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ABSTRACT Fe-rich intermetallic phases in recycled Al alloys often exhibit complex 

and 3D convoluted structures and morphologies. They are the common detrimental 

intermetallic phases to the mechanical properties of recycled Al alloys. In this study, 

we used synchrotron X-ray tomography to study the true 3D morphologies of the Fe-

rich phases, Al2Cu phases and casting defects in an as-cast Al-5Cu-1.5Fe-1Si alloy. 

Machine learning based image processing approach was used to recognize and 

segment the different phases in the 3D tomography image stacks. In the studied 

condition, the β-Al9Fe2Si2 and ω-Al7Cu2 are found to be the main Fe-rich intermetallic 

phases. The β-Al9Fe2Si2 phases exhibit a spatially connected 3D network structure 

and morphology which in turn control the 3D spatial distribution of the Al2Cu phases 

and the shrinkage cavities. The Al3Fe phases formed at the early stage of solidification 

affects to a large extent the structure and morphology of the subsequently formed Fe-

rich intermetallic phases. The machine learning method has been demonstrated as a 

powerful tool for processing big datasets in multidimensional imaging-based materials 

characterization work.     
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1. Introduction 

Aluminium (Al) and its alloys have been widely used in transportation, aerospace, 

construction, packaging and electrical industry due to their high strength-to-weight 

ratio, excellent corrosion resistance, good electrical conductivity and fully recyclable 

nature [1-2]. Maximising the uses of recycled Al alloys and the relevant products is the 

most economical and effective strategy in developing a sustainable and resource-

efficient operation in global Al industry for reducing CO2 emission in primary Al 

production in the future circular economy [3]. However, in the repeated Al scrap sorting, 

remelting and remanufacturing processes, detrimental impurity elements are gradually 

accumulated, resulting in degraded mechanical properties for the recycled Al alloys. 

Fe, in particular, is the most detrimental element for almost all Al alloys because it has 

a very low solid solubility (0.05 wt.%) in Al matrix at room temperature, forming different 

types of Fe-rich intermetallic compounds depending on the actual alloy compositions 

[4-5]. The most common Fe-rich phases in recycled Al alloys containing Fe and Si are 

α-Fe phase (Al8Fe2Si) and β-Fe phase (Al9Fe2Si2), called α-Fe and β-Fe hereafter. The 

β-Fe is a brittle phase with complex 3D network structures and is predominantly the 

site for initiating crack during mechanical loading [6]. Therefore, it is crucial to 

understand the nucleation and morphology evolution of the Fe-rich intermetallic 

phases and then develop cost-effectively processing strategy to either remove the 

excessive Fe from the recycled Al alloys, or to control or to alter the Fe-rich 

intermetallic phases into a less detrimental shape and morphology.  

In the past 20 years or so, synchrotron X-ray imaging and tomography techniques 

have been increasingly used to study in real-time the dynamic microstructure evolution 

of metallic alloys in the solidification processes [7-13], for example, the growth 

dynamics and fragmentation of dendrites [8] and intermetallic phases [9-10] during 
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ultrasound melt processing, which provides direct evidence and enormous real-time 

datasets for understanding precisely the phase formation and 3D structure evolution 

in the dynamic solidification processes, for example, the complex 3D structure of Fe-

rich intermetallic phases [11-12] and metal carbides in Ni superalloy [13]. However, 

due to the enormous amount of data obtained in a typical X-ray high speed imaging 

and/or tomography experiment (a few to a few tens of TB data is common in a single 

experiment), it is a challenging task to achieve high fidelity data segmentation and 

accurate quantitative analysis in an efficient and effective way. The reason is that the 

solidification microstructures often consist of multiple phases with different X-ray 

contrasts entangled and convoluted in 3D space. There is no single imaging 

processing strategy that works well for all phases. Phase recognition, identification 

and segmentation are often carried out semi-automatically or sometimes manually by 

experienced materials scientists, which is laborious, time-consuming and sometimes 

inaccurate. 

