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We consider the effect of droplet geometry on the early-stages of coffee ring formation1

during the evaporation of a thin droplet with an arbitrary simple, smooth, pinned contact2

line. We perform a systematic matched asymptotic analysis of the small-capillary number,3

large-solutal Péclet number limit for two different evaporative models: a kinetic model,4

in which the evaporative flux is effectively constant across the droplet, and a diffusive5

model, in which the flux is singular at the contact line. For both evaporative models,6

solute is transported to the contact line by a capillary flow in the droplet bulk while,7

local to the contact line, solute diffusion counters advection. The resulting interplay8

leads to the formation of the nascent coffee-ring profile. By exploiting a coordinate system9

embedded in the contact line, we solve explicitly the local leading-order problem, deriving10

a similarity profile (in the form of a gamma distribution) that describes the nascent coffee-11

ring. Notably, for an arbitrary contact-line geometry, the ring characteristics change due12

to the concomitant asymmetry in the shape of the droplet free surface, the evaporative13

flux (for diffusive evaporation) and the mass flux into the contact line. We utilize the14

asymptotic model to determine the effects of contact-line geometry on the growth of15

the coffee ring for a droplet with an elliptical contact set. Our results offer mechanistic16

insight into the effect of contact-line curvature on the development of the coffee-ring17

from deposition up to jamming of the solute; moreover our model predicts when finite18

concentration effects become relevant.19

1. Introduction20

The ‘coffee-ring effect’ takes its name from the ringlike deposits left behind on a surface21

after a spilled droplet of coffee has evaporated into the surrounding air. As uncovered22

by the seminal work of Deegan et al. (1997, 2000) for an axisymmetric droplet, surface23

inhomogeneities tend to pin the circular contact line of the droplet so that, to replenish24

fluid lost during evaporation, an outward radial capillary flow develops inside the droplet;25

this flow carries solute with it, leading to a build up of solute at the droplet edge. This26

radial flow may be enhanced by a singularity in the evaporative flux that occurs near the27

contact line when evaporation is diffusion-dominated (Deegan et al. 2000), but occurs28

even for uniform evaporation (Masoud & Felske 2009; Kang et al. 2016). Eventually the29

solute becomes sufficiently concentrated near the contact line that particle concentration30

effects such as increased local suspension viscosity (Kaplan & Mahadevan 2015) and31

jamming (Popov 2005) become relevant, forming the coffee ring that remains once all32

liquid has evaporated.33

This behaviour is not limited to just coffee, but is ubiquitous whenever a liquid droplet34

containing a solute is left to evaporate. It is vital to understand how to control the effect35
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in many different biological, industrial and engineering settings (Anyfantakis & Baigl36

2015). There are a number of different mechanisms that can be employed to control the37

shape of the deposit (Mampallil & Eral 2018). A common approach to inhibit coffee ring38

formation is to interfere with the pinning of the contact line by, for example, employing39

superhydrophobic substrates (see, for example, Cui et al. 2012; Dicuangco et al. 2014),40

using electrowetting to encourage contact line slippage (for example, Li & Mugele 2008)41

or utilizing an oil-coated substrate (for example, Li et al. 2020). Alternatively, one can42

encourage physical effects that counter the outward capillary flow, such as Marangoni43

effects (see, for example, Hu & Larson 2006; Ristenpart et al. 2007; Li et al. 2015)44

or exploiting electrostatic or electroosmotic controls (for example, Wray et al. 2014;45

Kim et al. 2006). One can also introduce other liquids to the drop: the evaporation of46

binary droplets is a more complex phenomenon, exhibiting several different flow stages47

depending on, for example, the relative volatility of the liquid components, which can48

lead to an interesting variety of deposit patterns (see, for example, Kim et al. 2016; Zhong49

& Duan 2016; Li et al. 2018; Pahlavan et al. 2021, and the references therein).50

In this paper, we consider the role of droplet geometry on the coffee-ring effect. The51

geometry of a sessile drop can readily be controlled in a laboratory setting, which makes52

it a valuable tool for potential control of the deposition pattern. For example, a droplet53

on a sloped surface will be perturbed away from a spherical cap profile by gravity, which54

leads to a change in the angular dependence of the evaporative flux (Timm et al. 2019;55

Tredenick et al. 2021). The droplet contact set can also be manipulated by machining56

or treating the substrate in such a way that pinning at particular points is promoted,57

altering the shape of the deposit (He et al. 2017; Sáenz et al. 2017; Kubyshkina et al.58

2020).59

Once asymmetry is introduced, there is no longer uniformity in the coffee-ring profile.60

Deegan et al. (1997) noted that coffee stains tended to be darker near more curved61

regions of the contact line of a drying droplet, stating that the (diffusive) evaporative62

flux is larger in these regions, which in turn drives a stronger capillary flow. Sáenz et al.63

(2017) performed a range of experiments and simulations of different shaped contact sets64

suggesting that, in addition to the contact line curvature, the mean curvature of the65

droplet free surface plays an integral role in the evaporation rate.66

While an increased evaporation rate near highly-curved parts of the contact line cer-67

tainly contributes to an enhanced transport of solute mass into these regions, it is not68

a necessary requirement. Just as the radial flow that generates a coffee ring persists for69

a uniform evaporation rate in an axisymmetric droplet, the effects of contact line curva-70

ture can also be seen for a uniform evaporative flux. In particular, Freed-Brown (2015)71

conducted a numerical investigation of the mass flux of solute into the contact line for72

a wide range of different droplet profiles evaporating under a uniform evaporative flux.73

Even in the absence of spatially-varying evaporative flux, the liquid velocity is still en-74

hanced towards the highly-curved parts of the boundary and so there is a greater mass75

flux of solute to this part of the boundary, again acting to strengthen the coffee-ring76

effect.77

In the present work, we extend our recent analysis (Moore et al. 2021) to gain an78

understanding of the early stages of coffee-ring formation for arbitrary contact line ge-79

ometries. In the model of Deegan et al. (1997, 2000), the solute is sufficiently dilute in80

the fluid that it is advected radially outwards by the capillary flow, with all of the solute81

concentrated in an infinitesimally-small ring at the contact line once the liquid has com-82

pletely evaporated. Naturally, real coffee rings have finite dimensions and the Deegan83

model can be adapted to incorporate the effects of finite solute concentration (see, for84

example, Popov 2005; Kaplan & Mahadevan 2015). However, an important aspect of the85
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dilute problem that is missing in the Deegan model is the effect of solute diffusion, which86

resists the development of large spatial gradients induced by particle advection close to87

the contact line. For a thin, axisymmetric droplet, Moore et al. (2021) performed an88

asymptotic analysis in the physically-relevant limit of small-capillary number and large-89

solutal Péclet number to show that, by including the effects of diffusion, the characteristic90

narrow, peaked coffee-ring develops even in the early stages of evaporation, for which the91

solute remains dilute. The local form of the coffee-ring was shown to collapse onto a92

universal gamma distribution profile and predictions were made about characteristics93

of this nascent coffee ring such as its height and thickness under different evaporation94

laws. Critically, the results of the asymptotic analysis were used to determine when the95

assumption of a dilute solute breaks down; beyond this regime it is necessary to incor-96

porate a model for finite concentration effects. In particular, the window over which the97

dilute regime is valid was found to depend strongly on whether evaporation is kinetic-98

or diffusion-limited.99

Droplet axisymmetry greatly simplifies both the capillary flow and the solute transport100

problem so that significant analytical progress is possible in the asymptotic analysis.101

Moore et al. (2021) exploited this relative simplicity to construct consistent composite102

predictions for the solute mass profile. However, once axisymmetry is broken, the problem103

becomes much more challenging analytically and this approach is no longer feasible.104

Our aim in the present analysis is thus threefold. Firstly, we present an alternative105

asymptotic approach utilizing an integrated mass variable and an intermediate region106

that allows us to construct a composite solution for the solute concentration for an107

arbitrary, smooth, droplet contact set. We demonstrate the methodology in detail for a108

kinetic evaporation model — in which the evaporative flux is constant — as well as for109

a diffusive evaporation model for which the evaporative flux is singular at the contact110

line. These models correspond to two limits of the vapour confinement (high and low,111

respectively) and the asymptotic results allow us to derive a similarity profile for the112

nascent coffee ring in these cases.113

Secondly, we use the asymptotic results to investigate the relative importance of droplet114

asymmetry and heterogeneity in the evaporative flux on mass flux into the contact line115

and the nascent coffee ring structure by considering the particular example of a droplet116

with an elliptical contact set. When the evaporation is dominated by diffusion, we cor-117

roborate the findings of Sáenz et al. (2017) by demonstrating that there is an increased118

mass flux of solute into the contact line along the highly-curved semi-major axis of the119

ellipse compared to an axisymmetric droplet of the same volume and contact line length.120

However, when considering the constant evaporative flux model, we demonstrate that121

asymmetry in the droplet profile alone results in the same behaviour, consistent with the122

numerical results of Freed-Brown (2015). In both cases, we derive analytical expressions123

for the nascent coffee ring profile, as well as key characteristics such as its height and124

width.125

Importantly, we also demonstrate that the increased mass flux does not necessarily126

translate to a higher coffee ring peak. Indeed, for a diffusively-evaporating droplet, we127

show that, as the eccentricity of the elliptical contact set is changed but the droplet vol-128

ume and perimeter are fixed, the coffee-ring profile along the semi-major axis undergoes a129

transition from a thinner, higher coffee ring (compared to the corresponding axisymmetric130

droplet) to a lower, shallower coffee ring. On the other hand, for a uniformly-evaporating131

droplet, the coffee-ring peak along the semi-major axis is always larger than that for132

the equivalent circular droplet, although there is still a transition from a narrower to a133

thicker ring.134

Finally, we are able to show that this enhanced coffee-ring effect leads to a reduction135
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in the applicability of the dilute model along the semi-major axis, although the duration136

of applicability is correspondingly longer along the semi-minor axis, where the coffee-ring137

effect is weaker.138

The content of the paper is as follows. In §2, we present a mathematical model for139

the evaporation of a thin droplet with an arbitrary, smooth contact set containing a140

dilute solute, describing the liquid flow in the droplet in the surface tension-dominated141

limit. We then consider the solute transport problem in detail in §3, focussing on the142

physically-relevant regime in which advection dominates diffusion except in a boundary143

layer close to the pinned contact line. We use our asymptotic analysis to investigate the144

evaporation of droplets with an elliptical contact set in §4, uncovering the role played145

by droplet geometry in the formation of the nascent coffee-ring, as well as exploring the146

limitations of the dilute model. We conclude by summarizing our results in §5, as well as147

discussing possible applications and extensions of the model.148

2. Formulation of the mathematical model149

A droplet of liquid of volume V ∗ lies on a planar substrate at z∗ = 0, where we take150

Cartesian axes (x∗, y∗, z∗) centred with origin inside the droplet contact set Ω∗. Here151

and hereafter, an asterisk denotes a dimensional variable. The droplet contact line is152

denoted by ∂Ω∗ and, throughout our analysis, we shall assume that it is pinned ; this is a153

reasonable assumption for the majority of the drying time (see, for example, Deegan et al.154

2000; Kajiya et al. 2008; Orejon et al. 2011). We shall assume that the droplet is thin so155

that if we denote a typical size of the contact set by R∗, we have δ = V ∗/R∗3 ≪ 1. We156

note that in our analysis of elliptical contact sets in §4, we shall take R∗ to be the length157

of the semi-minor axis, so that when comparing droplets of the same initial volume and158

contact line perimeter, δ will necessarily change.159

The incompressible Newtonian liquid has constant density ρ∗ and viscosity µ∗, while160

the air-liquid surface traction is taken to be due to a constant surface tension with161

coefficient denoted by σ∗. We shall assume that the droplet is sufficiently small that the162

effects of gravity are negligible, i.e. we assume that the Bond number Bo = ρ∗g∗R∗2/σ∗
163

is small, where g∗ is the gravitational acceleration. The liquid lies in the region 0 < z∗ <164

h∗(x∗, y∗, t∗) for (x∗, y∗) ∈ Ω∗, where the air-liquid interface lies at z∗ = h∗(x∗, y∗, t∗).165

The liquid velocity and pressure are denoted by u
∗(x∗, y∗, z∗, t∗) and p∗(x∗, y∗, z∗, t∗),166

respectively.167

The liquid contains a non-volatile solute of concentration φ∗(x∗, y∗, z∗, t∗), which is168

initially uniformly-distributed, with concentration φ∗init. One of our key assumptions is169

that the solute is sufficiently dilute that the flow within the drop is unaffected by its170

presence. Under the dilute assumption, we can decouple the flow in the liquid drop from171

the solute transport. One of our aims is to test the validity of this assumption local to the172

pinned contact line, where the solute concentration increases as a result of the growth of173

the nascent coffee ring.174

The droplet evaporates into the surrounding air, which induces a flux of vapour E∗
175

at the droplet surface. The evaporative process is assumed to be quasi-steady, which176

is reasonable for a wide range of different liquid-substrate combinations (Hu & Larson177

