrain from introducing an ill-characterized radial dependence for
the outflow lading factor and assume it to be constant as a function
of radius.

2.3.4 Summary of the model

In summary, in this work, we fit metallicity gradients with two sets
of chemical evolution models, which differ in their treatment of the
radial dependence of the SFE (the ν ∝ V/r model and the linearly
decreasing SFE model). Both models have four free parameters,
whose definitions and units are summarized in Table 2. In Fig. 3,
we present a graphical summary of the main features of our chemical
evolution framework, which highlights the similarities to the bathtub
model of Lilly et al. (2013).

2.4 Time evolution of the metallicity gradient

In this subsection, we explore the time evolution of the metallicity
gradient and other physical quantities predicted by our chemical
evolution model and the effect of varying its free parameters. We
focus on the model with ν ∝ V/r but similar trends are obtained by
studying the linearly decreasing SFE model.

In Fig. 4(a), we show the metallicity gradient at three different
times (t = 1.0, 3.0, 14.0 Gyr) for the ν ∝ V/r model and example
values of model parameters (a; b; ν0; λ) = (5 Gyr; 1 Gyr kpc−1;
0.5 Gyr−1; 1.0). While these parameter values have been chosen to
be approximately representative of real galaxies, they are only used
here for illustrative purposes.

Fig. 4(a) demonstrates that our model generally predicts a
flattening of the metallicity gradient over time. Panel (c) of Fig. 4
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Table 2. Free parameters in the adopted chemical evolution model. Equations (1) and (2) correspond to the two different
models for the radial variation of the SFE, discussed in Sec. 2.3.2.

Parameter Definition Defining relation Unit

a infall timescale at galaxy centre τinf = a + b r Gyr
b gradient of the infall timescale τinf = a + b r Gyr kpc−1

(1) ν0 free parameter in SFE (ν) (1) ν = ν0 h/r tanh(r/h) Gyr−1

(2) ν′
0 ’ (2) ν = 0.45 − ν′

0r/Re ’
λ outflow loading factor λ = O/SFR dimensionless

Figure 3. An illustration of the main components of the chemical evolution model described in this work. At the core of the model lie the equations of the
‘bathtub’ or ‘gas regulatory’ model, where star formation is regulated by inflow of pristine gas, the star formation efficiency of the disc gas (ν), and star
formation driven outflows (with loading factor λ). In order to mimic the inside-out growth of the disc, the infall time-scale is assumed to be a function of radius,
with time-scale τinf = a + b r. Inner regions of the galaxy therefore form both earlier and faster. As described in Table 2, we consider two different models for
the radial variation of the star formation efficiency.

Figure 4. (a) The time evolution of the metallicity radial profile using the ν ∝ V/r model and parameter values (a, b, ν0, λ) = (5.0, 2.0, 0.5, 1.0). (b) Time
evolution of the sSFR radial profile for the same model. (c) Time evolution of the ISM metallicity at three different galactocentric distances, as noted in
the legend. (d) The star formation histories of three regions at different galactocentric distances. Each SFH is normalized to its maximum value. The panel
demonstrates our prescription for inside-out growth, where outer regions form stars later and more slowly.
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462 F. Belfiore et al.

shows that metallicity increases quickly at early times at all radii,
with larger radii taking longer to reach the equilibrium metallicity
value, as already noted in Section 2.2.

In Fig. 4(b), we show the sSFR radial profiles predicted by our
chemical evolution model. At early times sSFR is high, and the
radial profile is nearly flat. As the system evolves, however, the
sSFR profile develops a dip at small galactocentric radii, indicative
of gas exhaustion in the central regions of the galaxy. While in
this work we do not fit observed sSFR profiles, we note that the
shapes of the sSFR gradients produced by our chemical evolution
model are at least qualitatively consistent with those observed in
local (Belfiore et al. 2018; Spindler et al. 2018) and high redshift
(Wang et al. 2017; Tacchella et al. 2018) galaxies.

Finally, in Fig. 4(d), we show the SFHs of galactic regions at
different galactocentric distances. The SFHs have been normalized
to their maximum value. The figure demonstrates the inside-out
growth prescription embedded in our model, where regions at larger
radii have both delayed (i.e. the peak SFR occurs at later times) and
more extended SFHs.

We next discuss the effect of the four free parameters a, b, ν0, λ

on the time evolution of the metallicity gradient. In Fig. 5, we show
the metallicity gradient at different times (1.0, 4.0, and 14.0 Gyr).
In each panel, one of the model parameters is varied and the other
ones are kept fixed. The models shown in dashed lines correspond
to the parameters values (a; b; ν0; λ) = (5 Gyr; 1 Gyr kpc−1; 0.5
Gyr−1; 1.) and are the same in all four panels. The main findings
from this analysis are summarized below.

(i) The a parameter only affects the metallicity of the central
region at late times. A small value of a corresponds to a shorter
infall time-scale for the central regions and, therefore, a higher
metallicity in the centre.

(ii) The b parameter mostly affects the slope of the metallicity
gradient at late times. At early times, the metallicity is mostly driven
by the ability of the system to process the gas (via star formation and
outflows), so the b parameter does not affect the early evolution of
the metallicity gradient. At late times, however, metallicity is driven
by the availability of gas, which, in turn depends on the inflow rate.
The b parameter, therefore, determines how fast the metallicity of
outer regions catches up with the inner regions. A large value of b
implies a larger difference in the infall time-scale between the centre
and the outskirts and, therefore, a steeper metallicity gradient.

(iii) The value of the SFE at r = 0 (ν0) determines how fast gas
can be processed into stars and, therefore, mostly impacts the early
evolution of the system. Higher ν0 implies faster star formation and
consequent enrichment, thus leading to higher metallicity at early
times. At late times, the inner regions have already reached their
equilibrium metallicity. A high ν0 therefore mostly affects the outer
regions, allowing them to experience sufficient star formation to be
chemically enriched. High ν0 at late times therefore corresponds to
flatter gradients, which are the natural state of evolved systems in
this model.

