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EXACT SOLUTIONS TO TBT

In this section we outline how to construct exact solutions to the TBT integral equations.

Exact solutions to Fredholm integral equations, like TBT, can be expressed through a func-

tion called a resolvent [1]. Hence the general solution to Eqs. (23) and (24) can be written

as

f(s, θ) = M−1
A ·

[
q(s, θ)−

〈
M−1

A

〉−1

θ
·
∫ 1

−1

ds′R(s, s′) ·
〈
M−1

A · q(s, θ)
〉
θ

]
, (1)

where R(s, s′) is resolvent. There are many ways to construct the resolvent [1] with the

most general way being the method of Fredholm determinates. This method expresses the

resolvent as

R(s, s′) =

[
∞∑
n=0

An(s, s′)

n!

]
/

[
∞∑
m=0

Bm

m!

]
(2)

where B0 = 1,

〈
M−1

A (s)
〉−1

θ
·A0(s, s′) =

(
I

|R̃|
+

R0R0

|R̃|3

)
, (3)

〈
M−1

A (s)
〉−1

θ
·An(s, s′) = Bn

(
I

|R̃(s, s′)|
+

R0(s, s′)R0(s, s′)

|R̃(s, s′)|3

)
−n
∫ 1

−1

dt

(
I

|R̃(s, t)|
+

R0(s, t)R0(s, t)

|R̃(s, t)|3

)
·An−1(t, s′), (4)

Bn =

∫ 1

−1

dsTr[An(s, s)], (5)

Tr[·] denotes the trace and we have explicitly included the functional dependence for clarity.

These series are guaranteed to converge and so provides an exact solution to the tubular-

body problem in terms of a series of embedded integrals. In practice these integrals cannot

be evaluated analytically and so it is often easier to invert the integral operator numerically.

DETAILED DESCRIPTION OF THE NUMERICAL METHOD

This section provides a detailed description of the numerical method to solve the TBT

equations from the text. This was done using a collocation process [1, 2]. In this process

the arclength s ∈ [−1, 1] is divided in to M segments of constant length and 〈f(s, θ′)〉θ′ is

assumed to be constant over each segment. We then choose to satisfy Eq. (23) at the centre
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of each segment. This allows us to write Eq. (23) as



〈
M−1

A · q
〉
θ

∣∣
s=s1〈

M−1
A · q

〉
θ

∣∣
s=s2

...〈
M−1

A · q
〉
θ

∣∣
s=sN

 =


I + Ks1,s1 Ks1,s2 · · · Ks1,sN

Ks2,s1 I + Ks2,s2 · · · Ks2,sN

...
...

. . .
...

KsN ,s1 KsN ,s2 · · · I + KsN ,sN




〈f(s1, θ

′)〉θ′
〈f(s2, θ

′)〉θ′
...

〈f(sN , θ′)〉θ′

 , (6)

where 2∆s is the size of each segment and

Ksn,sm =
〈
M−1

A

〉
θ
·
∫ sm+∆s

sm−∆s

ds′
(

I

|R̃|
+

R0R0

|R̃|3

)∣∣∣∣
s=sn

. (7)

The solution to the above equation and Ksn,sm integrals were determined in MATLAB [3]

with M = 30 throughout. A spline was then fitted through the 〈f(si, θ′)〉θ′ points with

MATLABs interpolate function and the result was used to determine f(s, θ) from Eq. (24).

If the next fn(s, θ) term is needed we evaluated ∆L[f] at a collection of M × M surface

points using MATLAB’s quad function and the results are interpolated. The speed of the

evaluation is improved if the singularity in the two kernels are located at the same parametric

point. This process is repeated to solve Eqs. (14) and (15) for the fn(s, θ) terms till n = N .

The approximation to the traction is then determined from Eq. (13) and the total force and

torque determined in the normal way.

TBT FOR A PROLATE SPHEROID

The simplest tubular body with known solutions is that of a spheroid. The resistance

matrix of a spheroid is known exactly [4] and in the slender limit. For the sake of validation,

we parametrised the surface of the spheroid as

Ss(s, θ) = {s, ερ(s) cos(θ), ερ(s) sin(θ)} (8)
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where ρ(s) =
√

1− s2, and we have used the Cartesian coordinates {x, y, x}, the resistance

matrix for this spheroid can generally be expressed as

 F

L

 = µ



A 0 0 0 0 0

0 B 0 0 0 0

0 0 B 0 0 0

0 0 0 C 0 0

0 0 0 0 D 0

0 0 0 0 0 D



U

Ω

 . (9)

where A, B, C, and D are the resistance coefficents related to motion. The exact form of

these coefficents are given by

A =
16π

φ+ χ1

, (10)

B =
16π

φ+ ε2χ2

, (11)

C =
16π

3χ2

, (12)