2002). The evaporative flux, E∗, combined with the geometry of the droplet drives a178

liquid flow of typical size U∗ = E∗/δρ∗ towards the pinned contact line, where E∗ is a179

typical size of the evaporative flux, which depends upon the evaporation model chosen180

(see, for example, Murisic & Kondic 2011).181
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2.1. Dimensionless model182

The derivation of the model for the liquid flow and solute transfer are a direct extension183

of the axisymmetric case presented in Moore et al. (2021), so here we shall present the184

model directly in dimensionless form in the interests of brevity. Exploiting the thinness of185

the droplet and assuming that the flow is sufficiently slow to be dominated by viscosity,186

the pertinent scalings are187

(x∗, y∗) = R∗(x, y), z∗ =

{

δR∗ẑ in the droplet,

R∗z in the air,
t∗ =

R∗tf
U∗ t, (2.1)

and188

h∗ = δRh, u
∗ = (u∗, v∗, w∗) = U∗ (u, v, δw) ,

p∗ = p∗atm +
µ∗U∗

δ2R∗ p, E∗ = δρ∗U∗E, φ∗ = φ∗initφ, (2.2)

where p∗atm is the atmospheric pressure and the (dimensionless) dryout time of the droplet189

is defined by190

tf =

(
∫∫

Ω

E dS

)−1

. (2.3)

Note that we have scaled time such that the dimensionless lifetime of the droplet is191

0 < t < 1 to simplify the analysis going forward. The dimensionless droplet configuration192

is shown in figure 1.193

2.1.1. Flow model194

As described in, for example, Deegan et al. (2000); Freed-Brown (2015); Moore et al.195

(2021), since the droplet is assumed to be thin, to leading order the fluid flows within196

the drop according to the lubrication equations given by197

1

tf

∂h

∂t
+∇ · (hū) = −E, ū = −h

2

3
∇p, p = − 1

Ca
∇2h (2.4a, b, c)

for (x, y) ∈ Ω, 0 < t < 1, where ∇ = (∂/∂x, ∂/∂y)T . Here, ū(x, y, t) is the leading-order198

depth-averaged velocity of the droplet, the leading-order pressure p(x, y, t) is independent199

of ẑ and the capillary number is200

Ca =
U∗µ∗

σ∗δ3
. (2.5)

Equations (2.4) are supplemented by boundary conditions that require the droplet thick-201

ness to vanish and there to be no flux of liquid through the pinned contact line, so202

that203

h = hū · n = 0 on ∂Ω, (2.6a, b)

where n is the outward pointing unit normal to ∂Ω, while we must prescribe the initial204

droplet profile, h0 say, so that205

h(x, y, 0) = h0(x, y) for (x, y) ∈ Ω. (2.7)

We note that, in the absence of suitable regularization (such as imposing a Navier slip206

condition, rather than no slip on the substrate), a local analysis (along the lines of that207

described in, for example, Saxton 2016) reveals that the contact angle is unbounded at208

the contact line for both the kinetic and diffusive models. Fortunately, these effects are209

localized and so we neglect them in the present analysis.210
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Figure 1: a) Side-on and b) top-down view of a partially-wetting liquid droplet with
dimensionless contact set Ω and pinned contact line ∂Ω in the plane ẑ = 0 of the rigid
impermeable substrate. The droplet evaporates into the surrounding air with flux E(x, y)
as indicated by the red arrows. The orange arrows indicate the evaporation-induced
solute velocity. The liquid-air interface is denoted by ẑ = h(x, y, t). The local orthogonal
curvilinear coordinate system (s, n) embedded in the contact line described in §2.3 can
be seen in b).

2.1.2. Solute model211

As we have assumed that the solute is inert and dilute, its transport is governed by the212

competing effects of advection and diffusion; the strength of this competition is expressed213

by the solutal Péclet number214

Pe =
U∗R∗

D∗ , (2.8)

where D∗ is the solutal diffusion coefficient. Since the droplet is thin, the diffusive flux215

across the droplet thickness has a typical size φ∗initD
∗/δ2R∗2, while advection and diffu-216

sion parallel to the substrate have a typical size φ∗initU
∗/R∗. Provided that δ2Pe ≪ 1,217

therefore, diffusion across the droplet thickness dominates and the solute concentration218

φ is independent of ẑ to leading order. Hence, as described in detail elsewhere (see, for219

example, Wray et al. 2014; Pham & Kumar 2017; Moore et al. 2021), φ(x, y, t) satisfies220

1

tf

∂

∂t
(hφ) +∇ ·

(

hφū− 1

Pe
h∇φ

)

= 0 (2.9)
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for (x, y) ∈ Ω and 0 < t < 1, which is to be solved subject to the boundary condition of221

no solute flux through the contact line, given by222

(

hφū− 1

Pe
h∇φ

)

· n = 0 for (x, y) ∈ ∂Ω, (2.10)

together with the initial condition223

φ(x, y, 0) = 1 for (x, y) ∈ Ω. (2.11)

We reiterate that the reduced model is valid so long as δ2Pe ≪ 1. For thicker droplets224

with δ2Pe of order unity or larger, other effects such as the capture and transport of225

solute along the droplet free surface may be relevant (Kang et al. 2016).226

2.1.3. Evaporation models227

The appropriate evaporation model depends on the chemical and thermal properties of228

the liquid and substrate, as well as properties of the surrounding air, such as the ambient229

humidity and the ease with which vapour can be transported away from the droplet. It230

is not the purpose of this paper to determine what is the most appropriate evaporation231

model, but rather to investigate the formation of the nascent coffee ring in different232

regimes. For this reason, we shall concentrate on two illustrative cases by considering233

the kinetic and diffusive evaporative models, as in Moore et al. (2021). These models234

are often considered to be the two limiting cases that bracket most realistic evaporation235

scenarios (Murisic & Kondic 2011).236

As described in detail by Murisic & Kondic (2011), in a kinetic evaporation model,237

evaporation is limited by the liquid phase alone and the dimensionless evaporative flux in238

such cases is well approximated by E = 1/(1+h/K), where K is a parameter that depends239

on the thermodynamic properties of the system. For water evaporating on silicon, Murisic240

& Kondic (2011) find that K ≈ 10, and since h . 1, we can therefore reasonably take241

the evaporative flux to be uniform across the drop, setting242

E = 1 for all (x, y) ∈ Ω. (2.12)

We note that a constant evaporative flux may also occur in other situations where the243

evaporation model is not diffusion-limited, for example for water droplets evaporating on244

a hydrogel bath (Boulogne et al. 2016).245

In a diffusive evaporative model, evaporation is limited by the transport of the liquid246

vapour away from the air-liquid interface. Following, for example, Deegan et al. (2000)247

and Hu & Larson (2002), we assume that this process is quasi-steady and dominated by248

diffusion, so that the dimensionless vapour concentration c satisfies the mixed boundary249

value problem250

∇2c = 0 in z > 0,

c(x, y, 0) = 1 for (x, y) ∈ Ω,

∂c

∂z
(x, y, 0) = 0 for (x, y) /∈ Ω,

c→ 0 as x2 + y2 + z2 → ∞.

(2.13)

Here we have used the fact that the droplet is thin to linearize the boundary conditions251

onto the substrate, z = 0. The dimensionless evaporative flux is then given by252

E = − ∂c

∂z
(x, y, 0) for (x, y) ∈ Ω. (2.14)
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2.2. Small-capillary number flow253

As discussed in, for example, Deegan et al. (2000); Hu & Larson (2002); Freed-Brown254

(2015); Moore et al. (2021), the pertinent physical limit of interest in a wide range of255

problems is that in which the capillary number is small. This is due to the fact that the256

timescale for evaporation is typically many orders of magnitude larger than the timescale257

for capillary relaxation. As Ca → 0, it follows from (2.4)–(2.7) that the leading-order258

flow is given by259

p(x, y, t) ∼ α

Ca
(1− t) +

1

α3(1− t)3
P (x, y), (2.15)

h(x, y, t) ∼α(1 − t)H(x, y), (2.16)

ū(x, y, t) ∼ − H2

3α(1− t)
∇P, (2.17)

where the constant260

α =

(
∫∫

Ω

H dS

)−1

(2.18)

ensures that the initial dimensionless droplet volume is unity. The function H(x, y) is261

found from (2.4c) and (2.6b) to satisfy the Dirichlet problem262

∇2H = −1 in Ω, H = 0 on ∂Ω, (2.19a, b)

while by (2.4a,b) and (2.6a), the pressure perturbation P (x, y) satisfies the Neumann263

problem264

∇ ·
(

−H
3

3
∇P

)

= −E +
α

tf
H in Ω, −H

3

3
∇P · n = 0 on ∂Ω. (2.20a, b)

We note that the solvability condition for (2.20) is automatically satisfied because of the265

definitions of tf and α given by (2.3) and (2.18), respectively.266

In the surface tension-dominated limit, the initial free surface profile, h0(x, y) is unused.267

In reality, there is a short time scale over which an arbitrary profile h0(x, y) relaxes under268

surface tension to the form given by (2.16) (Lacey 1982; De Gennes 1985; Oliver et al.269

2015). This process happens on the timescale for capillary action, namely t = O(Ca),270

and therefore extremely quickly compared to the evaporation-induced flow studied here.271

We shall hence neglect its effects in our analysis.272

Typically, (2.19) and (2.20) will need to be solved numerically to recover the leading-273

order flow in the droplet given by (2.17), although some analytical progress may be made274

in simple geometries. In particular, Deegan et al. (2000); Popov (2005); Masoud & Felske275

(2009); Moore et al. (2021) discuss the axisymmetric problem in detail. It is also worth276

noting that the velocity profile will necessarily include a stagnation point in the droplet277

interior. In particular, in the late stages of coffee ring formation, the flow close to the278

stagnation point is the driving factor in the characteristic ‘fadeout’ of the coffee-ring279

profile (Witten 2009).280

2.3. Formulation in terms of contact line coordinates281

Once the flow has been determined, the solute concentration φ is determined from (2.9)–282

(2.11). As discussed in Moore et al. (2021), the pertinent asymptotic limit for a wide283

range of real-world evaporation problems — including for example, the experiments and284

simulations of Kajiya et al. (2008) and Sáenz et al. (2017) — is that in which the Péclet285



The nascent coffee ring with an arbitrary droplet contact set 9

number is large, so that286

ε := 1/Pe ≪ 1. (2.21)

In this regime, solute advection dominates in the bulk of the droplet, increasing the287

concentration local to the contact line and driving a competing diffusive flux there.288

We pursue this matched asymptotic analysis in detail in §3, but to do so it is expedient289

to introduce a local orthogonal curvilinear coordinate system, (s, n), embedded in the290

contact line geometry, as illustrated in figure 1b. The normal direction, n, points into the291

droplet and the arc length, s, is measured anticlockwise around the contact line, which292

has curvature κ(s), defined to be negative if the centre of the osculating circle lies to the293

left of the contact line as it is traversed in the anticlockwise direction (e.g. κ = −1 for294

a circular contact set of unit radius). We also denote the s- and n-components of the295

depth-averaged velocity by ūs and ūn respectively.296

Such a coordinate system is well-defined provided that ∂Ω is sufficiently smooth and297

that there are no vanishingly small neck regions in the droplet footprint. We shall assume298

that not only are these conditions met but, further, that the region over which (s, n) are299

well-defined extends much further than an O(ε)-distance from the contact line. (Such300

conditions will be met in the vast majority of physically-relevant scenarios, so this is not301

a particularly restrictive assumption.) For situations in which a sharp corner exists on302

the boundary, Popov & Witten (2003) have performed a local analysis that reveals the303

underlying scaling laws associated with coffee ring growth.304

2.3.1. Local behaviour of the flow model305

We can use the contact line coordinate system to determine the local behaviour of the306

droplet free surface profile, evaporative flux and the liquid flow. These results will be307

of vital importance in determining the correct asymptotic structure as ε → 0 in §3. We308

introduce the contact angle309

θc(s, t) = lim
n→0+

∂h

∂n
(s, n, t), (2.22)

which we assume to exist and be nonzero for 0 < t < 1, so that the droplet contact angle310

decays linearly with time according to (2.16). We therefore write θc(s, t) = (1 − t)ψ(s),311

where ψ(s) is the initial contact angle profile. We note that the non-axisymmetry of the312

droplet may mean that ψ varies with s (see, for example, the variations in contact angle313

for polygonal drops in Sáenz et al. 2017, and the case study of elliptical droplets in §4).314

The contact angle acts as a degree of freedom in the sense that it is determined globally315

rather than locally. We note that we have abused notation in the sense that the contact316

angle introduced here is for the leading-order droplet profile in the small-capillary number317

limit, as governed by (2.19), rather than that for the original model, governed by (2.4),318

(2.6) and (2.7) — the latter does not exist in the absence of regularization, as mentioned319

above.320

The local behaviour of the liquid flow depends strongly on the chosen evaporative321

model. For a kinetic evaporative flux, with E = 1, a local analysis of (2.17), (2.20) and322

using the fact that h ∼ θc(s, t)n as n→ 0+, implies that, close to the contact line323