Machine learning methodologies and efficient data analysis algorithms have been 

increasingly adopted for analyzing and processing big-data, especially in the fields of 

image recognition, process optimization, component dimensional accuracy analysis, 

manufacturing defect identification and material property prediction [14-17]. For 

example, the machine learning approaches applied to image segmentation, feature 

extraction, and classification of the CT scanned images from a human being have 

greatly aided the diagnosis of illness [18]. However, applying machine learning 

methods in processing synchrotron X-ray 3D tomographic datasets of solidified 

microstructures is still a challenging task because (1) for most industrial alloys, the 

solidification phases have complex structures entangled and convoluted in 3D space; 

(2) the X-ray contrasts between different phases due to absorption (although maybe 
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enhanced by phase contrast effects) are not higher enough for a straightforward 

identification and segmentation.  

In this study, we used a machine learning based image processing plugin in Fiji 

software (Trainable Weka Segmentation [19]) to analyze the synchrotron X-ray 

tomography datasets of a recycled Al-5Cu-1.5Fe-1Si alloy and quantify the different 

phases in 3D space. The research indicates that machine learning based approach 

can significantly improve the quality of the phase segmentation and identification as 

well as the true 3D morphologies of the phases. This work illustrates an exemplary 

case of using the advanced scientific tools and methodology, i. e. synchrotron X-ray 

tomography, supercomputing plus machine leaning to quantify accurately and 

efficiently the complex 3D phases in recycled Al alloys which is essential for further 

implementing optimal phase control strategy in the solidification processes.  

 

2. Experimental methods 

The alloy used was Al-5Cu-1.5Fe-1Si (weight percentage) and 300 g of such alloy 

was made by melting pure Al (99.99%), pure Cu (99.99%), pure Fe (99.99%) and high-

purity Al-20%Si alloy ingots together. Firstly, pure Al and Al-20%Si alloy ingots were 

melted at 800 °C in a boron nitride coated alumina crucible inside an electrical 

resistance furnace. Then, small pieces of pure Fe and pure Cu bars were added into 

the melt and held at 800 °C for 2 hours to melt the Fe and Cu completely. Frequent 

stirring of the melt was carried out during the melting to avoid the sediment of the Fe 

and Cu elements. A bespoke counter-gravity casting apparatus [20] was used to draw 

the molten alloy to flow uphill into a 10 mm diameter and 80 mm long quartz tube and 

solidified there to form the as-cast rods. The rods were then removed from the quartz 

tubes and machined into 2 mm diameter rods for tomography scans. 
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Phases of the as-cast Al-5Cu-1.5Fe-1Si alloy samples were analyzed by X-ray 

diffraction (XRD, Rigaku UItima IV), scanning electron microscope (SEM, Phenom XL) 

equipped with an X-ray energy dispersive spectroscopy (EDS).  

The synchrotron X-ray tomography experiments were carried out at the ID19 

beamline of the European Synchrotron Radiation Facility (ESRF) using the same 

setup and parameters as detailed in Table 1 of [21]. Pink X-ray beam of 26 KeV and 

a PCO. DIMAX camera were used to record the X-ray projections while the samples 

were rotated over 180 degrees. 1000 projections were acquired in each rotation with 

2 ms exposure time for each projection. A 10× optical lens was used to magnify the 

projections, achieved an effective pixel size of 1.1 μm/pixel in a field of view (FOV) of 

1008×1008 pixels. 3D tomographic reconstruction was made using the ESRF 

reconstruction algorithm with phase retrieval functionality [22].  