(iv) The outflow loading factor λ strongly affects the shape of the
metallicity gradient and the maximum metallicity reached by the
galaxy at both early and late times, although its impact is most
significant at late times. A higher outflow loading factor leads
to lower metallicities, as a larger fraction of the gas reservoir is
expelled, therefore preventing further chemical enrichment. A larger
loading factor also produces flatter gradients, as the outflow expels
gas from the high-SFR central regions, preventing their early-time
enrichment.

3 FI TTI NG THE LOW-REDSHI FT
META LLI CI TY GRADI ENTS

3.1 Metallicity gradients in the nearby Universe

In this work, we fit the metallicity radial profiles of star-forming
galaxies derived by Belfiore et al. (2017), making use of 550 galaxies
from the MaNGA survey (Bundy et al. 2015; Yan et al. 2016), part
of SDSS-IV (Blanton et al. 2017). Belfiore et al. (2017) find a mild
change in the slope of the metallicity gradient as a function of
mass, with low-mass galaxies having flatter gradients. Their data
also shows a flattening and/or metallicity drop in the centres of
massive galaxies (log (M�/M�) > 10.5). More recently, Sánchez-
Menguiano et al. (2017) confirmed the presence of an inner drop
in the metallicity gradient for massive galaxies using a sample of
102 galaxies observed at higher spatial resolution with the MUSE
integral field spectrograph on the ESO Very Large Telescope. Albeit
offering lower spatial resolution, the MaNGA data set is unique in
being representative of the local population of star-forming galaxies
in the stellar mass range log (M�/M�) = [9.0–11.0], and is therefore
the data set of choice in this paper.

Belfiore et al. (2017) select star-forming galaxies to be
moderately face on (major to minor axial ratio greater
than 0.4) and exclude interacting and merging galaxies.
They calculate metallicity for each star forming region us-
ing the Maiolino et al. (2008) metallicity calibration based on
the R23 = ([O II]λλ3726, 28 + [O III]λλ4959, 5007)/Hβ parameter
and the Pettini & Pagel (2004) metallicity calibrator based on
O3N2 = log([O III]λ5007/Hβ)/([N II]λ6584/Hα). In this section,
we fit the Maiolino et al. (2008) abundances, but discuss the
differences obtained fitting the Pettini & Pagel (2004) abundance
data in Section 4.2. A discussion on the effect of the metallicity
calibration on our results is therefore postponed to that section.

Stacked profiles in mass bins are obtained by computing the ro-
bust estimate of the median profile (using Tukey’s biweight, Beers,
Flynn & Gebhardt 1990) and standard deviation within each mass
bin. Here, we fit the data as a function of physical distance (in kpc)
from the galaxy centre. When required, the effective radius is taken
to be the median effective radius of the galaxies in each mass bin.

3.2 The fitting approach

In light of the discussion in Section 2.4, we expect significant
degeneracies to exist between a, b, ν0, and λ, since these parameters
conspire in setting both the normalization and the slope of the
metallicity gradient. In fact, one of the aims of this work is to reveal
the degeneracies inherent in bathtub chemical evolution models.
To this aim, we make use of an MCMC sampling method to
explore the 4D parameter space and efficiently characterize the
uncertainties associated with the derived parameters. In detail, we
consider a Gaussian likelihood function and assume flat priors for
our model parameters in the following ranges: a = [0, 30] Gyr, b =
[0, 30] Gyr kpc−1, ν0 = [0, 4] Gyr−1, λ = [0, 10]. For the model
with linearly decreasing SFE, we use a flat prior for ν ′

0 in the range
[0, 0.3] Gyr−1. In all models, we assume t = 14 Gyr.

The python module EMCEE (Foreman-Mackey et al. 2013) is
used to perform the MCMC sampling using an affine invariant
algorithm (Goodman & Weare 2010). The sampler is initialized
around the position in parameter space which provides a best fit
to the data, calculated using a SCIPY optimize.minimize procedure.
We fit the metallicity gradients in each mass bin independently,
without constraining the model parameter to vary smoothly with
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‘Bathtub’ models to metallicity gradients 463

Figure 5. The time evolution of the radial metallicity gradient for the ν ∝ V/r model. Blue, green, and red curves in all panels refers to model predictions at
t = 1, 3, 14 Gyr, respectively. Green curves are omitted in the bottom panels for clarity. In each panel, a different model parameter is modified according to the
legend. The fiducial model parameters are (a; b; ν0; λ) = (5.0 Gyr; 1.0 Gyr kpc−1; 0.5 Gyr−1; 1.0).

mass. The acceptance fractions (i.e. fraction of times a suggested
step is approved in the evolution of the Markov chain) is between
0.3 and 0.5 for all the mass bins, indicating reasonable perfor-
mance for the MCMC sampler. Convergence of the MCMC chain
is also evaluated using the Gelman–Rubin diagnostic, R̂. This
metric compares the dispersion within the chain to the dispersion
between chains sampling the same posterior. R̂ tends to 1 when
convergence is achieved. We find R̂ < 1.08 for all four free
parameters.

In Fig. 6, we show the posterior probability density functions
(PDF) obtained fitting the metallicity gradient in the mass bin
log (M�/M�) = 9.75–10.00 with the ν ∝ V/r SFE model as an
example of the kind of degeneracies unveiled by the MCMC
analysis. The degeneracy contours appear different for different
mass bins, but some general properties are already evident in the
example in Fig. 6. In particular, the a and b parameters, determining
the gas infall time-scale, cannot be inferred very precisely from
the data. In this example, the PDF for b parameter covers a large
fraction of the prior range. The PDFs for ν0 and λ, on the other
hand, are relatively well-constrained around the best-fit values. The
most significant degeneracies appear between b, λ, and ν0. A higher
value of b generates a steep gradient at late times, which can also
be obtained by a slight decrease of the outflow loading factor, or
of ν0 (see Fig. 5). Corner plots showing the PDFs for the other
mass bins and for the linearly decreasing SFE model are shown in
Appendix B.