ūs ∼
−3n

θc(s, t)2
∂

∂s
θc(s, t), ūn ∼ −1

θc(s, t)
as n→ 0+. (2.23)

For a diffusive evaporative flux, the change from Dirichlet to Neumann boundary324
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condition in (2.13) dictates that325

E(s, n) ∼ χ(s)√
n

as n→ 0+, (2.24)

where χ(s) is a degree of freedom. Then, by a similar analysis, we can show that the326

local behaviour of the liquid velocity at the contact line is given by327

ūs ∼
4θc(s, t)

2

3

∂

∂s

(

χ(s)

θc(s, t)3

)√
n, ūn ∼ −2χ(s)

θc(s, t)

1√
n

as n→ 0+. (2.25)

It is clear that the singularity in the diffusive evaporative flux drives a stronger normal328

velocity close to the contact line than the kinetic evaporative flux. Moreover, while in329

both cases the local velocity behaviour depends on the shape of the free boundary at the330

contact line — with the degree of freedom θc(s, t) being independent of the evaporation331

model — the coefficient of the normal velocity singularity in the diffusive regime also332

depends on the coefficient χ(s) of the evaporative flux singularity. The latter behaviour333

was noted by Sáenz et al. (2017) to have a strong effect on the local coffee-ring profile.334

2.3.2. Local formulation of the solute problem and the integrated mass variable335

In the region in which the (s, n) coordinate system is well-defined, the solute transport336

equation (2.9) can be written as337

1

tf

∂

∂t
(ahφ) +

∂

∂s

(

hφūs −
εh

a

∂φ

∂s

)

+
∂

∂n

(

ahφūn − εah
∂φ

∂n

)

= 0, (2.26)

where the scale factor a = 1+κ(s)n, while the no-flux boundary condition (2.10) becomes338

hφūn − εh
∂φ

∂n
= 0 on n = 0. (2.27)

To facilitate our matched asymptotic analysis, we shall find it convenient to introduce339

the integrated mass variable, defined by340

M(s, n, t) =

∫ n

0

a(s, ν)φ(s, ν, t)h(s, ν, t) dν. (2.28)

If we integrate (2.26) in the normal direction from 0 to n and apply (2.27), we see that341

the integrated mass variable satisfies342

1

tf

∂M
∂t

+
∂

∂s

∫ n

0

hφūs −
εh

a

∂φ

∂s
dν + ahφūn − εah

∂φ

∂n
= 0, (2.29)

while, by the initial condition (2.11), we have343

M(s, n, 0) = α

∫ n

0

a(s, ν)H(s, ν) dν, (2.30)

where α and H are given by (2.18) and (2.19), respectively.344

2.4. Summary345

In summary, given a model for the evaporative flux E, such as (2.12) or (2.14), we first346

determine at leading order in Ca ≪ 1 the dryout time, tf , the free surface profile, h,347

the liquid pressure, p, and liquid velocity ū from (2.3), (2.15)–(2.17), (2.18), (2.19) and348

(2.20). The local behaviour of the leading-order free surface profile at the contact line349

is given by (2.22), while the liquid velocity has local behaviour given by (2.23) in the350

kinetic evaporative regime and by (2.25) in the diffusive evaporative regime.351
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Once the leading-order free surface and the fluid velocity have been found, the solute352

concentration, φ, may be determined by solving (2.9)–(2.11), which in the region of353

validity of the contact line-based coordinate system imply (2.26)–(2.27) for φ and hence354

(2.29)–(2.30) for the integrated mass variable defined in (2.28). We shall exploit both355

forms of the solute concentration problem in our upcoming asymptotic analysis.356

3. Asymptotic solution of the advection-dominated limit357

We seek to determine how the interplay between advection and diffusion in (2.9)–(2.11)358

drives the growth of the nascent coffee ring for Pe ≫ 1 (ε ≪ 1), in which case solute359

transport is dominated by advection in the outer region away from the contact line (Dee-360

gan et al. 1997, 2000; Popov 2005; Witten 2009; Moore et al. 2021). Close to the contact361

line, where the solute concentration rapidly builds up and large concentration gradients362

form, the advective transport is balanced by diffusion in an inner region. As described363

by Moore et al. (2021), the asymptotic analysis is strongly-dependent on the choice of364

evaporative model. We give details of the analysis in §§3.1–3.5 for the kinetic evaporative365

flux (2.12) and summarize the corresponding results for the diffusive evaporative flux366

(2.14) in §3.6.367

3.1. Outer region368

In the bulk of the drop, we expand φ ∼ φ0 as ε → 0. At leading order, we recover from369

(2.9) and (2.11) the initial value problem370

1

tf

∂

∂t
(hφ0) +∇ · (hūφ0) = 0 in Ω, φ0(x, y, 0) = 1 in Ω. (3.1)

Thus, the leading-order behaviour in the bulk is simply to advect solute towards the371

contact line (see, for example, Deegan et al. 2000; Popov 2005; Witten 2009), as expected372

in the large-solutal Péclet number limit. The solution of (3.1) may be written in the form373

(hφ0)(x, y, t) =
αH(X,Y )

J(X,Y, t)
(3.2)

where (X,Y ) is the initial location of the fluid element positioned at (x, y) at time t and374

J(X,Y, t) is the Jacobian of the Eulerian–Lagrangian transformation.375

Hence, in the dilute model, the solute in the bulk simply follows streamlines to the376

contact line, as discussed previously by, for example, Deegan et al. (2000) and Witten377

(2009) — even though the flow is unsteady here, the particle paths coincide with the378

streamlines by virtue of the separable nature of the time dependence in (2.17). What is379

particularly useful about the form of the solution (3.2) is that, once we have calculated380

H and ū, rather than solving the hyperbolic problem (3.1), we can instead solve for the381

Jacobian by integrating Euler’s identity,382

D

Dt
(log J) = tf∇ · ū, (3.3)

along a streamline from (X,Y ), treating (3.3) as a first-order ODE with the initial con-383

dition J(X,Y, 0) = 1. Further, we can avoid calculating the divergence numerically by384

utilizing (2.17) and (2.20). This methodology lends itself particularly well to geometries385

in which the Poisson problem (2.19) is solvable analytically, as in the example of an386

elliptical contact set that we consider in §4. We discuss the numerical treatment of (3.3)387

further in Appendix A.388

We note that, according to (2.29), the integrated mass variable M ∼ M0 as ε → 0,389
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where M0 evolves according to390

1

tf

∂M0

∂t
+

∂

∂s

∫ n

0

hφ0ūs(s, ν, t) dν + (1 + κn)hφ0ūn = 0. (3.4)

Taking the limit n→ 0+, we deduce that391

M0(s, 0
+, t) = −tf

∫ t

0

(hφ0ūn)(s, 0
+, τ) dτ, (3.5)

which is simply the leading-order accumulated mass flux that has flowed into the contact392

line from the outer region up to time t. This quantity will be essential later in the393

matching between the outer and inner regions.394

That an inner region is necessary is evident by considering the local behaviour of the395

solute concentration at the contact line. Upon recalling (2.22) and (2.23), we expand396

(3.1) as n→ 0+ to deduce that397

φ0 ∼ B(s, t)

n
as n→ 0+, (3.6)

where B(s, t) is a degree of freedom that can only be determined by solving (3.2)–(3.3)398

for φ0. Hence the solute concentration is singular at the contact line and we therefore399

expect large solute concentration gradients to form. Such large gradients will in turn400

induce a local diffusive flux, as we shall now describe.401

3.2. Inner region402

To retain a leading-order balance between advection and diffusion, we introduce the inner403

scalings404

n = εn̂, h = εĥ, ūs = εûs, ūn = ûn, φ = ε−2φ̂, M = M̂, (3.7)

where the scalings for the droplet thickness and the velocity components are determined405

from the local behaviours (2.22) and (2.23), while the scaling for φ is determined from406

global conservation of solute mass.407

Upon substituting these scalings into (2.26)–(2.27) and expanding φ̂ ∼ φ̂0 as ε → 0,408

to leading order we have409

∂

∂n̂

(

ĥûnφ̂0 − ĥ
∂φ̂0
∂n̂

)

=
∂

∂n̂

(

−n̂φ̂0 − θc(s, t)n̂
∂φ̂0
∂n̂

)

= 0 (3.8)

for n > 0, which must be solved subject to410

−n̂φ̂0 − θc(s, t)n̂
∂φ̂0
∂n̂

= 0 on n = 0. (3.9)

Hence,411

φ̂0 = C(s, t)e−n̂/θc(s,t), (3.10)

where C(s, t) must be determined by matching.412

At this point it is clear that we cannot match näıvely between the leading-order-inner413

solution for the concentration (3.10) and the leading-order-outer given by (3.2) and (3.6),414

since (3.10) shows that φ̂0 decays exponentially in the far-field, while (3.6) shows that415

φ0 = O(1/n) as we approach the contact line.416

It is here that we turn to the integrated mass variable, M̂, as defined by (2.28). In the417

inner region, the curvature term at the contact line may be neglected in the integrand418
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in (2.28), so that419

M̂ ∼ M̂0(s, n̂, t) =

∫ n̂

0

θc(s, t)νφ̂0(s, ν, t) dν (3.11)

as ε→ 0, with (3.10) giving420

M̂0 = C(s, t)θc(s, t)
3

(

1−
(

n̂

θc(s, t)
+ 1

)

e−n̂/θc(s,t)
)

. (3.12)

We deduce immediately from (3.12) that421

M̂0(s, n̂, t) → C(s, t)θc(s, t)
3 as n̂→ ∞. (3.13)

Therefore, matching the integrated mass variable using (3.5) and (3.13), we deduce that422

C(s, t) =
M0(s, 0

+, t)

θc(s, t)3
. (3.14)

We observe that C(s, t) depends on both the accumulated mass flux M0(s, 0
+, t) trans-423

ported from the outer region into the inner region and the contact angle, θc(s, t), so that424

the geometry of Ω will also be a factor in determining the local solute profile.425

Although we now have our leading-order-outer and leading-order-inner solutions for φ,426

we are as yet unable to form a composite expansion for the solute mass m = hφ— which427

has the advantage over the concentration φ in potential comparisons to experimental428

data since it is related to the absorbance of the deposit through the Beer-Lambert law429

Swinehart (1962) — since in the outer region m is bounded but finite as we approach430

the contact line (cf. (2.22) and (3.6)), while in the inner region, m decays exponentially431

in the far-field. Moore et al. (2021) addressed this issue for the axisymmetric case by432

proceeding to higher-order in the inner region. However, given the arbitrary geometry433

considered here, this approach is significantly more challenging. Instead, we shall con-434

struct a composite by introducing an intermediate region.435

3.3. Intermediate region436

Let us make the change of variables437

n = ∆n̊, h = ∆h̊, ūs = ∆ůs, ūn = ůn, φ = ε−1φ̊, (3.15)

where ∆(ε) → 0 as ε → 0 and ε ≪ ∆ ≪ ε1/2. The choice of upper bound on the range438

of ∆ allows us to neglect the time derivative and the tangential components of advection439

and diffusion in (2.26) in the intermediate region in the analysis below. However, provided440

that this condition is met, we shall see that the choice of ∆ is arbitrary.441

Substituting the scalings (3.15) into (2.26), we deduce that442

− ∂

∂n̊

(

n̊φ̊+
ε

∆
θc(s, t)̊n

∂φ̊

∂n̊

)

= O(∆), (3.16)

as ε,∆ → 0 with n̊ = O(1), so that443

φ̊ ∼ φ̊0 = exp

(

− ∆n̊

εθc(s, t)

)[

D(s, t) + E(s, t)Ei

(

∆n̊

εθc(s, t)

)]

(3.17)

in the intermediate region, where D(s, t) and E(s, t) are unknown functions to be deter-444

mined by matching and Ei(x) is the exponential integral.445

We match with the leading-order outer solution by introducing a further intermediate446

variable N , related to n and n̊ by the scalings447

n = ∆βN = ∆n̊ (0 < β < 1). (3.18)
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From the local expansion (3.6) of the outer solution, we have448

φ ∼ B(s, t)

∆βN
as ε,∆ → 0 with N = O(1). (3.19)

From the far-field expansion of the intermediate solution (3.17), we have449

φ ∼ E(s, t)θc(s, t)

∆βN
as ε,∆ → 0 with N = O(1), (3.20)

where we have used the fact that Ei(x) ∼ ex/x as x→ ∞. Matching in (3.19) and (3.20)450

gives451

E(s, t) =
B(s, t)

θc(s, t)
. (3.21)

To determine D(s, t), we match with the inner solution in a similar manner. Firstly,452

recalling the leading-order inner solution given by (3.10) and (3.14), we anticipate that453

D(s, t) =
1

ε

M0(s, t)

θc(s, t)3
. (3.22)

Then, expanding the intermediate solution (3.24) for ∆/ε≫ 1 and n̊ = O(1), we have454

φ =
1

ε
φ̊ ∼ 1

ε2
M0(s, t)

θc(s, t)3
exp

(

− ∆n̊

εθc(s, t)

)

+
1

ε

B(s, t)

θc(s, t)

εθc(s, t)