D = 16π
1 + ε2

3(χ1 + ε2χ2)
, (13)

φ =

∫ ∞
0

dx√
(1 + x)(ε2 + x)2

, (14)

χ1 =

∫ ∞
0

dx

(1 + x)
√

(1 + x)(ε2 + x)2
, (15)

χ2 =

∫ ∞
0

dx

(ε2 + x)
√

(1 + x)(ε2 + x)2
. (16)

In the slender-limit, ε� 1 the these coefficients become

A =
8π

log(4/ε2)− 1
, (17)

B =
16π

log(4/ε2) + 1
, (18)

C = 0, (19)

D =
16π

3(log(4/ε2)− 1)
. (20)

These results were calculated from the slender-body thoery of Keller and Rubinow [5]. At

this level of accuracy C = 0, though higher order corrections can be added to correct for

this [6].
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Figure 1. The relative error between TBT predictions and the exact resistance coefficients of a

spheroid. The relative error is defined as the difference between the prediction and the exact coeffi-

cient, all divided by the exact coefficient. a) shows the relative error in the drag from axisymmetric

translation. b) shows the relative error in the drag from non-axisymmetric translation. c) shows

the relative error in the torque from axisymmetric rotation. Different lines correspond to the TBT

prediction with different levels of truncation; blue is the leading term (N = 0), red is the first two

terms (N = 1), yellow is the first three (N = 2), purple is the first four (N = 3), and green is the

first five (N = 4). The pink dashed line shows the relative error between the classic slender body

theory prediction and the exact resistance coefficients.

The above results can be used to determine relative error between the exact solution and

the solution from TBT for varying series truncation, N , and ε (Fig. 1). In these plots we

have included the relative error between the exact and the SBT results for reference. The

non-axisymmetric rotation is provided in the main text. TBT is found to capture the drag

from translation exactly for N = 0. This is because the exact solution for the drag on a

spheroid was used as the local correction for the model. The predicted rotational coefficients,

C and D, however differ for a N = 0 series truncation with a maximum error of ≈ 24%

5



around ε = 1.2 for the D coefficient and an ≈ 20% error for the C coefficient for small ε. We

note that classic SBT encounters a 100% error on C as it predicts C = 0 at leading order.

These errors decrease rapidly as N increases, with the predictions of C and D containing a

maximum error of ≈ 0.7% for a series truncation of N = 2 and N = 4 respectively. These

results have been shown over the range of ε = [0.01, 10] (Fig. 1). The upper end of these

results corresponds to an oblate spheroid with aspect ratio 10 and so is well beyond the

typical slender-body theory limits (as demonstrated by the asymptotes in the SBT model

lines). The error on the results are seen to be smooth and well behaved over this entire

region, thereby indicating that TBT can work well beyond the SBT limits.

TBT FOR A TORUS

Possibly the simplest wiry shape with a curved centreline is a torus. Similarly to the

spheroid, the resistance matrix of a torus consists of four unique coefficients which can be

again expressed as Eq. (9) for surface parametrisations of

St(s, θ) =

{
ε sin(θ),

(
1

π
− ε cos(θ)

)
cos(πs),

(
1

π
− ε cos(θ)

)
sin(πs)

}
. (21)

The above torus parametrisation is scaled such that the arclength of the centerline equals

2 and so corresponds to a torus with a curvature of π and slenderness of ε. Due to the

rotational symmetries of this shape the resistance coefficients for the axisymmetric motions

(A, C) can also be determined exactly [7–9]. These forms are complicated and so we omit

them for brevity. Furthermore the resistance matrix has been determined in full in certain

limits. Johnson and Wu [10] showed that for a slender torus the resistance coefficients are

A =
16π

2L+ 1
, (22)

B = 2π
6L− 17

(2L− 1)(L− 2)− 4
, (23)

C =
4

π(L− 2)
, (24)

D =
8

π(2L− 3)
, (25)

where L = log[8/(πε)], while O’Neill et al. [11, 12] showed that in the limit of a closed torus

(ε = 1/π) the coefficients become

A = 11.224, B = 10.12, C = 5.167, D = 4.214. (26)
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Figure 2. The resistance coefficients determined by TBT for a torus of radius 1/π with thickness ε.

a) drag coefficient for axisymmetric translation, A; b) drag coefficient for asymmetric translation,

B; c) drag coefficient for axisymmetric rotation, C; d) drag ceofficient for asymmetric rotation, D;

Blue lines correspond to TBT model with N = 0, Red is the TBT model with N = 1, and Yellow

is the TBT model with N = 2. The black solid line represents the coefficients for a closed torus,

ε = 1/π, the pink dashed lines are the coefficients found with SBT and the blue dashed lines are

the exact solutions (only available for axisymmetric motions). All lengths are scaled by half the

arclength of the centreline.