The open-source Fiji software was used to filter the reconstructed tomography 

image stacks (including denoise, gray balance, normalization, etc.). The machine 

learning based image processing tool is the Trainable Weka Segmentation plugin 

installed in Fiji software [19]. It can enhance solidification phase recognition and 

segmentation for each individual 2D slice of the tomography image stack. Then, the 

segmented image stacks were loaded into the Avizo 9.4 software (FEI, France) for 

further visualization and analysis. For each phase, the 3D equivalent diameter and the 

3D thickness were used to quantify the morphology characteristics of each phase. The 

3D equivalent diameter is defined as D = 2 ∗ (
3𝑉

4𝜋
)
1

3, where V is the volume of a single-

phase or a cluster. 3D thickness is defined as the largest segment that touches the 

object by its end points and lying in a plane orthogonal to the maximum 3D Feret 

diameter and orthogonal to the breadth 3D diameter. 3D Feret diameter is the width 
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distribution of a 3D object in different directions. Breadth 3D is defined as the largest 

distance between two parallel lines touching the object without intersection it and lying 

in a plane orthogonal to the maximum 3D Feret diameter [See Avizo user’s guide]. 

 

3. Results 

3.1 Phase identification and 2D cross-sectional morphology 

Figure 1 shows the X-ray diffraction spectra of the as-cast Al-5Cu-1.5Fe-1Si alloy 

and the equilibrium solidification phase diagram of an alloy with similar compositions 

[23]. The XRD (Figure 1a) shows that, in addition to the Al matrix, the alloy contains 

eutectic Al2Cu, peritectic β-Al9Fe2Si2 and ω-Al7Cu2Fe phases (called ω-Fe hereafter). 

Compared to the equilibrium phases illustrated in the phase diagram (Figure 1b), the 

metastable ω-Al7Cu2Fe appeared in the as-cast samples, not the equilibrium α-Fe 

(Al8Fe2Si). This is because the faster cooling of the sample during the casting process 

suppressed the peritectic transformation, i. e. L + Al7Cu2Fe → (Al) + Al8Fe2Si + Al2Cu.  

 

Fig. 1 (a) XRD pattern of the as-cast Al-5Cu-1.5Fe-1Si alloy; (b) vertical section 

of the quaternary alloy phase diagram for Al-2Fe-1Si→Cu [17] 
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Fig. 2 Typical SEM image for the as-cast Al-5Cu-1.5Fe-1Si alloy and the 

corresponding EDS spectrum for the different phases; (a) A typical SEM image; (b) 

EDS of the Al2Cu phase; (c) EDS of the Al9Fe2Si2(Cu) phase; (d) EDS of the 

Al9Fe2Si2(Cu) phase and (e) EDS of the Al7Cu2Fe phase 

 

Figure 2 shows the typical SEM image of the Al-5Cu-1.5Fe-1Si alloy and the 

corresponding EDS spectrum for each individual phase. The Al matrix, eutectic Al2Cu, 

peritectic β-Al9Fe2Si2 phase and the black pores are clearly identified. The pores in 

the as-cast condition are gas pores and shrinkage cavities. The gas pores exhibit 

smooth and round interface (Figure 2a) while shrinkage cavities have irregular outlines 

in the vicinity of the Fe-rich intermetallics (Figure 2a). In the current Al-5Cu-1.5Fe-1Si 

alloy, the β-Fe phases form at the early stage of solidification and develop into a 
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complex 3D network structure [12]. They constrain the infiltration of the residual liquid 

at the later stage of solidification, resulting in insufficient feeding and therefore cause 

shrinkage cavities.  

Al2Cu phases are white-bright phases in the SEM image (Figure 2a). EDS reveals 

that their compositions are close to the stoichiometry of θ-Al2Cu phase (Figure 2b). 

The β-Fe however exhibits different morphologies, either as polygonal blocks (Figure 

2c) or Chinese script (Figure 2d). EDS shows that the β-Fe contains ~4.5%at Cu. In 

addition, some rod-like phases appeared at the periphery of β-Fe have contrast 

different to that of the β-Fe (Figure 2e), and they were identified as ω-Fe by the EDS 

analysis. 

 

3.2 Phase identification by machine learning 

Figure 3 shows the image processing procedure for the tomography slices. Figure 

3a is a typical slice extracted from the reconstructed tomography image stack. Figure 

3b shows the selected region of interest (ROI). After denoise filtering and contrast 

adjustment, the background noise was much reduced and the real structure features 

in the image became much clearer (Figure 3c), greatly facilitating the subsequent 

image segmentation process.  