∆n̊
. (3.23)

The first term on the right-hand side of (3.23) dominates the second provided that455

∆ ≪ ε log(1/ε), so that we obtain the required overlap between the intermediate and456

inner solutions for ε≪ ∆ ≪ ε log(1/ε) and D(s, t) is indeed given by (3.22).457

In summary, eliminating n̊ in favour of n = ∆n̊, the leading-order intermediate solution458

is given by459

φ̊ ∼ φ̊0 =
M0(s, t)

εθc(s, t)3
e−n/εθc(s,t) +

B(s, t)

θc(s, t)
e−n/εθc(s,t)Ei

(

n

εθc(s, t)

)

(3.24)

as ε → 0 with ε ≪ n ≪ ε1/2. As mentioned above, clearly the intermediate solution is460

independent of the particular choice of ∆. In particular, it allows a transition between461

the 1/n singularity in the local expansion of the leading-order-outer solute concentration462

(3.1) and the exponential decay of the leading-order-inner solute concentration (3.10).463

3.4. Composite solution464

We can now construct an additive composite solution for the solute concentration. A465

composite profile is given by466

φcomp(x, y, t) =φ0(x, y, t) +
1

ε

B(s, t)

θc(s, t)
e−n/εθc(s,t)Ei

(

n

εθc(s, t)

)

+
1

ε2
M0(s, t)

θc(s, t)3
e−n/εθc(s,t)

− B(s, t)

n
− 1

ε

B(s, t)

θc(s, t)
e−n/εθc(s,t) log

(

n

εθc(s, t)

)

, (3.25)

where φ0 is given by (3.1). The final two terms in the first line are the intermediate467

and inner solutions, where we have accounted for the overlap contribution (which is the468

same as the inner solution) using Van Dyke’s matching rule (Van Dyke 1964). On the469

second line, the first term is the overlap contribution between the outer and intermediate470

regions, while the final term is the leading-order term of the local expansion at the contact471

line of the intermediate solution (3.24), which is included to ensure that the expansion is472

uniformly valid throughout the droplet — if it were not included, the composite expansion473
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would become unbounded at the contact line due to the logarithmic singularity in the474

exponential integral for small arguments. It is readily checked that we recover the leading-475

order inner, intermediate and outer solutions if we expand the composite solution in those476

regions. We note that the composite expansion (3.25) is only available where the (s, n)477

coordinates are well-defined. While this includes the all-important neighbourhood of the478

contact line, it does not include the whole contact set in general. In §3.7 and §4.5, we479

shall use the composite solution to plot transient profiles of the solute mass throughout480

an evaporating droplet.481

3.5. Similarity form and properties of the nascent coffee ring482

We note that, in the limit ε→ 0, the properties of the nascent coffee ring are dominated483

by contributions from the leading-order-inner solution described in §3.2. In particular,484

the leading-order-inner solute mass is given by485

m̂0(s, n̂, t) =
1

ε
φ̂0(s, n̂, t)ĥ0(s, n̂, t) =

1

ε

M0(s, 0
+, t)

θc(s, t)2
n̂e−n̂/θc(s,t). (3.26)

Following Moore et al. (2021), we can find a similarity form of the coffee ring profile486

by introducing the time-dependent modified Péclet number Pet, given by487

Pet :=
Pe

1− t
, (3.27)

which measures the relative importance of advection and diffusion accounting for the488

time dependence of the evaporation-induced liquid velocity, which scales with (1− t)−1,489

as seen in (2.17). Combining (3.26) with (3.27), we see that the local solute mass profile490

can be expressed as491

m̂0(s,N, t)

PetM0(s, 0+, t)
=

N

ψ(s)2
e−N/ψ(s) = f

(

N ; 2,
1

ψ(s)

)

, N = Petn (3.28)

where f(x; k, l) = lkxk−1e−lx/Γ(k) is the probability density function of a gamma distri-492

bution. Note that this is similar to the analysis presented for the axisymmetric droplet in493

Moore et al. (2021), but with the additional dependence on the droplet geometry through494

ψ(s) and M0(s, 0
+, t).495

We can use the similarity form (3.28) to estimate characteristics of the nascent coffee496

ring to leading order in ε. In particular, the peak of the solute mass mmax(s, t) (the497

intensity of the coffee ring) and its location nmax(s, t) are given by498

mmax(s, t) =
PetM0(s, 0

+, t)

ψ(s)e
, nmax(s, t) =

ψ(s)

Pet
. (3.29a, b)

A measure of the radial thickness of the nascent coffee ring is given by the full-width at499

half-maximum, w1/2(s), which is readily determined from (3.28) to be500

w1/2(s, t) = nmax(s, t)

[

W0

(

− 1

2e

)

−W−1

(

− 1

2e

)]

, (3.30)

whereW0(x) and W−1(x) are the Lambert-W functions (i.e. solutions to wew = x, Olver501

et al. 2010). Notably, the ring width is simply a constant fraction of the peak location.502

Correspondingly, when the peak is located further from the contact line, the ring must503

be thicker.504

In each of (3.28)–(3.30), it is only through ψ(s) and M0(s, 0
+, t) that any dependence505

on s may arise. To understand asymmetries in the nascent coffee ring, these functions506
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must be understood. One of the aims of the following sections is to investigate them in507

detail for some specific problems.508

3.6. Asymptotic results for a diffusive evaporative flux509

Before we move on to validate the asymptotic predictions, we now state the equivalent510

asymptotic results for the diffusive evaporation model in which the corresponding dimen-511

sionless evaporative flux is square-root singular at the contact line, with local expansion512

given by (2.24). As previously, we may neglect the effects of solute diffusion in the bulk513

of the droplet, so that the outer solution as described in §3.1 remains the same as in514

the kinetic evaporative model. In particular, the local behaviour of the normal velocity515

(2.25) means that, at the contact line,516

φ0 ∼ Bd(s, t)√
n

as n→ 0+, (3.31)

where Bd(s, t) is a degree of freedom; we note that this is a weaker singularity than in517

(3.6).518

In addition to weakening the outer solute singularity, (2.25) also necessitates a different519

scaling for the inner region in which the advective and diffusive fluxes balance, namely520

n = ε2n̂d, h = ε2ĥ, ūs = εûs, ūn =
1

ε
ûn, φ =

1

ε4
φ̂. (3.32)

Thus, the size of the inner region is an order of magnitude smaller for the diffusive evap-521

orative flux — O(ε2) compared to O(ε) — while the solute concentration is two orders522

of magnitude larger — O(1/ε4) compared to O(1/ε2). This fits with the experimentally-523

observed tendency for a diffusive evaporative flux to produce narrower, higher coffee rings524

than for a constant evaporative flux (Kajiya et al. 2008).525

After substituting (3.32) into (2.9)–(2.11) and expanding as ε→ 0, the leading-order-526

inner solute concentration is given by527

φ̂0 = Cd(s, t)e
−4χ(s)

√
n̂d/θc(s,t), (3.33)

where the coefficient Cd(s, t) can be determined using the integrated mass variable, M,528

in a similar manner to that in which it was determined in the kinetic regime in §3.2. We529

find that530

Cd(s, t) =
64χ(s)4M0(s, 0

+, t)

3θc(s, t)5
. (3.34)

To form a composite solution for the solute concentration, we again introduce an531

intermediate region through the scaling532

n = ∆n̊d, h = ∆h̊, ūs = ∆1/2ůs, ūn =
1

∆1/2
ůn, φ =

1

ε
φ̊, (3.35)

where now ε2 ≪ ∆ ≪ ε2/3. Again, this range of ∆ is chosen so that we may neglect533

the lower-order terms in (2.26) in the intermediate region (though, again, the solution534

is independent of the choice of ∆). Pursuing a similar analysis to §3.3, we find that the535

corresponding leading-order-intermediate solution is given by536

φ̊ ∼ φ̊0 = exp

(

−∆1/2

ε

4χ(s)
√
n̊d

θc(s, t)

)[

Dd(s, t) + Ed(s, t)Ei

(

∆1/2

ε

4χ(s)
√
n̊d

θc(s, t)

)]

, (3.36)

as ε,∆ → 0 with n̊ = O(1), where again Dd(s, t) and Ed(s, t) must be determined by537

matching. The procedure follows in a similar manner to the kinetic case in §3.3 and we538
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find that539

Dd(s, t) =
64χ(s)4M0(s, 0

+, t)

3ε3θc(s, t)5
, Ed(s, t) =

4B(s, t)χ(s)

θc(s, t)
. (3.37)

It follows that an additive composite expansion for the solute concentration profile is540

given by541

φcomp(x, y, t) =φ0(x, y, t) +
1

ε

4χ(s)Bd(s, t)

θc(s, t)
e−4χ(s)

√
n/εθc(s,t)Ei

(

4χ(s)
√
n

εθc(s, t)

)

+
1

ε4
64χ(s)4M0(s, 0

+, t)

3θc(s, t)5
e−4χ(s)

√
n/εθc(s,t) − Bd(s, t)√

n

− 1

ε

4χ(s)Bd(s, t)

θc(s, t)
e−4χ(s)

√
n/εθc(s,t) log

(

4χ(s)
√
n

εθc(s, t)

)

. (3.38)

As in the kinetic regime, we note that the final term is included so that the composite542

solution remains asymptotic throughout the whole drop.543

The equivalent similarity profile for the nascent coffee ring in the diffusive evaporative544

regime is given by545

m̂0(s,Nd, t)

Pe2tM0(s, 0+, t)
=

2χ(s)

3ψ(s)
f

(

√

Nd, 3,
4χ(s)

ψ(s)

)

, Nd = Pe2tn (3.39)

where the shape function of the gamma distribution is now 3 compared to 2 in the kinetic546

regime. The coffee ring peak mmax(s, t) and its location nmax(s, t) are547

mmax(s, t) =
16Pe2tM0(s, 0

+, t)χ(s)2

3ψ(s)2e2
, nmax(s, t) =

ψ(s)2

4Pe2tχ(s)
2
, (3.40)

with the full-width at half-maximum given by548

w1/2(s, t) = nmax(s, t)

[

W−1

( −1√
2e

)2

−W0

( −1√
2e

)2
]

, (3.41)

so that, again, the ring is thicker the further the peak location is from the contact line.549

Note that the similarity form and the properties of the nascent coffee ring for both ki-550

netic and diffusive evaporation depend strongly on the behaviour of the local droplet con-551

tact angle through ψ(s) and the accumulated mass flux into the boundary M0(s, 0
+, t).552

In the diffusive regime, the heterogeneity of evaporation, χ(s), also plays a role. In §4, we553

discuss to what extent each factor is relevant in determining the shape of the coffee ring554

for a specific example. We will also utilize the asymptotic results to discuss the limita-555

tions of the dilute assumption, in particular investigating the role that droplet geometry556

has on the breakdown of the model.557

3.7. Validation for an axisymmetric droplet558

We now seek to validate our results by comparing to the axisymmetric case in which Ω is559

simply circular, given by r =
√

x2 + y2 6 1. This case was dealt with in detail by Moore560

et al. (2021) by proceeding to higher order in the inner region rather than by introducing561

an intermediate region (as in §3.3), so that the resulting composite expansions (in §3.4562

and §3.6) are different. In this section, we validate them by showing excellent agreement563

with the numerical simulations of Moore et al. (2021).564
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3.7.1. Kinetic regime565

The simplified geometry allows us to evaluate the leading-order flow solution explicitly.566

In the kinetic evaporative regime, (2.15)–(2.20) give567

H =
1− r2

4
, P = P0 −

48

1− r2
, ūr =

πr

4(1− t)
, tf =

1

π
, α =

8

π
. (3.42)

Here P0 is an arbitrary constant and ūr is the radial velocity. (We note that there is568

a slight difference between (3.42) and the corresponding results in Moore et al. (2021):569

this is due to the fact that the droplet aspect ratio δ in that paper is defined so that it570

contains an additional 2/π.)571

Now, noting that, for an axisymmetric droplet, s = θ, n = 1−r, κ = −1 and ūn = −ūr,572

we can use (3.42) to determine the leading-order solute concentration in each region,573

finding from (3.1), (3.10) and (3.24),574

φ0 =
1√
1− t

(

1−
√
1− tr2

1− r2

)

, (3.43)

φ̂0 =
π2

64(1− t)3

[

1−
√
1− t− t

2

]

exp

(−π(1− r)

4ε(1− t)

)

, (3.44)

φ̊0 =exp

(−π(1− r)

4ε(1− t)

)[

π2

64ε

(1−
√
1− t− t/2)

(1 − t)3
+
π

8

(1 −
√
1− t)

(1 − t)3/2
Ei

(

π(1− r)

4ε(1− t)

)]

.