We remind the reader that all the lengths have been scaled by half the arclength.

These results can be used to investigate the accuracy of the TBT model on curving

bodies (Fig. 2) over the range of ε ∈ [0.01, 1/π − 0.01]. We remind the reader that ε = 1/π

corresponds to a closed torus and is outside the typical SBT curvature restriction of εκ� 1.

Over this entire region the TBT representation quickly converges to the solution, with small

changes in the computed values for terms beyond a series truncation of N = 2. At this
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Figure 3. Diagram of a tightly wound helix. The axial length of this helix is given by 2α (purple),

the helix pitch is 2Λ (green), and the helix radius is Rh (red). The image shown is given by Eq. (27)

with ε = 0.5, Λ = 1.1ε and Rh = 1.5ε.

level we find less than 1% error between the computed values and the exact solutions for the

axisymmetric coefficients, A and C for all ε tested. Furthermore the numerical results for

the asymmetric resistance coefficients, B and D, can be seen to smoothly connect between

the known limiting behaviours. This demonstrates the effectiveness of the TBT method on

curved bodies.

RESISTANCE MATRIX OF A TIGHTLY WOUND HELIX

The effectiveness of TBT can also be seen on a tightly wound helix (Fig. 3). Helices are

iconic shapes in the viscous flows, due to their symmetries and their frequent appearance in

biological and mechanical systems. Though common, little is known about how the dynamics

of these helices change as they become tightly wound. One possible explanation of this is

because such shapes lie well outside the SBT limits and so full numerical simulations would

be needed. TBT however is exact and so allows us to investigate the behaviour in this limit.

We parametrise the surface of the helix as

Sh(s, θ) = rh(s) + ε
√

1− s20êρ(s, θ) (27)
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Figure 4. The non-zero components of resistance matrix relating translation and force for a tightly

wound helix. a) Component R11, b) Component R13. c) Component R22, d) Component R33.

where

rh(s) = {αs,Rh cos(ks), Rh sin(ks)} , (28)

êρ(s, θ) = cos(θ)d1(s) + sin(θ)d2(s), (29)

d1(s) = {kRh sin(αks), cos(ks) cos(αks) + α sin(ks) sin(αks),

sin(ks) cos(αks)− α cos(ks) sin(αks)}, (30)

d2(s) = {−kRh cos(αks), cos(ks) sin(αks)− α sin(ks) cos(αks),

sin(ks) sin(αks) + α cos(ks) cos(αks)}, (31)

α is the cosine of the helix angle, Rh is the helix radius, k is the wave number and we

have set the cross-sectional distribution of the helix to be ρ(s) =
√

1− s20 to provide a

roughly constant cross-section that smoothly goes to 0 near the ends (Fig. 3). We note that

d1(s), d2(s) and t̂(s) are perpendicular vectors chosen such that ∂sêρ(s, θ) = −κ cos(θ)̂t

as required. The above helix has a curvature of κ = k2Rh, a torsion of τ = αk and is
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Figure 5. The non-zero components of resistance matrix relating rotation and force for a tightly

wound helix. a) Component R14, b) Component R16, c) Component R25, d) Component R34,

Component R36.

parametrised by arclength so that α2 + k2R2
h = 1. There are two geometric restrictions

on this geometry to ensure that the surface does not self intersect itself: 2πα/k > 2ε and

Rh > ε. Since we wish to explore the behaviour of the helix near this limit we define the

new parameter the helix pitch 2Λ = 2πα/k and will consider results for Λ ∈ (ε, 5ε] and

Rh ∈ (ε, 2ε]. For all the simulations we use ε = 0.05 and N = 6. At this accuracy the results

were found to have converged for all geometries considered.

This helical parametrisation produces 13 non-zero terms in the resistance matrix: four

representing force from translation (Fig. 4), five representing the coupling between force

and rotation or torque and translation (Fig. 5) and four representing torque from rotation

(Fig. 6). In these plots we denote the i,jth component of the resistance matrix Rij. Inspecting

these coefficients we see that the diagonal terms of the resistance matrix displays a slow

variation over this tightly coiled region. However the off diagonal terms display complex

oscillatory behaviour that reduces as the body becomes closer to being closed. Even though

this oscillation is small it can still significantly effect the motion and forces experienced by

the body in different circumstances. For example the velocity of a force free helix undergoing

unit rotation around its axis displays a strong oscillatory behaviour for motion perpendicular
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Figure 6. The non-zero components of resistance matrix relating rotation and torque for a tightly

wound helix. a) Component R44, b) Component R46, c) Component R55, d) Component R66.

to the axis (Fig. 3b main text) and a small oscillation in the motion parallel to the axis when

Λ ∼ ε (Fig. 3a main test). This further demonstrates the importance of models that can

accurately resolve the behaviour beyond the SBT limits.
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