3.3 The best-fit model parameters

Focusing first on the ν ∝ V/r SFE model, we show in Fig. 7 the
best-fit models for each mass bin (solid lines), superimposed on the
MaNGA metallicity profiles in mass bins (circles with error bars).
It is clear from this figure that the model with ν ∝ V/r provides
excellent fits to the data across all mass bins. The reduced χ2 values

Figure 6. Corner plot showing the posterior PDFs of the four model
parameters (a, b, ν0, and λ) obtained by fitting the stacked metallicity
gradient in the mass bin log (M�/M�) = 9.75–10.00 with the ν ∝ V/r SFE
model. The median, 16th, and 84th percentiles of the posterior PDF for each
parameter are shown above each marginalized PDF.

for each mass bin lie in the range between 0.3 and 2.4, with an
average χ2 across all mass bins of 1.0.

Our models are capable of matching the change in shape of the
metallicity gradients as a function of stellar mass, fitting both the
steep gradients in the mass range log (M�/M�) = 9.5–10.5 and
the high-mass galaxies, which show a flattening of the metallicity
gradient in the central regions. The data for the lowest mass bin
shows a mildly inverted gradient, which is also well-fitted by our
models. However, the PDFs for a, b, and ν0 in the lowest-mass bin
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464 F. Belfiore et al.

Figure 7. Metallicity gradients in different stellar mass bins from the MaNGA data (Belfiore et al. 2017, coloured circles) and the best-fit chemical evolution
model (solid lines). The model used here corresponds to the ν ∝ V/r SFE parametrization.

Figure 8. Median values of the PDFs for the model parameters (a, b, ν0, and λ) obtained with the ν ∝ V/r SFE parametrization as a function of stellar mass.
The error bars correspond to the 16th and 84th percentiles of the PDF. Also plotted is the median ν0 obtained by Bigiel et al. (2008) for a small sample of local
star-forming galaxies.

are roughly flat over the prior range and only the outflow loading
factor λ shows a PDF with a well-defined peak for this mass bin
(see Fig. B1). In the mass range log (M�/M�) = 9.25–10.00, a small
break is evident in the slope of the model metallicity gradients at
r ∼ 2.0 kpc. This corresponds to the disc scale-length h, and to
the change in slope of the rotation curve, as parametrized by the
ν ∝ V/r model.

In Fig. 8, we show the medians of the inferred posterior PDFs
for the four model parameters as a function of stellar mass. The
error bars represent the 16th and 84th percentiles of the posterior
PDFs. We note two regimes, which roughly correspond to high-mass
(log (M�/M�) > 10.25) and low-mass galaxies. At low masses, a
and b are not well-determined and the outflow loading factor λ is a
decreasing function of mass. At high masses, roughly corresponding
to the onset of the flattening of the metallicity gradient in the central
regions, b is low and λ is marginally consistent with being zero.
Interestingly, ν0 is very well-constrained in the range 0.5–0.7 Gyr−1

across the whole mass range. These values of ν0 are comparable to
the observed value of 0.45 Gyr−1 (Bigiel et al. 2008). Considering
that we assumed an uninformative prior in the range [0, 4] Gyr−1,

we consider the fact that inferred ν0 lies close to the measured value
as an additional success of the model. As noted above, the lowest
mass bin is an outlier, and the inferred high median value of ν0 is
entirely due to the flat posterior PDF.

In Fig. 9 (left panel), we show the equivalent results for the
linearly decreasing SFE model. This model is less successful at
reproducing in detail the shape of the MaNGA metallicity radial
profiles, with values of the reduced χ2 going from 0.4 to 7.7 and an
average χ2 over all mass bins of 2.5. The model struggles in particu-
lar to reproduce galaxies of intermediate mass log (M�/M�) = 10.0–
10.5, where the shape of the metallicity gradient changes from steep
to flat in the inner regions.

The parameters inferred using the linearly decreasing SFE model
are shown on the right-hand panel of Fig. 9. Several trends are found
to be in common with the ν ∝ V/r model. In particular, λ shows a
decrease with mass, going from ∼1 at log (M�/M�) = 9.0 to zero at
high masses. ν ′

0, the slope of the SFE decrease in units of r/Re, has
only a mild mass dependence and the average value is 0.11 Gyr−1,
in reasonable agreement with the value of 0.15 Gyr−1 derived in
Section 2.3.2 from the data of Bigiel et al. (2008).
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‘Bathtub’ models to metallicity gradients 465

Figure 9. Left: Same as Fig. 7, but using the linearly decreasing SFE model. Right: Same as Fig. 8, but using the linearly decreasing SFE model. The parameter
ν′

0 denotes the linear slope of the SFE and is compared to the median value obtained analysing the data from Bigiel et al. (2008) for a small sample of local
star-forming galaxies.

4 D ISCUSSION

In this work, we have demonstrated that our simple chemical
evolution models, based on the gas-regulatory formalism and
containing only four free parameters, are capable of reproducing
the change in shape of metallicity radial profiles for galaxies of
different stellar masses at z = 0 as observed by the MaNGA survey.
Of the two SFE parameterizations considered in this work, the
model with ν ∝ V/r produces the best fit to the data. Moreover, the
inferred SFE is close to the SFE measured in galaxies in the local
Universe by Bigiel et al. (2008). While the assumption of inside-out
growth is supported by our parameter inference (b > 0), the overall
constraints on the parameters setting the infall time-scale (a and
b) are weak, their mass dependence appears somewhat different
between the ν ∝ V/r and the linearly decreasing SFE model. In
this section, we therefore do not discuss our inference on these
parameters. On the other hand, taken at face value, our models are
capable of inferring the value of the outflow loading factor with
good precision. We therefore focus this discussion on comparing
our inferred outflow loading factor with results from the literature
and discussing possible systematic uncertainties, such as the value
of the nucleosynthetic yield or the gas-phase metallicity calibration
used.