The ω-Fe phases are located at the periphery of β-Fe and their contrasts are quite 

similar and it is difficult for this machine learning approach to distinguish the interface 

between β-Fe and ω-Fe. Therefore, both β-Fe and ω-Fe are recognized as the Fe-

rich phases during image processing. In the Trainable Weka Segmentation plugin of 

Fiji software, four classes of structural features, i. e. Al matrix, Fe-rich phase, Al2Cu 

phase and pores were defined. Training features including Gaussian blur, hessian, 

membrane projections, Sobel filter, and difference of Gaussians were firstly selected 
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to separate the different classes by a FastRandomForest classifier. The trained 

classifier was then saved and applied to the whole 3D tomography image stack. The 

probability of pixels belonging to one specific class was mapped and the mapped 3D 

image stack was further segmented and refined by manually removing some noise 

signals in Avizo software. Figure 3d shows the typical segmented results. The 

segmentation by the machine learning based approach can achieve ~95% accuracy 

in terms of phase identification. Moreover, using machine learning approach, the time 

needed for processing one typical 3D image stack was reduced from 8 hours to 1 hour 

when compared to only use of the interactive thresholding in Avizo software.  

 

Fig. 4. A typical slice from the synchrotron X-ray tomography image stack of the 

as-cast Al-5Cu-1.5Fe-1Si alloy and the image processing procedure. (a) A typical 2D 

slice; (b) the selected region of interest (ROI); (c) the filtered and normalized image 

and (d) the segmented image by applying the machine learning based approach. 

 

After segmentation, the volume fractions of each phase were calculated, and 

the results are shown in Table 1. The volume fraction of Al2Cu phases in the sample 

is 9.3%, while the Fe-rich phases 7.9% and the pores 0.2%. Compared with the area 

percentages of each phase obtained from the SEM image (Figure 2a), the proportions 

of the Fe-rich phase and Al2Cu phase are much higher, which is attributed to the facts 
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that the 2D section from SEM images do not reflect the real characteristics of the 3D 

structures. 

 

Table 1 The fractions of various phases in the as-cast Al-5Cu-1.5Fe-1Si alloy 

categories Volume fraction/% Area fraction/% 

Fe Phase 7.9 3.8 

Al2Cu Phase 9.3 2.0 

Al Matrix 82.6 93.9 

Pores 0.2 0.3 

 

3.3 3D structure and morphology of the phases and statistical analyses  

3.3.1 The Fe-rich phases 

Figure 4 shows the Fe-rich phases (green) and Al2Cu phases (red) in a selected 

volume of 55 x 55 x 55 μm3. It can be seen that the majority of the Fe-rich phases and 

Al2Cu phases are separated by the Al matrix. However, some of them do cross over 

and are entangled together in 3D space. Figure 5 shows the typical 3D morphologies 

of the Fe-rich phases. Figures 5a and 5b correspond to the small polygonal blocks 

showed in the SEM images. They are the platelet-shaped particles in 3D space. 

Figures 5c and 5d are the real 3D morphologies of the complex Chinese script in the 

SEM image. They are spatially connected network structures. Cai et al. studied the 

evolution of Fe-rich phase in Al-5.5Si-3.4Cu-0.87Fe-0.27Mg alloy by in situ 4D 

synchrotron X-ray tomography and found that the initially grown Fe-rich phase is 

lamellar and finally developed into a 3D network structure with lamellar dendrite arms 

[12]. Zhao et al. found that the Fe-phase in the solidified Al-5Cu-0.6Mn-Fe alloy 

demonstrates a lamellar-like 3D network structure [11]. Both morphologies are in 

consistency with the Fe-rich phase 3D morphology presented in this paper, suggesting 
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that the final solidified morphology of the Fe-rich phase are mainly affected by the 

morphology of the initially formed Al-Fe phases. 