(3.45)

Combining these expressions and evaluating the overlap contributions, we find that an575

additive composite expansion for the solute concentration is given by576

φcomp =φ0(r, t) +
1

ε
φ̊0(r, t) +

1

ε2
φ̂0(r, t)−

(1 −
√
1− t)

2
√
1− t

1

1− r

− 1

ε2
π2(1−

√
1− t− t/2)

64(1− t)3
exp

(

− π(1 − r)

4ε(1− t)

)

− 1

ε

π

8

(1−
√
1− t)

(1− t)3/2
exp

(

− π(1 − r)

4ε(1− t)

)

log

(

π(1− r)

4ε(1− t)

)

. (3.46)

It is worth noting that the composite solution presented here is only valid to O(1/ε2) in577

the inner region, while the composite solution derived by Moore et al. (2021) is valid to578

O(1).579

3.7.2. Diffusive regime580

Similarly, in the diffusive regime, (2.15)–(2.20) give581

H =
1− r2

4
, ūr =

1

r(1 − t)

(

1√
1− r2

− (1 − r2)

)

, tf =
1

4
, α =

8

π

P = P0 −
384

π

[

1√
1− r2

+
1

3(1− r2)3/2
− 1

2
log

(

1−
√
1− r2

1 +
√
1− r2

)

+ log

(

r√
1− r2

)

]

.

(3.47)
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Figure 2: Profiles of the solute mass as an axisymmetric droplet evaporates under (a,b)
a kinetic evaporative flux and (c,d) a diffusive evaporative flux with Pe = 200. In each
figure, the bold, black curve represents the initial mass profile m(r) = 2(1 − r2)/π.
Also shown are plots at time intervals of 0.1 up to t = 0.9 in which solid, blue curves
represent the results from the numerical solution of (2.9)–(2.11) and the dashed, red
curves show the composite mass profiles, m = hφcomp. The right-hand figures display a
doubly-logarithmic plot of the mass profile near the contact line.

where, again, P0 is an arbitrary constant. The leading-order solute concentration in the582

outer, inner and intermediate regions are then given by583

φ0 =
1

(1 − t)1/4
√
1− r2

[

1− (1 − t)3/4(1 − (1− r2)3/2)
]1/3

, (3.48)

φ̂0 =
1

24(1− t)5

(

1− (1 − t)3/4
)4/3

exp

(

−
√

2(1− r)

ε(1− t)

)

, (3.49)

φ̊0 =exp

(

−
√

2(1− r)

ε(1− t)

)

[

1

24ε3(1 − t)5

(

1− (1− t)3/4
)4/3

+
1

(1− t)5/4

(

1− (1− t)3/4
)1/3

Ei

(

√

2(1− r)

ε(1− t)

)]

. (3.50)
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We can use these to form an additive composite expansion, given by584

φcomp =φ0(r, t) +
1

ε
φ̊0(r, t) +

1

ε4
φ̂0(r, t)−

1√
2(1− t)1/4

√
1− r

(

1− (1− t)3/4
)1/3

− 1

ε4
1

24(1− t)5

(

1− (1− t)3/4
)4/3

exp

(

−
√

2(1− r)

ε(1− t)

)

− 1

ε

1

(1 − t)5/4

(

1− (1− t)3/4
)1/3

exp

(

−
√

2(1− r)

ε(1− t)

)

log

(

√

2(1− r)

ε(1− t)

)

.

(3.51)

3.7.3. Comparisons to numerical results585

To check the validity of our asymptotic analysis, we compare profiles of the solute586

mass m = hφcomp against a numerical solution of (2.9)–(2.11). While the axisymmetry587

greatly facilitates the numerical solution, the thinness of the boundary layer as discussed588

in §3.2 means that care has to be taken with resolution close to the contact line: we use589

the numerical scheme validated in Moore et al. (2021).590

The results are shown for Pe = 200 in figure 2. In the figure, one can clearly see the591

transport of the solute mass from the droplet bulk towards the contact line as the droplet592

evaporates, leading to ring formation in the boundary layer. Moreover, it is evident that593

the asymptotics do an excellent job of capturing the dynamics, particularly as t increases.594

This gives us confidence in using our asymptotic results to consider the nascent coffee595

ring characteristics for more complicated geometries, where numerical solutions of (2.9)–596

(2.11) are much more computationally challenging (see, for example, Sáenz et al. 2017).597

4. Droplets with an elliptical contact set598

For the rest of this paper, we shall specialize to droplets that have an elliptical contact599

set, namely those given by600

Ω =

{

(x, y)

∣

∣

∣

∣

∣

(

x

1 + a

)2

+ y2 6 1

}

(4.1)

where a > 0 is a constant that encodes the eccentricity, e(a) = [a(2 + a)]1/2/(1 + a), of601

the ellipse.602

The forthcoming analysis is more readily approached by introducing the planar ellip-603

tical coordinate system (µ, ν), which is defined by604

x =
√

2a+ a2 coshµ cos ν, y =
√

2a+ a2 sinhµ sin ν, (4.2)

where 0 6 µ 6 µ∗ = acosh(1/e(a)) and µ = µ∗ represents the contact line. We use605

the symmetry of the problem to restrict our analysis to the quarter of the ellipse in606

the first quadrant for which the fluid domain transforms to the rectangle 0 6 µ 6 µ∗,607

0 6 ν 6 π/2.608

We note that, in terms of (µ, ν), the local coordinate system defined in §2.3 is given609

by610

s(ν) = E
(

ν, i
√
2a+ a2

)

,

n(µ, ν)2 = (2a+ a2)
[

(coshµ∗ − coshµ)2 cos2 ν + (sinhµ∗ − sinhµ)2 sin2 ν
]

.
(4.3)



The nascent coffee ring with an arbitrary droplet contact set 21

where E(φ, k) =
∫ φ

0
(1− k2 sin2 θ)1/2 dθ is the incomplete elliptical integral of the second611

kind with amplitude φ and elliptic modulus k.612

Unlike the case of an axisymmetric drop, the (s, n)-coordinate system is not well-613

defined throughout the whole quarter-ellipse. For the system to be well-defined at a614

point, we require a unique normal through that point, and hence a unique value of (s, n).615

This is true everywhere in the quarter ellipse aside from the interval 0 6 x 6 1−1/(1+a)616

along the major semi-axis, so that we need 1/(1 + a) ≫ 1/Pe (or 1/Pe2 for the diffusive617

regime) for our analysis in §3.2 to be valid. This is satisfied (for Pe ≫ 1) provided618

that a ≪ Pe, so our analysis is limited to eccentricities e(a) . 1 − 1/2Pe2. We also619

note that since the relation between s and ν in (4.3) is independent of µ, we can use620

these interchangeably in the rest of our analysis; for convenience, we shall use ν. It is621

also important to note that both (4.2) and (4.3) are contact set dependent, in that they622

change with a. In particular, while ν heuristically indicates the angular position of a623

particular point, the ν-coordinate of a point with one ellipse eccentricity is not the same624

for an ellipse with a different eccentricity; the exceptions to this are the points on the625

semi-major and semi-minor axes, for which ν = 0 and ν = π/2 for all a. Hence, in the626

following, when we wish to make explicit comparisons between different ellipses, we shall627

focus on the semi-axes; happily, this is also where the effects of contact line curvature628

are seen most clearly.629

Our aim in this section is to illustrate the effect of the droplet geometry on the nascent630

coffee ring. To affect sensible comparisons for elliptical contact sets with different eccen-631

tricities, we will consider droplets that have the same initial volume, V ∗, and contact632

line perimeter, P ∗. When changing the droplet shape, but keeping V ∗ and P ∗ fixed, we633

change the characteristic length scaling, R∗, and velocity scaling, U∗, in our model, as634

well as the values of δ and Pe. Here we discuss how these change when comparing an635

axisymmetric droplet to an elliptical droplet of the same volume and perimeter.636

For an axisymmetric droplet (e(0) = 0), we denote these quantities by a subscript zero.637

Thus, taking the characteristic lengthscale to be the radius of the circular contact set,638

we have639

R0 =
P ∗

2π
, δ =

V ∗

R∗3
0

, U∗
0 =

E∗

ρδ0
, Pe0 =

R∗
0U

∗
0

D∗ . (4.4)

For an elliptical droplet, recall that we took the dimensional length of the semi-minor640

axis as our reference lengthscale for the size of the contact set, R∗. This lengthscale641

changes with the eccentricity of the droplet as encoded through a. Therefore, using a642

subscript a to denote the different properties, the equivalent values for an ellipse are643

given by644

R∗
a = 2π

(
∫ 2π

0

[

(1 + a)2 cos2 θ + sin2 θ
]

dθ

)−1

R∗
0,

δa =
δ0R

∗3
0

R∗3
a

, U∗
a =

δ0U
∗
0

δa
, Pea =

R∗
aU

∗
a

R∗
0U

∗
0

Pe0.

(4.5)

4.1. Free surface profile645

In an elliptical geometry, the Poisson problem (2.19) can be solved explicitly, yielding646

H =
1

2

(

1 +
1

(1 + a)2

)−1 [

1− 2a+ a2

(1 + a)2
cosh2 µ cos2 ν − (2a+ a2) sinh2 µ sin2 ν

]

. (4.6)
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We can use this free surface profile to determine the constant α used to rescale volume,647

see (2.18), finding648

α =
4

π(1 + a)

(

1 +
1

(1 + a)2

)

. (4.7)

It is worth noting that if we expand (4.6) as the contact line is approached, µ∗ − µ→ 0,649

we have650

H ∼ 1

(1 + a)

(

1 +
1

(1 + a)2

)−1
(

1 + (2a+ a2) sin2 ν
)

(µ∗ − µ), (4.8)

so that, recalling (4.3) to determine µ∗−µ as a function of n, the rescaled contact angle,651

ψ(ν) = θc(ν, t)/(1− t), may be found from (2.22), (4.3) and (4.8) to be652

ψ(ν) =
4

π(1 + a)2
[

1 + (2a+ a2) sin2 ν
]1/2

. (4.9)

4.2. Diffusive evaporative flux and dryout times653

As described in Kellogg (1929), it is possible to solve the concentration problem (2.13)654

for an elliptical contact set. The resulting evaporative flux is given by655

E(µ, ν) =
1

K[e(a)]

[

1− 2a+ a2

(1 + a)2
cosh2 µ cos2 ν − (2a+ a2) sinh2 µ sin2 ν

]−1/2

(4.10)

where K(k) =
∫ π/2

0
(1 − k2 sin2 θ)−1/2 dθ is the complete elliptic integral of the first656

kind with elliptic modulus k. Expanding (4.10) close to the contact line, we have E ∼657

χ(ν)n−1/2 with658

χ(ν) =
1

K[e(a)]

(

1 + a

2

)1/2
(

1 + (2a+ a2) sin2 ν
)−1/4

. (4.11)

The dryout time is evaluated from (2.3) yielding659

tf =















1

π(1 + a)
in the kinetic regime,

K[e(a)]

2π(1 + a)
in the diffusive regime.

(4.12)

4.3. Fluid velocity660

Unfortunately, no such analytical progress is possible for the pressure problem (2.20),661

which must be solved numerically for each evaporative model. We have found that a662

convenient way to approach this is to subtract out the most singular terms in P at the663

contact line; we describe this process and the details of our numerical methodology in664

Appendix A.665

We can, however, make some comments about the velocity close to the contact line,666

making use of the fact that in the local coordinate system, the normal velocity is given667

by668

ūn = −ūµ. (4.13)

4.3.1. Kinetic evaporation669

For the kinetic evaporative model, we combine (2.23) and (4.9) to show that670

ūµ ∼ π(1 + a)2

4(1− t)

[

1 + (2a+ a2) sin2 ν
]−1/2

, (4.14)
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Figure 3: The angular dependence of the normal velocity close to the contact line for a) a
kinetic evaporative model as given by (4.14), and b) a diffusive evaporative model as given
by (4.15). In each figure, we vary the shape of the elliptical contact set by changing a,
but scale in such a way that each droplet has the same initial volume and perimeter. For
illustration, we show the different droplet footprints in the inset to figure b). Displayed
are the axisymmetric case, a = 0 (e(0) = 0, dark purple), a = 0.1 (e(0.1) ≈ 0.417, blue),
a = 1 (e(1) ≈ 0.866, green) and a = 3 (e(3) ≈ 0.968, yellow).

as µ∗−µ→ 0. To illustrate the effects of the droplet geometry on the velocity profile, we671

display the normal velocity close to the contact line (4.14) as a function of the elliptical672

polar angle ν in figure 3a for different eccentricities. We have scaled (1 − t)ūµ by δ0/δa673

so that for each curve the droplet has the same initial volume and perimeter, with just674

the eccentricity of the ellipse changing (cf. (4.5)). The axisymmetric case is illustrated675

by the dark purple line. Initially, as we increase a it is clear that the velocity is increased676

in the regions with higher curvature, namely close to the semi-major axis, while being677

diminished close to the minor axis. However, since δa increases with a, eventually the678

velocity is lower than the equivalent axisymmetric problem around the whole contact679

line. Nevertheless, the velocity is still relatively stronger along the more highly-curved680

parts of the boundary, and this disparity grows as a increases: that is, for more eccentric681

ellipses, the stronger the flow in the direction of the semi-major axis in comparison to682

that along the semi-minor axis.683

4.3.2. Diffusive evaporation684

Similarly, for a diffusive evaporative model, combining (2.25), (4.3), (4.9) and (4.11)685

gives686

ūµ ∼ π(1 + a)5/2

23/2K(e(a))(1 − t)