Finally, we compare our results with other recent work based
on both more sophisticated analytical models and hydrodynamical
simulations.

4.1 The outflow loading factor

In the literature, there are at least two different approaches to
measuring the outflow loading factor, which can be broadly defined
in both observations and simulations. The first approach aims to
measure the instantaneous outflows loading factor by relating the
state of the outflowing gas directly to an ongoing star formation
event. Measurements of outflow rates based on the kinematics
of the ionized or molecular gas close to the galactic discs of
starburst galaxies fall into this category (Heckman et al. 2000;
Veilleux, Cecil & Bland-Hawthorn 2005; Heckman et al. 2015;
Förster Schreiber et al. 2019). Hydrodynamical codes which assume

sub-grid prescriptions for launching winds also generally quote the
outflow loading factor directly related to a star formation event (also
referred to as the loading factor ‘at injection’, see Pillepich et al.
2018). The shortcoming of this approach is that this outflow loading
factor does not take the fate of the outflowing gas into account,
since a large fraction of this gas may be quickly re-integrated
into the disc and therefore promptly made available for future
star formation. This means that the instantaneous outflow loading
factor cannot be directly related to the baryon and metal deficit of
galaxies.

Alternatively, one can define an average cumulative outflow
loading factor as the ratio between the star formation rate and the
amount of gas leaving the galaxy’s halo (or crossing a surface
at a specific distance from the centre of the halo) over a defined
time-scale (Muratov et al. 2015). This outflow loading factor is
directly related to the amount of baryons and metals expelled by
a galaxy, and therefore more closely comparable to the outflow
loading factor used in chemical evolution models. In the presence
of recycling, the time-averaged cumulative outflow loading factor
will be lower than the instantaneous one. In this work, one may
interpret, albeit approximately, the outflow loading factor computed
here as an average of the instantaneous loading factor over the SFH
of the galaxy.

Taking these differences into account, we show in Fig. 11 the
outflow loading factor inferred in this work as blue and red circles
with error bars, corresponding to the ν ∝ V/r and the linearly
decreasing SFE model, respectively. See Table 3 for the tabulated
values of the loading factors and their errors. We also show in
Fig. 10 the outflow loading factors inferred from measurements
of the local mass–metallicity relation by authors using different
analytical models (solid lines, Peeples & Shankar 2011; Lilly
et al. 2013; Zahid et al. 2014). For consistency with previous
literature, the halo mass and virial velocities are obtained from
the stellar mass using the formalism and equations of Peeples &
Shankar (2011). It is worth noting that different authors make use of
different metallicity calibrations and oxygen nucleosynthetic yields,
which would affect their inference for the outflow loading factor.
Considering these systematic uncertainties and the differences in
the modelling framework, the outflow loading factors obtained in
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466 F. Belfiore et al.

Table 3. The mass loading factors derived in this work for different models, IMF choices, and metallicity calibrations. When
not otherwise specified, the oxygen yield is calculated using the Romano et al. (2010) stellar yields and a Kroupa et al. (1993)
IMF (yO = 0.0105) and we make use of the Maiolino et al. (2008) metallicity calibration based on R23. This information is
presented in graphical form in Fig. 11, left-hand panel.

Mass bins Outflow loading factor Outflow loading factor Outflow loading factor Outflow loading factor
log (M�/M�) = V/r SFE model linearly decreasing V/r SFE model with V/r SFE model

SFE model yO = 0.037 PP04 met. calibration

9.00–9.25 0.88+0.04
−0.04 0.92+0.06

−0.05 3.68+0.11
−0.10 1.92+0.08

−0.07

9.25–9.50 0.63+0.06
−0.04 0.68+0.09

−0.05 3.05+0.17
−0.11 1.44+0.12

−0.08

9.50–9.75 0.35+0.07
−0.05 0.46+0.16

−0.08 2.31+0.19
−0.12 0.92+0.06

−0.05

9.75–10.00 0.18+0.06
−0.04 0.49+0.18

−0.13 1.85+0.15
−0.10 0.69+0.06

−0.04

10.00–10.25 0.03+0.04
−0.02 0.52+0.14

−0.11 1.41+0.13
−0.08 0.52+0.05

−0.03

10.25–10.50 0.03+0.06
−0.02 0.09+0.10

−0.06 1.18+0.42
−0.06 0.40+0.03

−0.02

10.50–10.75 0.14+0.23
−0.11 0.03+0.05

−0.02 1.50+0.80
−0.25 0.42+0.09

−0.03

10.75–11.00 0.05+0.10
−0.04 0.05+0.09

−0.04 1.21+0.19
−0.07 0.43+0.07

−0.04

Figure 10. The outflow loading factor as a function of the virial velocity Vvir (and stellar mass). The solid blue and red circles correspond to the time-
averaged cumulative loading factors inferred in this work by fitting the MaNGA metallicity gradients with the ν ∝ V/r and the linearly decreasing SFE model,
respectively. Solid lines represent empirical determinations of the outflow loading factor by different authors, who fitted the mass–metallicity relation (and
sometimes additional information, like gas fraction or SFR). In particular, we show the results from Peeples & Shankar (2011), Lilly et al. (2013), and Zahid
et al. (2014). The triangles correspond to instantaneous loading factors estimated from observations of local (upwards black, Heckman et al. 2015, right-pointing
blue, Chisholm et al. 2017) and high-redshift z = 0.6 − 2.7 galaxies (right-pointing red, Förster Schreiber et al. 2019). The dashed lines represent mass loading
factors measured in the hydrodynamical simulations of Davé, Finlator & Oppenheimer (2011) and Muratov et al. (2015).

this work are in reasonable agreement with the range of values
present in the literature.