 

Fig. 4 The Fe-rich phases and Al2Cu phases in the selected 3D volume 

 

Statistical analysis of the Fe-rich phases in Figure 4 indicates that the average 3D 

thickness of the Fe-rich phase is 6.0 μm. The minimum 3D thickness is 1.8 μm and 

the maximum one is 31.9 μm. The larger 3D thickness is due to the Fe-rich phase on 

the edge of the dendrite arms where sufficient peritectic reactions occur. Figure 5e 

shows the distribution of the 3D equivalent diameter of the Fe-rich phase for the whole 

tomography volume. The majority of the distribution is in the range of 5⁓8 μm. Larger 

3D equivalent diameter means more complex spatially connected network structures. 
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Fig. 5 The typical 3D morphologies of Fe-phase, (a) and (b) show the polygon 

morphology; (c) and (d) show the complex Chinese script morphology;(e) distribution 

of the 3D equivalent diameter of the Fe-phase 

 

3.3.2 The Al2Cu phases 

Figure 6a and 6b shows that the 3D morphologies of the eutectic Al2Cu phases. 

Most Al2Cu phases are lathy-like particles and separated by the Al matrix. Figure 6c 

and 6d shows their 3D equivalent diameter and 3D thickness distribution. The 3D 

thickness is mainly in the range of 2⁓5 μm with an average 3D thickness of 3.5 μm. 

The 3D equivalent diameter is in the range of 5 ~ 10 μm with an average 3D equivalent 

diameter of 6.6 μm. 
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Fig. 6 (a) and (b) 3D morphologies of the eutectic Al2Cu phases; (c) distribution of 

the equivalent diameter and (d) 3D thickness for the eutectic Al2Cu phases 

 

3.3.3 The pores and shrinkage cavities 

Figure 7 shows 3D distribution of the pores in the whole sample and Figure 8a 

and 8b illustrates the 3D morphology of the gas pores and shrinkage cavities. The 

volume and roundness of the gas pore are calculated as 208 μm3 and 0.526, 

respectively. In contrast, shrinkage cavities are closely linked to the formation of the 

Fe-rich phases at the early stage of solidification. The Fe-rich phases (including Al-Fe, 

Al-Fe-Si and Al-Fe-Cu phase) form before the eutectic reaction, growing into spatially 

connected 3D network which constrained the residual liquid feeding into the growing 

shrinkage and therefore created the cavities. The pores and shrinkage cavities are the 

origin of crack initiation and propagation [24]. Controlling and minimising the pores 

formed during solidification are extremely important to the quality of the cast alloys 

and components.  
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Fig. 7 3D distribution of the pores inside the sample 

 

 

Fig. 8 3D morphologies of the pores: (a) gas pore; (b) shrinkage cavity and (c) 

distribution of the 3D equivalent diameter of the pores inside the sample and the 

fitted curve using a lognormal distribution function 
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Figure 8c shows that the distribution of the 3D equivalent diameter of the 

shrinkage cavities. The distribution follows the three-parameter lognormal probability 

function [25]: 

y =
1

(x − τ)σ√2π
exp[

−(ln(x − τ) − μ)2

2σ2
] 

where τ is the threshold value [26], μ is the scale parameter; σ is the shape 

parameter; R2 is the correlation fitting parameter. The calculated values of those 

parameters are showed in Figure 8c. The calculated threshold of 2.85 μm means that 

the shrinkage cavities have 3D equivalent diameter larger than 2.85 μm while R2 = 

0.9959 indicates that the lognormal distribution describes the shrinkage distribution 

very well. 

 

4. Discussions 

Most Fe-rich phases in the Al-5Cu-1.5Fe-1Si alloy exhibit complex 3D spatially 

connected network structure and morphologies. Similar structures were found and 

reported in the Al-Fe-Si alloys containing Mn [21], Mg [12] and Cu [23] elements. This 

indicates that the initial Al-Fe phase morphologies formed at higher temperature has 

significant impact on the morphology of later developed Fe-rich phases. 