1

1 + (2a+ a2) sin2 ν
(µ∗ − µ)

−1/2
(4.15)

as µ∗ −µ→ 0. We plot (1− t)
√
µ∗ − µδ0ūµ/δa for different ellipse eccentricities in figure687

3b, where we again scale appropriately to fix the initial droplet volume and perimeter.688

We see very similar behaviour to the kinetic regime: for all ellipse eccentricities, the689

normal velocity is stronger along the semi-major axis than the semi-minor axis, with this690

effect being amplified as a increases. For a small, the velocity is also stronger along the691

semi-major axis compared to the equivalent axisymmetric droplet, but as a gets larger,692

the velocity is weaker everywhere around the contact line.693
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4.4. Accumulated mass flux694

4.4.1. Kinetic evaporation695

We can use the local expansions for the outer solute concentration, (3.6), the contact696

angle, (4.8), and the velocity, (4.14), together with (4.3)–(4.13) to express the accumu-697

lated mass flux into the contact line for a kinetic evaporative model as698

M0(ν, 0, t) =
1

π(1 + a)

[

1 + (2a+ a2) sin2 ν
]1/2

∫ t

0

B(ν, τ) dτ. (4.16)

To investigate how M0 varies with ν and a, however, we need to determine B(ν, t),699

which must be found numerically. The solution procedure is therefore as follows. Firstly,700

we solve (2.20) numerically to determine ū from (2.17). Since (2.20) is independent of t,701

we need only do this once. We can then use the velocity profile to solve the leading-order702

outer solute problem, (3.1) — again numerically — which then allows us to determine703

B(ν, t). Finally, we can use B(ν, t) to evaluate the integral in (4.16). The details of the704

numerical methodologies for each step are recorded in Appendix A.705

We display the resulting accumulated mass flux into the contact line (4.16) in figure706

4a,b. In figure 4a, we display M0 as a function of the elliptical polar angle ν at different707

stages of the evaporation for a = 1. Clearly, even at small times, there is a larger mass708

flux accumulating along the parts of the contact line with higher curvature, consistent709

with the results of Freed-Brown (2015) and Sáenz et al. (2017). This disparity increases710

as t increases. We display the two extremes by plotting M0 along each semi-axis for711

various values of the eccentricity a in figure 4b. As previously, we have used the scalings712

(4.5) to compare droplets that have the same initial volume and contact line perimeter.713

It is apparent from the figure that, as a increases, the accumulated mass flux along the714

semi-major axis increases compared to the axisymmetric case, while the accumulated715

mass flux along the semi-minor axis decreases compared to the same. These behaviours716

are accentuated further as the ellipse becomes more eccentric. It is worth stressing that717

this is in spite of the normal velocity along ∂Ω being smaller everywhere than in the718

equivalent axisymmetric problem for large values of a (as seen in figure 3a).719

4.4.2. Diffusive evaporation720

The equivalent expression for the accumulated mass flux under a diffusive evaporative721

model is determined from (4.9), (4.15) and (4.17) to be722

M0(ν, 0, t) =
1

π

√

1

2(1 + a)

[

1 + (2a+ a2) sin2 ν
]−1/4

∫ t

0

Bd(ν, τ) dτ. (4.17)

Again, we must determine Bd(ν, τ) numerically by solving the leading-order outer solute723

advection problem for φ0. The procedure is identical to the kinetic regime and we display724

the resulting profiles of M0(ν, 0, t) in figure 4c,d. The broad behaviour of accentuated725

mass accumulation along the semi-major axis is very similar to the kinetic regime, al-726

though it is notable that M0(ν, 0, t) is larger at earlier times in the diffusive regime.727

While under both evaporative models all of the mass will be driven to the contact line at728

the dryout time (since diffusion is a lower order effect in the outer region), the stronger729

evaporative flux in the diffusive regime means that mass accumulates faster at the contact730

line in this regime.731

4.5. Mass profiles732

With the accumulated mass flux M0 in hand, we are able to construct the leading-order733

solute mass profiles, m = hφcomp, using (3.25) in the kinetic regime and (3.38) in the734
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Figure 4: The angular dependence of the accumulated mass flux at the contact line under
(a, b) a kinetic evaporative flux, as given by (4.16), and (c, d) a diffusive evaporative flux,
as given by (4.17). a), c) Profiles of M0(ν, 0, t) at t = 0.2 (dark purple), t = 0.4 (blue),
t = 0.6 (green) and t = 0.8 (yellow) for an ellipse with a = 1 (e(1) ≈ 0.866). b), d)
The accumulated mass flux along the major (solid) and minor (dashed) semi-axes for
different ellipse eccentricities: a = 0 (black), a = 0.1 (e(0.1) ≈ 0.417, dark purple), a = 1
(e(1) ≈ 0.866, blue) and a = 3 (e(3) ≈ 0.968, green). In each of (b, d), we have scaled
appropriately so that the droplets have the same perimeter and initial volume.

diffusive regime. Our aim is to consider the relative influence of the droplet geometry735

and the evaporative flux on the resulting coffee-ring profile.736

4.5.1. Kinetic evaporation737

To isolate the role of geometry-induced fluid flow, we first consider the kinetic evapo-738

rative model. We display in figure 5 mass profiles along the semi-minor and semi-major739

axes for an ellipse with a = 1 (e(1) = 0.866). The droplet has been chosen to have the740

same initial volume and perimeter as the axisymmetric droplet depicted in figure 2, so741

that the equivalent Péclet number is Pea ≈ 35. In the figure, the bold black lines rep-742

resent the initial mass profile, while the blue lines represent the mass profile evolution743

along the major axis (a, b) and minor axis (c, d). As the droplet evaporates, we can clearly744
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Figure 5: Profiles of the solute mass m = hφcomp along the semi-major (a, b) and semi-
minor (c, d) axes of an elliptical droplet with a = 1 (e(1) = 0.866) evaporating under a
kinetic flux for Pe ≈ 35 (so that the droplet has the same initial volume and perimeter
as the axisymmetric droplet shown in figure 2). In each figure, the bold, black curve
represents the initial mass profile, while plots at time intervals of 0.1 up to t = 0.9 are
shown as solid, blue curves. Figures b, d display a doubly-logarithmic plot of the mass
profiles near the contact line, where we see the formation of the nascent coffee ring as t
increases. It is notable that the coffee-ring effect is much stronger along the semi-major
axis due to the strong accumulated mass flux in this region.

see the formation of the nascent coffee ring along both semi-axes, with a characteristic745

thin, sharp peak growing close to the pinned contact line. It is noticeable that the peak746

along the semi-major axis is larger than that along the minor. At 90% of the drying time,747

the coffee ring peak is approximately 3 times higher along the semi-major axis than the748

semi-minor axis. The coffee-ring effect is also enhanced when compared to the axisym-749

metric case: the peak along the semi-major axis is approximately 1.4 larger than that for750

the equivalent axisymmetric droplet shown in figure 2, with the peak on the minor axis751

approximately 2.2 times smaller.752

It is also worth noting that the peak along the semi-minor axis is slightly further from753

the contact line compared to the semi-major axis. For example (and accounting for the754
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rescalings in (4.5)), at 90% of the drying time, the peak along the semi-major axis is at755

2 − x ≈ 5.8 × 10−4, while along the semi-minor axis it is at 1 − y ≈ 1.3 × 10−3. For756

reference, the axisymmetric peak location is comparable to the peak on the semi-major757

axis, with 1− r ≈ 6.5× 10−4 in figure 2.758

We further illustrate the effect of ellipse geometry in figure 6a,b, where we show the759

variation of the maximum coffee-ring peak (a) and its distance from the contact line (b)760

along each semi-axis with ellipse eccentricity. Each ellipse has the same initial volume761

and perimeter, with the Péclet number of the axisymmetric drop taken to be Pe0 = 200.762

The equivalent Péclet numbers for the elliptical drops are then calculated from (4.5).763

The results are shown at 90% of the drying time.764

Initially, as the ellipse eccentricity is increased, the peak height along the semi-major765

axis increases, until reaching a maximum at a ≈ 1.5 (e(a) ≈ 0.917), where it is approxi-766

mately 1.46 times larger than the equivalent axisymmetric droplet (cf. the inset to figure767

6a). For larger eccentricities, the peak height then decreases again, although remaining768

higher than the axisymmetric case for the eccentricities displayed. It is worth noting that769

as e(a) approaches unity, the assumptions made in deriving the model begin to break770

down, with the aspect ratio of the droplet contact becoming larger than O(1). Moreover,771

the Péclet number as given by (4.5) decreases with a, so the existence of a maximum is772

not unexpected.773

On the other hand, the peak height along the semi-minor axis decreases monotonically774

as the eccentricity of the ellipse increases. Indeed, as e(a) gets closer to unity, the rate775

of decrease of the height gets faster. For a = 3 (e(a) ≈ 0.968), the peak height along the776

semi-minor axis has decreased by almost a factor of 7.777

Along the semi-minor axis, the location of the coffee ring peak moves radially inwards778

away from the pinned contact line of the droplet. Correspondingly, according to the779

analysis of §3.5, as the ellipse eccentricity increases, the thickness of the nascent coffee780

ring as measured by the full-width at half-maximum increases. Along the semi-major781

axis, the distance of the peak from the contact line location decreases slightly at very782

small eccentricities, before again becoming larger than the equivalent axisymmetric case783

as e(a) approaches unity. The effect is noticeably weaker than that along the semi-minor784

axis.785

Thus, in summary, on the semi-minor axis, as the eccentricity of the ellipse increases,786

the coffee ring gets progressively shallower and wider as compared to an axisymmetric787

droplet of the same initial volume and perimeter. On the semi-major axis, the coffee ring788

initially becomes narrower and higher, before transitioning to a ring that is wider and789

higher than the equivalent axisymmetric droplet.790

These behaviours can be further probed by considering the similarity analysis of §3.5.791

The local similarity profile is given by (3.28), which becomes792

m̂0

PetM0(ν, 0, t)
=
π2(1 + a)4

16

N

[1 + (2a+ a2) sin2 ν]
exp

( −π(1 + a)2N

4[1 + (2a+ a2) sin2 ν]1/2

)

,

(4.18)
where N = Petn and n is given by (4.3). The leading-order coffee ring peak and its793

location are found from (3.29) to be794

mmax

PetM0(ν, 0, t)
=

π(1 + a)2

4e[1 + (2a+ a2) sin2 ν]1/2
, Petnmax =

4[1 + (2a+ a2) sin2 ν]1/2

π(1 + a)2
.

(4.19a, b)

It is clear that the right-hand side of (4.19a) is monotonically decreasing in ν. In795

particular, its value along ν = 0 is (1 + a)2 times larger than that along ν = π/2. Thus,796
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Figure 6: Variation with eccentricity of the dimensionless peak coffee-ring height (a, c)
and its dimensionless distance from the contact line (b, d) at 90% of the drying time.
Each ellipse has the same initial perimeter and volume. We display results for both the
kinetic (a, b) and diffusive (c, d) regimes. In each figure, the red squares indicate results
for the semi-minor axis, while the blue circles indicate results for the semi-major axis.
In the insets to Figures a, c, we display the ratio of the current peak height at e(a) to
the equivalent axisymmetric droplet to highlight how increasing the eccentricity of the
droplet leads to a local maximum in the peak height.

the geometry-induced flow alone drives an enhanced coffee ring along the semi-major797

axis. Moreover, we note that since, for a fixed a, M0(ν, 0, t) is a decreasing function of ν798

(cf. figure 3c), including the accumulated mass flux accentuates this effect further.799

The peak location and hence the full-width at half-maximum (cf. (3.30)) are indepen-800

dent of the accumulated mass flux, so that their behaviour as functions of ν is purely801

governed by the local free surface profile. As is clearly seen from (4.19b), as ν increases,802

the ring peak is further from the contact line, leading to a thicker coffee ring. The scale803

factor in terms of distance from the contact line — and hence thickness of the ring —804

between the major and minor semi-axes is given by 1/(1 + a)2.805

All of these features can be seen by plotting the similarity profile (4.18) for a droplet806

with a = 1 for different values of ν, which is shown in figure 7a: as ν increases, the mass807
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Figure 7: Similarity profiles of the nascent coffee ring for an elliptical drop with a = 1
(e(1) = 0.866) for a) the kinetic evaporative regime as given by (4.18) and b) the diffusive
evaporative regime as given by (4.20).

profiles get progressively shallow and broader, with the location of the peak progressively808

moving away from the contact line at n = 0. The accumulated mass flux M0(ν, 0, t)809

simply acts to accentuate the coffee-ring height, with the peak location and the full-810

width at half-maximum remaining unchanged.811

A previous study by Freed-Brown (2015) demonstrated numerically that the mass812

flux of solute is stronger along the semi-major axis of a uniformly evaporating elliptical813

droplet. Here we have expanded upon this study, clearly illustrating that this increased814

mass flux combines with the effect of the local droplet profile leading to an enhanced815

coffee ring along the more highly-curved parts of the contact line. Moreover, this is816

for a constant evaporative flux, showing that this asymmetry in the solute distribution817

can be driven by geometry-induced flow alone, which may have useful applications in818

evaporative-driven patterning processes (Harris et al. 2007).819

4.5.2. Diffusive evaporation820

If one also allows the evaporative flux to vary as a result of the droplet geometry, the821

asymmetries in the nascent coffee ring become more exaggerated. To show this, we plot822

in figure 8 mass profiles along the minor and major semi-axes for an ellipse with a = 1823