Coloured triangles in Fig. 10 refer to the loading factors inferred
‘directly’ from observations of star-forming galaxies at z ∼ 0 (black
upwards triangles, from Heckman et al. 2015, blue right-pointing
triangles from Chisholm et al. 2017) and z = 0.6 − 2.7 (red right-
pointing triangles, from Förster Schreiber et al. 2019). These
determinations refer to instantaneous loading factors, measured by
studying UV and Hα line emission, respectively. We note that large
systematics may affect these determinations, due to uncertainties

in the density and geometry of the outflows and because they
only refer to a specific phase of the ISM. However, partially
because of the large intrinsic scatter, these loading factors are in
good general agreement with the loading factors determined in this
work.

The dashed lines in Fig. 10 show the values for the outflow loading
factors employed or measured in hydrodynamical simulations by
Davé et al. (2011) and Muratov et al. (2015) for galaxies in dark mat-
ter haloes of different masses. Other simulators only quote loading
factors at injection (e.g. Vogelsberger et al. 2013 and Pillepich et al.
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‘Bathtub’ models to metallicity gradients 467

Figure 11. Left: The outflow loading factor as a function of stellar mass computed in this work, using different SFE models (ν ∝ V/r in red, linearly decreasing
SFE model in blue, same as in Fig. 10), different oxygen yield (yO = 0.037, as predicted for a Chabrier (2003) IMF, green) and using the Pettini & Pagel
(2004) metallicity calibration based on O3N2 for the metallicity gradients data (orange). Right: Same as Fig. 7, but using the metallicity gradients derived from
the Pettini & Pagel (2004) calibration based on O3N2.

2018 for the loading factors at injection for the Illustris and Illustris-
TNG simulations, respectively), which can be up to an order of
magnitude larger. We predict, however, that since Illustris and TNG
reproduce the mass–metallicity relation for galaxies (Vogelsberger
et al. 2013; Torrey et al. 2019), a direct measurement of cumulative
loading factor would be in much better agreement with other
measurements of the loading factor in the literature. While other the-
oretical estimates of the outflow loading factor still lie above most of
the empirically determined values, we will show in the next section
that changing the oxygen yield and/or the adopted metallicity cali-
bration one may infer higher loading factors from the observations
as well.

It is also worth noting that relaxing the assumption that outflows
share the metallicity of the surrounding ISM will have an impact on
the loading factor inferred in this work and other studies based
on fitting the mass–metallicity relation. Based on a sample of
five galaxies with high signal-to-noise UV spectroscopy, Chisholm,
Tremonti & Leitherer (2018) find that for galaxies with log (M�/M�)
> 9.0 have outflow metallicities ∼2.6 times higher than the
metallicity of the ISM gas in the host. Unfortunately, introducing
metal-enriched outflows requires new solutions to the constitutive
equations of our model, so we do not explore this issue in detail
here.

Finally, we note that the assumption of a loading factor that does
not change with time (as adopted in this work) is not a bad one.
To test this, we parametrized the instantaneous loading factor as a
power law in virial velocity. We then use the SFH of each model
galaxy to derive a stellar mass, halo mass, and virial velocity as
a function of time following the formalism in Peeples & Shankar
(2011). We find that assuming either λ ∝ 1/Vvir or λ ∝ 1/V2

vir the
SFH-averaged loading factor (calculated at redshift zero) is within
20 per cent of the instantaneous loading factor.

4.2 The effect of the yield, IMF, and the abundance scale

Both the assumed nucleosynthetic yield and the zero-point of the
gas phase abundance scale are expected to have a large effect on
the determination of the outflow loading factor. Nearly all oxygen
in the Universe is produced by massive stars (M� > 8 M�) dying as
Type II supernovae. Uncertainties in the oxygen yield arise from
the systematic uncertainties in predicting the amount of newly
synthesized oxygen by Type II supernovae of fixed progenitor mass,

but also from the integration over the IMF and the choice of range
of stellar masses to integrate over.

Significant uncertainties persist in modern determinations of
the oxygen yield per stellar generation, which can lead to yields
varying up to a factor of three for reasonable choices of parameters
(Vincenzo et al. 2016). In order to test the impact a higher oxygen
yield would have on our analysis, we have re-fitted the ν ∝ V/r model
to the metallicity profiles data using yO = 0.037, the value expected
from a Chabrier (2003) IMF (our default yield is yO = 0.0105).
The return fraction was also adjusted to R = 0.455, as appropriate
for this choice of IMF. The resulting outflow loading factor for
different mass bin is shown in Fig. 11 (green data points), together
with the loading factors previously inferred in Section 3.3. As
expected, the new yield increases λ to values ranging from ∼3.5 for
log (M�/M�) = 9.0 to 1.5 at high masses.

Finally we consider the effect of the gas-phase metallicity
calibration on the derived loading factor. Well-known systematics
affect the measurement of gas-phase metallicity from strong line
ratios (see, for example, the discussion in Blanc et al. 2015). These
systematics have the largest effect on the determination of the
metallicity zero-point, with the Maiolino et al. (2008) calibration
based on R23 leading to metallicities ∼0.2 dex higher than the
Pettini & Pagel (2004) calibration based on O3N2. We therefore
repeat our analysis for the ν ∝ V/r model using the metallicity radial
profiles calculated using the Pettini & Pagel (2004) calibration by
Belfiore et al. (2017). The data and the resulting best-fit models
are shown in Fig. 11, right panel. Echoing Belfiore et al. (2017),
we note that the metallicity gradients calculated using the Pettini &
Pagel (2004) calibration have similar shapes to those calculated
using the Maiolino et al. (2008) calibration. Differences include the
fact that the lowest mass bin does not show an inverted gradient and
the highest mass bin shows a clear plateau, but a less pronounced
inversion at small radii. As can be seen from Fig. 11, our models
produce excellent fits to the data. The parameter most affected by
the change in metallicity calibration is again λ, although we also
find a slightly lower mean ν0 (0.38 Gyr−1) than for the fit to the
Maiolino et al. (2008) calibration data. The resulting outflow loading
factor for different mass bins is plotted in Fig. 11, left-hand panel
(orange). λ now ranges from ∼1.9 at low masses to 0.4 at high
masses.

The loading factors obtained with the different parameter choices
discussed in this section are reported for all mass bins in Table 3.
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4.3 Limitations and comparison with other models

The model described in this work represents an attempt to describe
chemical evolution of disc galaxies in the simplest possible terms.
Each of the assumptions described in Section 2.3 represents a
simplification, since important physical processes are neglected.

As already noted in Section 2.3.1, it is difficult to generate an
exponential disc following naive disc assembly prescriptions and
neglecting radial flows. However, radial flows in discs are a general
consequence of angular momentum conservation, since material
from the halo accreting on to the disc at a specific radius will not
necessarily share the angular moment of the disc at the point of
impact (Mayor & Vigroux 1981; Lacey & Fall 1985; Spitoni &
Matteucci 2011; Pezzulli & Fraternali 2016). Unfortunately, the
velocities predicted for these radial flows are of a few km/s,
and are observationally challenging to distinguish for other non-
axisymmetric disturbances in discs (Wong, Blitz & Bosma 2004;
Schmidt et al. 2016). We note, moreover, that to our knowledge there
exists no analytical model of disc formation and chemical evolution
which naturally produces an exponential disc, even when radial
flows are included. Models where the discs are exponential at all
time steps (e.g. Pezzulli & Fraternali 2016; Bilitewski & Schönrich
2012) need to explicitly assume them to be so.

While we successfully fit metallicity gradients, even in the
absence of radial flows, the stellar mass profiles of our model
galaxies tend to flatten and therefore deviate from an exponential
profile within the inner few kpc. This is a natural consequence of
inside-out growth in the bathtub model. The inflow rate in the central
regions of galaxies decreases more quickly that in the outskirts,
leading to a decrease in SFR and a flattening mass profile. For the
same reason, in our models, the sSFR always gently increases at
large radii. It is interesting to note that using the best-fit model
parameters we have derived, the predicted sSFR profiles fail to
match in detail the ones observed by the MaNGA survey (Belfiore
et al. 2018), especially at small and large radii. The introduction
of radial flows, which we delay to future work, may contribute to
bringing the model closer to the observations, by providing more
gas in the central regions at late times.

The effect of galaxy mergers on metallicity gradients is also
neglected in this work. Merging and interacting galaxies are
observed to have flatter metallicity gradients (Kewley et al. 2010),
as a result of inward gas flows triggered by tidal interactions (Rupke,
Kewley & Chien 2010; Torrey et al. 2012). Fu et al. (2013) make use
of the Munich L-GALAXIES semi-analytical model with a simple
prescription for disc disruption during mergers and find that time
since the last merger is the quantity that correlates most strongly
with the metallicity gradient at redshift zero.

Finally, the procedure for mixing metals into the ISM also has
an impact on the derived abundances. In this work, we assume that
nucleosynthetic products are instantly mixed with the cold ISM in
each annulus. However, a fraction of the newly produced metals
may be directly expelled into the hot halo gas (Chisholm et al.
2018), without fist mixing with the cold galaxy ISM, as we have
assumed here. Enriched accretion of gas from the halo at late times
leads to flatter gradients and a plateau in metallicity in the outer disc.
Bresolin, Kennicutt & Ryan-Weber (2012), for example, argue that
the metallicity on the outer disc of nearby galaxies flattens to a
value of around 0.35 Z�. Similar conclusions on the flattening of
metallicity gradients at large radii are notably reached by Sánchez
et al. (2014).

The change in slope of the metallicity gradient as a function
of mass has not yet been extensively explored in hydrodynamical
models. Based on a sample of 32 zoom-in simulations, of which

only nine were evolved to redshift zero, Ma et al. (2016) find a
mild steepening of the metallicity gradient with stellar mass, in
qualitative agreement with observations at high redshift (Stott et al.
2014).

More recently, Tissera et al. (2018) compared their predictions
from the EAGLE cosmological simulation (Schaye et al. 2015) with
z ∼ 0 MaNGA observations of Belfiore et al. (2017), demonstrating
that EAGLE galaxies have systematically shallower gradients than
observed. The EAGLE simulations also shows a large fraction
of galaxies with positive metallicity gradients (∼40 per cent),
which is not found in observations of the local Universe (Pérez-
Montero et al. 2016). Tissera et al. (2018) suggest that the overly
flat gradients produced in EAGLE could be due to the roughly
flat SFE radial profile in the simulated galaxies, at odds with
current observations. It is also possible, as argued in Ma et al.
(2016), that the ‘effective feedback’ model implemented in the
EAGLE simulation may artificially mix metals on large scales,
thus preventing strong metallicity gradients from forming. The
development of more physically-motivated models for feedback
and ISM physics may therefore be needed in order to reproduce
the changes in slope of the metallicity gradients observed by
MaNGA.

5 C O N C L U S I O N S

In this work, we have developed analytical chemical evolution
models, based on the bathtub model formalism, to describe radial
metallicity profiles in local galaxies. We bridge the gap between
previous bathtub models, mostly aimed at describing the chemical
evolution of galactic systems as a whole (e.g. Bouché et al.
2010; Lilly et al. 2013), and classical chemical evolution models
developed for the Milky Way galaxy (e.g. Chiappini et al. 2001). In
particular, we adopt the inside-out growth formalism of Matteucci &
Francois (1989), which posits a radially-dependent infall time-scale,
and develop two models for the radial dependence of the SFE. In
one version of the model, we assume that the SFE is inversely
proportional to the orbital time-scale (the ν ∝ V/r model), and in
the second one we assume a constant SFE for the molecular gas (i.e.
SFR/MH2 = const) and a molecular gas fraction which decreases
with radius (the linearly decreasing SFE model), motivated by the
data from Bigiel et al. (2008).