(e(1) = 0.866) evaporating under a diffusive flux (the droplet again has the same initial824

volume and perimeter as that in figures 2 and 5). The coffee-ring effect is significantly825

enhanced by the contact line geometry: the peak of the ring at 90% of the drying time826

is ≈ 13 times larger along the semi-major axis than the semi-minor axis. Moreover, the827

peak is also approximately 1.1 times larger than that in the equivalent axisymmetric828

diffusive problem.829

We illustrate how the properties of the nascent coffee ring vary with ellipse eccentricity830

in figure 6c,d, where we show how the ring peak and its distance from the contact line831

change with e(a) for a fixed initial droplet volume and perimeter. The results are displayed832

at 90% of the drying time, with the Péclet number of the equivalent axisymmetric drop833

taken to be Pe0 = 200 and the corresponding parameters for the droplets with elliptical834

footprints evaluated from (4.5).835

The results behave in a qualitatively similar manner to the kinetic regime. In particular,836
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Figure 8: Profiles of the solute mass m = hφcomp along the semi-major (a, b) and semi-
minor (c, d) axes of an elliptical droplet with a = 1 (e(1) = 0.866) evaporating under a
diffusive flux for Pe ≈ 35. In each figure, the bold, black curve represents the initial mass
profile, while plots at time intervals of 0.1 up to t = 0.9 are shown as solid, blue curves.

the peak height along the semi-major axis initially increases as we increase the eccen-837

tricity, before reaching a maximum. For the diffusive case, the maximum is at a ≈ 0.5838

(e(a) ≈ 0.745), with the peak approximately 20% larger than the equivalent axisym-839

metric droplet (cf. the inset to figure 6c). As the eccentricity increases further, the peak840

height begins to decrease again, eventually decreasing below the axisymmetric peak. It is841

worth noting, however, that the width of the coffee ring is larger than in the equivalent842

axisymmetric droplet. Hence, for larger eccentricities, we have a shallower but wider cof-843

fee ring, as necessitated by the overall increased accumulated mass flux into the contact844

line along the semi-major axis (cf. figure 4).845

For a diffusively evaporating droplet, the similarity profile can be found from (3.39) to846



The nascent coffee ring with an arbitrary droplet contact set 31

be given by847

m̂0

Pe2tM0(ν, 0, t)
=
π4(1 + a)10

48K[e(a)]4
Nd

(1 + (2a+ a2) sin2 ν)3
×

exp

( −π(1 + a)5/2
√
Nd

K(e(a))[1 + (2a+ a2) sin2 ν]3/4

)

, (4.20)

where Nd = Pe2tn. The coffee-ring peak and its location are given by848

mmax

Pe2tM0(ν, 0, t)
=

π2(1 + a)5

6e2K[e(a)]2
1

[1 + (2a+ a2) sin2 ν]3/2
, (4.21)

Pe2tnmax =
8K[e(a)]2

π2(1 + a)5
[

1 + (2a+ a2) sin2 ν
]3/2

. (4.22)

In the diffusive regime, even when we discount the accumulated mass flux into the849

contact line, there is a more significant strengthening of the coffee-ring effect compared850

to the kinetic evaporative model. Along the semi-major axis of the ellipse, the peak851

height is (1 + a)3 larger, 1/(1 + a)3 closer to the contact line and 1/(1 + a)3 thinner852

than along the semi-minor axis. This can clearly be seen in figure 7b, where we plot the853

similarity profile (4.20) for different values of ν. Generally speaking, even though there854

are variations with the angle-like variable ν, the coffee ring in the kinetic regime is much855

more uniform than that in the diffusive regime.856

4.6. Summary857

Our findings corroborate those of Sáenz et al. (2017), who consider experiments and858

simulations of different-shape droplets evaporating under the diffusive evaporative model,859

demonstrating that there is a more pronounced coffee ring near the most highly-curved860

parts of the droplet contact line. While Sáenz et al. (2017) attribute this to the asymmetry861

in the evaporative flux (specifically that it is stronger along these parts of the boundary),862

we have demonstrated that this is not the only factor: indeed the similarity profile (4.20)863

shows that there is an enhanced coffee-ring effect along the semi-major axis of an ellipse864

purely due to the flow asymmetry induced by the droplet geometry. Thus in the diffusive865

regime, it is a combined effect of the droplet geometry, the increased mass flux and the866

increased evaporative flux that contributes to the change in the coffee ring structure with867

contact line curvature.868

4.7. Limitations of the dilute regime869

All of the above results hold under the assumption that the solute remains dilute as it870

evaporates. However, as solute is carried to the contact line, the concentration increases871

there. As a result, several effects that we have neglected, most notably concentration-872

dependent diffusivity and suspension viscosity, become relevant locally. Eventually, the873

solute may jam, leading to an effective moving of the fluid boundary inwards from the874

initial pinned edge. While we do not seek to investigate these effects in the current875

analysis, it is clearly important to understand the limitations of the dilute assumption.876

Moreover, even if the window over which the dilute model is valid is quite short, it is877

necessarily the first stage of the coffee ring formation, so the analysis presented here878

represents the early-time solution that will apply before these effects become relevant.879

4.7.1. Kinetic evaporation880

Let us suppose that the critical solute concentration at which finite concentration881

effects are important is given by φ∗c . This value will depend upon the solute under con-882
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Figure 9: The maximum solute concentration, φmax(ν, t), for an elliptical droplet with
a = 1 (e(a) = 0.866) evaporating under a constant evaporative flux as given by (4.23).
In each plot, the dashed curve displays the maximum concentration on the semi-major
axis, φmax(0, t), the dotted curve displays the concentration on the semi-minor axis,
φmax(π/2, t) and the solid curve shows the equivalent results for an axisymmetric droplet
of the same volume and perimeter. The results are shown for Pe = 200, 400, 800, where
the Péclet number is defined with respect to the axisymmetric droplet. In each figure,
the horizontal dashed red lines denote particular values of the critical concentration φc.
For each curve, the dilute regime lies to the left of the intersection with the red lines.

sideration. For the purposes of illustration, we shall assume that φ∗c = 0.1, while we shall883

take indicative values of the initial concentration from Deegan et al. (2000), with φ∗init884

ranging from 10−6 − 10−2.885

Now, according to our asymptotic analysis, the maximum value of the solute concen-886

tration, φmax(t) occurs at the contact line. Thus, we can evaluate the composite profile887

(3.25) on ∂Ω to find that888

φmax(ν, t) = Pe2
M0(ν, 0, t)

θc(ν, t)3
+ Pe

γB(ν, t)

θc(ν, t)
+ lim

(x,y)→∂Ω
n→0

(

φ0(x, y, t)−
B(ν, t)

n

)

(4.23)

where γ is the Euler-Mascheroni constant.889

Note that φmax depends on the elliptical polar angle; our previous analysis has in-890

dicated that the maximum is higher along the semi-major axis of the ellipse than the891

minor and we expect this to directly translate into a reduced range of validity of the892

dilute model. To investigate this, in figure 9 we plot φmax(ν, t) as a function of time for893

an elliptical droplet with a = 1 and for different Péclet numbers along each semi-axis .894

In each figure, the value of φmax(ν, t) along the semi-major axis is given by the dashed895

curve, while its value along the semi-minor axis is given by the dotted curve. For ref-896

erence, the equivalent maximum concentration for an axisymmetric droplet of the same897

volume and perimeter is shown in each figure by the solid curve. The figures show the898

results for, from left to right, Pe = 200, 400, 800, which are defined with respect to the899

axisymmetric droplet, and the corresponding Péclet number for the elliptical case can be900
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found using (4.5). To help interpret the results, we have also included reference values of901

φc = φ∗c/φ
∗
init in each figure as the dashed red lines.902

As is clearly seen in the figures, our intuition is correct: for a given value of φc, the903

solute concentration along the semi-major axis reaches the critical value much earlier904

than along the semi-minor axis. Moreover, compared to an axisymmetric droplet of the905

same volume and contact line length, the critical solute concentration is reached sooner906

along the semi-major axis and later on the semi-minor axis. For a fixed Pe, the time907

window over which the dilute regime remains valid increases as φc increases, while for a908

fixed φc, the time window decreases as Pe increases.909

To take a concrete example, let us consider φc = 105, which corresponds to a solute910

that is initially extremely dilute compared to the critical concentration. For Pe = 200,911

the dilute regime is valid for ≈ 80% of the drying time for an axisymmetric drop, while912

for an elliptical drop, the dilute regime breaks down after ≈ 76% of the drying time along913

the semi-major axis and after ≈ 87% of the drying time along the semi-minor axis. On914

the other hand, for Pe = 800, the dilute regime is valid for ≈ 60% of the drying time for915

an axisymmetric drop, while it breaks down after ≈ 55% of the drying time along the916

semi-major axis and after ≈ 75% of the drying time along the semi-minor axis for the917

equivalent elliptical drop.918

It is of note that in each of these cases, the dilute regime takes up a large percentage919

of the total drying time, indicating that the asymptotic analysis we have presented here920

gives a very good account of the nascent coffee ring formation and, in particular, allows921

us to predict the solute mass distribution within the droplet when finite concentration922

effects start to become relevant. Moreover, the solute mass profiles presented in, for923

example, §4.5, would be apt for comparison to experimental measurements of transient924

coffee ring profiles for an elliptical droplet evaporating under a kinetic evaporative flux.925

However, it is worth noting that the time windows over which the dilute regime is valid926

do significantly reduce as φc decreases. For Pe = 200 and φc = 10, breakdown occurs927

after ≈ 8% of the drying time for the axisymmetric droplet, ≈ 5% of the drying time928

along the semi-major axis of the equivalent elliptical droplet and ≈ 18% of the drying929

time along the semi-minor axis. Nevertheless, our analysis is appropriate for the time930

window before breakdown, and provides the initial conditions for the regime in which931

finite concentration effects are relevant, so is likely to be an important consideration in932

understanding the characteristics of the final coffee ring.933

We should also note that it may be that finite concentration effects are extremely934

localized in the model, so that, for example, even in problems where they are relevant935

close to the highly-curved parts of the contact line, the dilute model may still give an936

excellent description of the coffee ring dynamics for other parts of the boundary. This937

seems particularly reasonable given that the solute simply follows the streamlines in the938

droplet bulk (where the dilute regime is still valid), and the streamlines are independent939

of t. However, these comments do depend on the type of model chosen to incorporate940

finite concentration effects and whether such a model causes non-local changes to the941

liquid flow. We do not seek to address these questions any further here.942
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Figure 10: The maximum solute concentration, φmax(ν, t), for an elliptical droplet with
a = 1 (e(a) = 0.866) evaporating under a diffusive flux as given by (4.24). In each plot,
the dashed curve displays the maximum concentration on the semi-major axis, φmax(0, t),
the dotted curve displays the concentration on the semi-minor axis, φmax(π/2, t) and the
solid curve shows the equivalent results for an axisymmetric droplet of the same volume
and perimeter. The results are shown for Pe = 200, 400, 800, where the Péclet number is
defined with respect to the axisymmetric droplet. In each figure, the horizontal dashed
red lines denote particular values of the critical concentration φc.