For either SFE parametrization, our models are described by four
free parameters. Two of the parameters describe the infall time-scale
and its radial dependence (a and b). For the ν ∝ V/r model, the SFE
at the centre of the galaxy is taken as a free parameter, while for the
linearly decreasing SFE mode the slope of the radial gradient of the
SFE is assumed to be free. The final free parameter is the outflow
loading factor.

We have studied the effect of varying these parameters on the
metallicity gradient and its time evolution. Overall, our models
predict a flattening of the metallicity radial profile with time, in
general agreement with results from hydrodynamical simulations
and classical chemical evolution models with a radially decreasing
SFE. However, all four parameters conspire to set the final degree
of chemical enrichment and the slope of the metallicity gradient at
late times, pointing to significant degeneracies.

We compare our models with the metallicity radial profiles
measured by Belfiore et al. (2017) for star-forming galaxies in the
MaNGA survey. We perform the fit within a Bayesian framework
and explore the parameter space via MCMC sampling. We summa-
rize the main conclusions from this analysis below.
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(i) Both SFE parametrizations produce good fits to the data, with
the ν ∝ V/r model being favoured in terms of χ2. Notably, our
models are capable of reproducing the details of the changes in
shape of the metallicity radial profiles over the entire mass range
log (M�/M�) = [9.0–11.0] covered by the observations.

(ii) We find significant degeneracies between model parameters.
Partly as a consequence of that, the inference for the parameters
describing the infall rate and its radial dependence is weak.

(iii) For both the ν ∝ V/r and the linearly decreasing SFE model
we find the best-fit parameters describing the SFE have only a
weak mass dependence and are in reasonable agreement with the
observations of Bigiel et al. (2008).

(iv) For the adopted value of the nucleosynthetic yield (yO =
0.0105, assuming a Kroupa et al. 1993 IMF), the outflow loading
factor is found to vary from nearly unity at log(M�/M�) = 9.0
to close to zero at log(M�/M�) = 11.0. These loading factors
are in good agreement with previous determinations of the loading
factor based on the mass-metallicity relation of local galaxies and
with ‘direct’ measurements of the loading factors of local and high-
redshift star forming galaxies.

(v) A higher value of the yield (yO = 0.037, as expected from a
Chabrier 2003 IMF) leads to higher inferred loading factors, going
from ∼3.5 for log(M�/M�) = 9 to close to ∼1.5 for log(M�/M�) =
11.0. The choice of the gas-phase metallicity calibration also has an
effect on the inference on the outflow loading factor. Higher loading
factors are obtained making use of the Pettini & Pagel (2004) O3N2
metallicity calibration instead of the adopted Maiolino et al. (2008)
calibration based on R23.

Although our models are successful at reproducing the data and
provide physical insight into the effect of different parameters, they
do not include all the physics relevant to metallicity gradients. We
expect that next generation of hydrodynamical simulations will be
able to study the changes in shape of the metallicity gradients as a
function of mass and quantify the impact of the physics which is
missing from our simplified framework.
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A P P E N D I X A : SO L U T I O N S TO N OTA B L E
C H E M I C A L E VO L U T I O N MO D E L S A N D T H E
RO LE EQUI LI BRI UM

In this appendix, we aim to develop a physical understanding for the
solutions of the chemical evolution model presented in this work.
We start from notable solutions of simple models and comment on
how the solution to the model presented in this work are related to
them, especially at late times when the system tends to equilibrium.

In the presence of inflows and outflows, the simplest gas reg-
ulatory models are ‘equilibrium’ models, where the gas mass of
the system is taken to be constant in time (d�g/dt = 0, Finlator &
Davé 2008; Genel et al. 2008; Bouché et al. 2010; Genel, Dekel &
Cacciato 2012; Davé, Finlator & Oppenheimer 2012). Assuming
d�g/dt = 0 equation (1) reduces to

I = (1 − R + λ) �SFR (in equilibrium). (A1)

Under these assumption at late times, equation (6) reduces to

Z = p

1 − R + λ
(in equilibrium). (A2)

Lilly et al. (2013) have highlighted that equilibrium is a good
assumption for gas-poor, chemically evolved, low-redshift galaxies,
but not for gas-rich dwarfs or galaxies at high redshift. In these
systems the SFR cannot adjust itself fast enough compared to the
high rate of accretion and the amount of mass in the gas reservoir
must evolve.
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Figure A1. The time evolution of several fundamental parameters
(I, Mgas, M�, 12 + log(O/H)) in the Peng & Maiolino (2014) chemical
evolution model with constant infall rate. The metallicity converges towards
its equilibrium value at t > τeq = 1.16 Gyr (red dashed lines) for the choice
of parameters adopted in this plot, (ν, λ) = (0.5 Gyr−1, 1.0). Also shown in
the plot as blue dashed line the time t/τeq = 3. We find that for t/τeq > 3
model parameters are sufficiently close to their equilibrium values to justify
the equilibrium assumption.

If the time-scale over which the accretion rate changes is much
longer than other timescales in the system, one may assume the
inflow rate to be constant to first order. Under these assumptions,
Peng & Maiolino (2014) demonstrated that one can define a natural
time-scale for the chemical evolution of the system (the equilibrium
time-scale, τeq), given by

τeq ≡ 1

ν (1 − R + λ)
. (A3)

For the sake of completeness, we provide below a brief recap on
how to obtain analytical solution to the constitutive equations of the
bathtub model in the case of constant accretion rate. The evolution
of the gas content (equation 2) becomes

d�g

dt
+ �g

τeq
= I. (A4)

This is a first-order ordinary differential equation with integrating
factor et/τeq and solution

�g = Iτeq(1 − e−t/τeq ). (A5)

Substituting into equation (6), we obtain a first-order ordinary
differential equation for the time evolution of metallicity

dZ

dt
+ Z

τeq(1 − e−t/τeq )
= p ν, (A6)

which may be solved with integrating factor et/τeq − 1. The final
time evolution of the metallicity can therefore be written as

Z = p ν τeq − p ν t e−t/τeq

1 − e−t/τeq
. (A7)

This solution was already presented in Belfiore, Maiolino & Both-
well (2016). Confusingly, it is slightly different from the solution
originally derived by Peng & Maiolino (2014), who assume that the
gas mass is slowly varying in deriving their equation (35), while
our solution does not make this assumption.