4.7.2. Diffusive evaporation943

By the composite solution (3.38), the maximum concentration in the diffusive evapo-944

rative regime is given by945

φmax(ν, t) = Pe4
64χ(ν)4M0(ν, 0, t)

3θc(ν, t)5
+ Pe

4γχ(ν)Bd(ν, t)

θc(ν, t)
+

lim
(x,y)→∂Ω
n→0

(

φ0(x, y, t)−
Bd(ν, t)√

n

)

. (4.24)

It is immediately apparent that this is two orders of magnitude larger than (4.23) and,946

accordingly, the time window over which the dilute regime is valid for this mode of947

evaporation is much smaller, as can be seen in figure 10. For Pe = 200 and φc = 105,948

we see that breakdown occurs for an axisymmetric droplet at just ≈ 1% of the drying949

time with this value rapidly decreasing as φc decreases or Pe increases. Breakdown along950

the semi-major axis of the equivalent ellipse occurs at a similar time, while there is an951

appreciable increase in the validity of the dilute model along the semi-minor axis to952

≈ 23% of the drying time. Again, this sharply tails off as φc decreases. Hence, if finite953

concentration effects can be treated locally, we may see a sizeable timeframe over which954

the dilute model presented here gives an accurate description of the nascent coffee ring955

along parts of the contact line with smaller curvature. Overall, however, it is clear that956

we need to consider these effects much sooner in the diffusive evaporative flux regime.957

It is noticeable that there is marginal difference between the breakdown time along the958
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semi-major axis and the equivalent axisymmetric droplet and indeed some cases where959

it appears to be reduced along the semi-major axis compared to the axisymmetric case.960

Given the extremely small timeframes under consideration, this is likely a combined effect961

of the numerical sensitivities in evaluating M0(ν, 0, t) and Bd(ν, t) and the fact that the962

equivalent Péclet numbers are significantly smaller for an elliptical droplet (cf. Equation963

(4.5)).964

5. Summary and discussion965

In this paper, we have presented a systematic asymptotic analysis of the solute profile as966

a thin, surface tension-dominated droplet of arbitrary contact set evaporates in the limit967

of large solutal Péclet-number, Pe ≫ 1. Throughout, we have assumed that the droplet968

contact line remains pinned as the droplet evaporates. To illustrate the mathematical969

methodology, we focussed on two particular evaporation models that are expected to970

bracket the most common evaporative behaviours: a simplified kinetic evaporation model971

in which the flux is uniform above the droplet surface, and a diffusive evaporation model972

in which the flux is singular at the contact line. In the former case, we were able to973

isolate the effect of the droplet geometry alone on the nascent coffee ring characteristics,974

while for the latter regime, we were able to investigate the combined effects of the droplet975

geometry and an inhomogeneous evaporative flux.976

Our analysis builds upon our previous work (Moore et al. 2021), which revealed that977

it is the competing effects of solute diffusion and advection local to the contact line978

that drives the formation of the characteristic coffee-ring profile in the early stages of979

evaporation. In a more general geometry, the analysis is significantly more challenging,980

but we were able to make asymptotic progress by utilizing a local orthogonal coordinate981

system (s, n) that is embedded in the droplet contact line. This allows us to solve the982

leading-order local solute transport problem explicitly. To match with the advection-983

dominated region of the droplet, we exploited a formulation in terms of an integrated mass984

variable, which revealed that the local coffee ring profile is approximately a similarity985

profile m̂0 that is given by986

m̂0(s,N, t)

PetM0(s, 0+, t)
= f

(

N ; 2,
1

ψ(s)

)

, N = Petn (5.1)

for a kinetic evaporative flux, and by987

m̂0(s,Nd, t)

Pe2tM0(s, 0+, t)
=

2χ(s)

3ψ(s)
f

(

√

Nd, 3,
4χ(s)

ψ(s)

)

, Nd = Pe2tn (5.2)

for a diffusive evaporative flux. In equations (5.1)–(5.2), M0(s, 0
+, t) is the mass accumu-988

lated at the contact line, ψ(s) = θc(s, t)/(1− t) is the rescaled local contact angle of the989

droplet, χ(s) ∼ E(s, n)n1/2 is the strength of the singularity in the local evaporative flux990

in the diffusive regime, f(x; k, l) = lkxk−1e−lx/Γ(k) is the probability density function991

of a gamma distribution, Pet = Pe/(1 − t∗/t∗f) is the modified Péclet number and t∗f is992

the dimensional dryout time of the drop. Characteristics of the nascent coffee ring such993

as the ring height and width can then readily be found from these similarity profiles.994

Equations (5.1) and (5.2) display the characteristic narrow, peaked profile of the995

nascent coffee ring and it is notable that this profile is dependent on the location on996

the contact line through the coordinate s. Hence, asymmetry in the droplet profile, the997

evaporative flux and the rate at which solute mass is transported to the contact line may998

all contribute to variation in the nascent coffee ring profile.999

After validating our asymptotic analysis in the axisymmetric regime by comparing to1000
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numerical simulations, we moved on to consider the example of a thin droplet with an1001

elliptical contact set. For both evaporative models, the flow in the ellipse is stronger1002

towards the semi-major axis where the contact line curvature is higher, and this effect1003

is accentuated as the eccentricity of the ellipse increases. The increased velocity coupled1004

with the geometry of the local free surface profile leads to an increase in the accumulated1005

mass flux into the more highly-curved part of the elliptical boundary. We showed that, for1006

droplets of identical volume and contact line perimeter, increasing the ellipse eccentricity1007

increases (respectively, decreases) the accumulated mass flux into the boundary along1008

the major (minor) semi-axis. This effect was more pronounced (although of a similar1009

order of magnitude) for a diffusive evaporative flux. The increased accumulated mass1010

flux contributes to a strengthened (respectively, weakened) coffee ring along the major1011

(minor) semi-axis.1012

It is notable that this effect is exhibited by both the kinetic and diffusive evaporative1013

models. In particular, while it certainly contributes if present, inhomogeneity in the1014

evaporative flux is not necessary to observe a variation in the coffee-ring effect. This1015

qualifies the conclusion of Sáenz et al. (2017) that attributes coffee ring asymmetry due1016

to an inhomogeneous evaporative flux.1017

For both evaporative models, the decreased mass flux into the contact line along the1018

semi-minor axis manifests itself as a shallower, wider coffee ring than an equivalent1019

axisymmetric droplet of the same initial volume and perimeter. However, the behaviour1020

along the semi-major axis is richer. As the eccentricity of the droplet contact set initially1021

increases, for both evaporative models the coffee ring becomes higher and narrower.1022

The height reaches a maximum before falling in both evaporation models, with the effect1023

starker for diffusive evaporation. However, to compensate for the increased mass flux, the1024

ring then starts to broaden as compared to the axisymmetric droplet. As the eccentricity1025

of the ellipse approaches unity, in the kinetic model, we found that the coffee ring height1026

was comparable to the axisymmetric droplet, but that the ring was thicker, while for1027

the diffusive model, we found that the height was in fact lower than the axisymmetric1028

droplet, but the ring was much thicker.1029

We concluded by using our asymptotic results to investigate when the dilute regime1030

breaks down and finite concentration effects are likely to become relevant close to the con-1031

tact line, where the solute concentration is maximal. As may be expected, the enhanced1032

flow and coffee-ring effect along the semi-major axis reduces the time window over which1033

the dilute model is valid as compared to the equivalent axisymmetric droplet. However,1034

this effect is very much localized: indeed, along the semi-minor axis, the time window is1035

correspondingly lengthened. Clearly finite concentration effects may be present in some1036

parts of the droplet for a significantly longer period than others. It is notable that the1037

dilute regime is valid for significantly longer for a kinetic evaporative flux compared to1038

a diffusive flux: this is due to the significantly enhanced coffee-ring effect in the latter1039

regime. This longer time period of validity coupled with the variable coffee-ring effect1040

along different parts of the contact line suggest that the kinetic evaporative model may1041

be ripe for exploitation in engineering applications in which dynamically controlling the1042

deposit shape is important, for example in colloidal patterning (Choi et al. 2010) and in1043

printing conductors (Layani et al. 2009).1044

Even in situations where the time window of applicability is relatively small, the dilute1045

model necessarily applies in the early stages of coffee ring formation. Hence the analysis1046

derived here provides a description of the flow profile and solute distribution before finite1047

concentration effects are introduced. There are a number of different avenues that could1048

be pursued to model such effects, whether through a simple jamming model (such as1049

that in Popov 2005), accounting for the increasing concentration through suspension-1050
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dependent viscosity and diffusivity (as in Kaplan & Mahadevan 2015) or through more1051

complicated two-phase suspension models (see, for example, Guazzelli & Pouliquen 2018).1052

These are all interesting avenues for future studies.1053

There are also a number of other possible extensions of the model presented here1054

to account for some of the physical effects that have been neglected. Firstly, we have1055

shown that the evaporative flux law plays a critical role in the asymptotic structure,1056

and hence the characteristics of the nascent coffee ring, for two common evaporation1057

models. It may therefore be possible to dictate the early stages of solute transfer by1058

suitably controlling the surrounding environment and, hence, the evaporative flux. Such1059

ideas have been utilized previously to pattern colloidal films (see, for example, Harris1060

et al. 2007). Hence, it would be of interest to consider how the model changes for other1061

evaporation laws: possibilities include incorporating the effects of vapour convection (see,1062

for example Boulogne et al. 2016) or finite concentration effects in the vapour phase (for1063

example, Bruna & Chapman 2012a,b).1064

The presence of surfactants on the air-liquid interface (Hu & Larson 2006) or evapora-1065

tive cooling (Li et al. 2015) may lead to Marangoni convection in the droplet, competing1066

with the evaporation-driven capillary flow. It would be of interest to investigate how the1067

interplay between the Marangoni flow and the diffusive transport of solute alters the1068

distribution of the solute at early-stages of the evaporative process. Marangoni effects1069

are also seen in the evaporation of binary droplets (see, for example Kim et al. 2016; Li1070

et al. 2018), although we expect the introduction of a second fluid to present a significant1071

modelling challenge.1072

Finally, in this study we have used the theoretical model to estimate the limits on its1073

validity that ultimately occurs when the solute is no longer dilute close to the pinned1074

contact line. However, there are, of course, other assumptions in the model that may be1075

violated first. One possibility is that the contact line may depin and the droplet recede. We1076

have discounted this possibility supported by experimental evidence that the coffee-ring1077

effect tends to promote pinning (see, for example, Deegan et al. 2000; Orejon et al. 2011;1078

Weon & Je 2013). Of course, depinning may yet occur at late stages of the evaporation,1079

though this process is a function of many variables, including the substrate material,1080

the liquid and the initial solute concentration (Orejon et al. 2011; Larson 2014). A full1081

characterization is therefore beyond the scope of this study, and provides an interesting1082

direction for future consideration.1083
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Appendix A. Numerical methods1087

In this appendix, we describe the numerical approaches necessary to solve for the1088

liquid flow and the solute concentration for thin droplets with an elliptical contact set.1089

We shall present the methodology for the kinetic evaporative model in which E = 1, but1090

the methodology extends readily to the diffusive regime, as discussed presently.1091

A.1. Solution of the pressure problem for a droplet with an elliptical contact set1092

To find the liquid velocity, we must find the pressure perturbation P (x, y) that satisfies1093

the Neumann problem (2.20). Let us first define1094

P = 8

(

1 +
1

(1 + a)2

)3

(P + Ps) , Ps = − 3

H+ |∇H|2
1

H , H = 1−
(

x

1 + a

)2

−y2, (A 1)
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Figure 11: Doubly logarithmic plot of the relative error of the computed velocity compo-
nents at the centre of the rectangle for various mesh sizes compared to the solution on
an extremely fine mesh (hmax = 8× 10−4).

which reduces (2.20) to1095

∇ ·
(

−H3

3
∇P

)

=2H−
(

3 +
2

(1 + a)2

) H
H+ |∇H|2

−H∇H · ∇
(

1

H+ |∇H|2
)

−H2∇2

(

1

H + |∇H|2
)

(A 2)

in Ω, such that1096

−H3

3
∇P · n = 0 on ∂Ω. (A 3)

We have chosen the form of Ps to leave the boundary condition (A 3) unchanged while1097

also subtracting out the O(1/n) singularity in P at the contact line (which improves1098

convergence of the numerical solution).1099

Using symmetry, we solve the problem for x, y > 0 and, to simplify the domain, we1100

solve in the planar elliptical coordinate system (µ, ν), which is defined in (4.2). We solve1101

(A 2)–(A3) using MATLAB’s in-built finite element code in the PDE Toolbox. To show1102

that the code converges, we consider the particular case when a = 1 and vary the value1103

of hmax, the maximum allowed size of an element in the simulation. In figure 11, we1104

display the absolute error in each velocity component at the centre of the rectangle1105

for different values of hmax and the solution calculated on a very fine grid (for which1106

hmax = 8 × 10−4). We see that the error decreases proportionally to h2max as we refine1107

the grid, as anticipated.1108
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A.2. Solution of the leading-order outer solute problem1109

To solve for the leading-order-outer solute mass as given by (3.2), we need to solve for1110

the Jacobian J using Euler’s identity, (3.3). We note that by setting1111

τ = − log (1− t) , ū =
Ū

1− t
(A 4)

where Ū is independent of t and is given by the solution of (2.20), we reduce the problem1112

to solving1113

D

Dτ
(log J) = tf∇ · Ū for τ > 0, (A 5)

subject to log J = 0 at τ = 0.1114

Our methodology for solving this problem numerically is as follows. Firstly, we pick1115

a location x
† on the contact line. Then, following Freed-Brown (2015), we can find the1116

initial location of the point, x0 say, that reaches x† at time τ = τ† by solving1117

Dx

Dτ
= −tfŪ subject to x = x

† at τ = 0, x = x0 at τ = τ†. (A 6)

Once x0 is found, we then find the value of the Jacobian at x† at τ = τ† by integrating1118

(A 5) along a streamline starting from x0.1119

Since all of the equations (A 5) and (A6) are autonomous, they are relatively straight-1120

forward to solve using MATLAB’s inbuilt ode15s solver. We do so with 2000 time stations1121

clustered at times at which the velocity is largest (i.e. when we approach the contact line).1122

To find the coefficient of local concentration as given by (3.6) in the kinetic regime1123

and (3.31) in the diffusive regime, we choose a number of angular stations close to the1124

contact line and then repeat the above procedure at dimensionless time intervals of 5%1125

of the drying time up to 95% of the drying time. We then interpolate the data to obtain1126

results at intermediate timesteps.1127
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