In Fig. A1 we show the time evolution for a number of funda-
mental parameters (I, Mgas, M�, 12 + log(O/H)) in this model. The
gas-phase metallicity of the system increases quickly at early times,
and for t >> τeq the system tends to the equilibrium metallicity

Figure A2. The radial dependence of τc using the best-fit parameters for
the ν ∝ V/r model fit to the metallicity gradients (see Section 3.3). Different
colours corresponds to different mass bins, as described in the legend. The
dashed black dashed lines corresponds to t/τc = 3 and can be used as a rough
demarcation between regions in equilibrium (below the line) and regions out
of equilibrium (above the line).

given by

Z = p ν τeq (in equilibrium). (A8)

The value of τeq is noted in Fig. A1 as a red dashed line. In practice,
in order to test whether the equilibrium condition (t >> τeq) is
met we find that the value of t/τeq = 3 provides a reasonable
boundary (blue dashed line in figure). For example, for the choice of
parameters adopted in Fig. A1 the metallicity is within 80 per cent
of its equilibrium value by t/τeq = 2.7. The gas content, on the other
hand, reaches its equilibrium value on a slightly faster time-scale.
For example, in this model, the gas content is within 80 per cent of
its equilibrium value by t/τeq = 1.6.

In order to obtain a time-dependent solution for the equations of
chemical evolution using the exponential infall prescription, as we
have done in this work, it is useful to define a new time-scale, τc,
given by

τ−1
c ≡ τ−1

eq − τ−1
inf . (A9)

Finding solutions to the constitutive equations of the bathtub model
then proceeds in a similar way as for the constant infall rate model.

In particular, in the exponential infall model, the time evolution
of gas-phase metallicity is given by

Z = p ν τc − p ν t e−t/τc

1 − e−t/τc
. (A10)

Remarkably, this equation is the same as A7, if one substitutes
τeq with the new time-scale τ c. τ c can therefore be thought as the
natural time-scale for the exponential infall model to reach the
equilibrium metallicity. In this model, at late times, the metallicity
also converges to its equilibrium value, now given by

Z = p ν τc (in equilibrium). (A11)

Solutions for the time evolution of other quantities are summarized
in Table 1 of Section 2.2.

Let us now consider the best-fit parameters obtained from fitting
metallicity gradients with the ν ∝ V/r model. In this model, τeq

increases with radius, since it is inversely proportional to ν. We find
τeq ∼ 1 − 2 Gyr in the centres of galaxies, increasing to 4–8 Gyr at
R = 2 Re (excluding the lowest mass bin, which has anomalously
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Figure A3. Same as Fig. 7, but dividing highlighting whether each radial
region is the model is or not in equilibrium (solid black and dashed black
lines respectively). For the purposes of this plot, regions are defined to
be in equilibrium if their metallicity is within 0.1 dex of the equilibrium
metallicity (equation (A11)).

high ν, resulting in low τeq). τ c follows a similar radial gradient,
with some changes due to the effect of τinf . Given the definition
of τc, τinf has the largest effect on τc when τinf ∼ τeq. In the inner
regions of galaxies τinf is a few Gyr, comparable to τeq, and therefore
τc is appreciably larger than τeq.

In Fig. A2, we show the radial variation of τc using the best-fit
model parameters from Section 3.3 using the ν ∝ V/r model. Each
colour represents a different mass bin. In order to give a rough

idea of the regions where the galaxies are close to equilibrium, the
dashed black line represents t/τc = 3.0. To first order, regions lying
below this line can be assumed to be in equilibrium, while regions
lying above this line have not yet reached equilibrium. As can be
seen from Fig. A2, the inner regions of galaxies are predicted to
be in equilibrium (at t = 14 Gyr), while the outskirts increasingly
deviate from equilibrium conditions. This is generally true for all
mass bins, expect the lowest mass galaxies, as already noted above.

In Fig. A3, we show the best-fit metallicity gradient models
(same as Fig. 7), but distinguishing between regions in equilibrium
(solid black lines) and regions outside equilibrium (dashed black
lines). Here, we consider regions to be in equilibrium if the
difference between the equilibrium metallicity (equation (A10))
and the metallicity at t = 14 Gyr is less than 0.1 dex. Again, we
find that the inner regions of galaxies have already reached their
equilibrium metallicity at t = 14 Gyr and the outer regions are still
not in equilibrium.

This analysis demonstrates, therefore, that the ability to capture
the non-equilibrium evolution of the system is key in reproducing
the shapes of the metallicity gradients in our modelling framework.
An equilibrium model may, on the other hand, be successful at
reproducing the abundances in the central regions of galaxies.

APPENDI X B: C ORNER PLOTS FOR A LL
MASS BINS

In this appendix, we present corner plots showing the posterior
PDFs for all mass bins using the ν ∝ V/r (Fig. B1) and linearly
decreasing SFE model (Fig. B2).

MNRAS 487, 456–474 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/487/1/456/5487519 by U
niversity of H

ull user on 12 M
arch 2022



‘Bathtub’ models to metallicity gradients 473

Figure B1. Corner plot showing the posterior PDFs of the four model parameters (a, b, ν0, and λ) for the stacked metallicity gradient for all mass bins, fitted
with the ν ∝ V/r SFE model. The median, 16th, and 84th percentiles of the posterior PDF for each parameter are shown above each marginalized PDF.
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Figure B2. Corner plot showing the posterior PDFs of the four model parameters (a, b, ν′
0, and λ) for the stacked metallicity gradient for all mass bins, fitted

with the linearly decreasing SFE model. The median, 16th, and 84th percentiles of the posterior PDF for each parameter are shown above each marginalized
PDF.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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