According to the phase diagram in Figure 1b, the Al-Fe phase is initially formed at 

635  and grows rapidly into the liquid phase to form the skeleton network of the Al-Fe 

phase as the solidification starts. Al-Fe phases can form complex crystal structure 

depending on the stoichiometric ratios of Al versus Fe as well as the solidification 

conditions. Al3Fe or Al13Fe4 are the common equilibrium phases in the Al-Fe binary 

system, which has a larger unit cell parameter (C2/m space group). In the Al-Fe-Si 

system, Al3Fe is easy to form when the cooling rate is low, and the Fe/Si ratio is high 
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[27-28]. The crystal structure of the Al3Fe phases also makes them easy to develop 

into platelet-like spatial network structures [29].  

After the formation of Al3Fe phases, primary Al dendrite begins to nucleate and 

grow as the temperature further decreases. However, based on the phase diagram 

[23], the temperature interval between the formation of Al3Fe phase and primary Al is 

small (<10 C). Al3Fe phases can also act as nucleation sites for the primary Al, leading 

to a coupled and convoluted growth morphology which is often considered as the 

eutectic reaction between the melt and the Al3Fe phases. When Si is present, Al-Fe-

Si phase forms at the Al3Fe surface through a peritectic transformation of L + Al3Fe → 

(Al) + Al8Fe2Si + A16(FeCu) [30-31]. 

As temperature further decreases (at ~610C), the peritectic reaction of L + 

A16(FeCu) →(Al) + Al8Fe2Si + Al7FeCu2 occurs. Finally, at the eutectic reaction 

temperature (~530C), the final eutectic transformation: L→Al+Al2Cu or 

L+Al7Cu2Fe→(Al) + Al8Fe2Si + Al2Cu occurs [30-31]. 

The above phase reaction analyses indicate that the formation of both Al8Fe2Si 

phase and Al7FeCu2 phases are related to the peritectic reaction between liquid melt 

and Al3Fe phase. Their spatial morphology inherited that of the primary Al3Fe phase. 

Hence, the Fe-rich phases in Al-Fe-Si alloys often exhibit platelet-like network 

structure. In contrast, most of Al2Cu phases are formed through the eutectic reaction 

in the residual liquid phase. Although the primary Al3Fe phases do not participate 

directly the eutectic reaction to produce Al2Cu phases, the spatial distribution of the 

already solidified Al3Fe phases indeed affects the spatial distribution of Al2Cu phases 

to a much extent as indicated in Figure 2 and 4. Therefore, control, alter and optimise 

the structure and morphology of the initially formed Al3Fe phases are the keys to 

control the structures and morphologies of the different types of Fe-rich intermetallic 
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phases formed subsequently. Unfortunately, the Al3Fe phases and the primary Al often 

grow simultaneously and coupled together in 3D space and therefore the effective way 

to control or alter the morphology of Fe-rich intermetallic phases is to disrupt the 

coupled growth. In this aspect, applying external fields into the solidification processes 

has demonstrated some unique advantages in breaking down the couple-growth 

morphologies [8-10, 29, 32]. 

 

5. Conclusions 

In this work, synchrotron X-ray tomography was used to characterize the 3D 

morphology of the intermetallic phases in a recycled Al-5Cu-1.5Fe-1Si alloy in as cost 

condition. The machine learning method was adopted in phase identification, 

segmentation and data processing. The main findings are: 

 

1. In the studied condition, the β-Al9Fe2Si2 and ω-Al7Cu2 are the main Fe-rich 

intermetallic phases in the Al-5Cu-1.5Fe-1Si alloy. the β-Al9Fe2Si2 phases exhibit 

a spatially connected 3D network structure and morphology which in turn control 

the 3D spatial distribution of the Al2Cu phases and the shrinkage cavities. The 

Al3Fe phases formed at the early stage of solidification affects to a large extent the 

structure and morphology of the subsequently formed Fe-rich intermetallic phases. 

 

2. The machine learning based image processing approach is an efficient and high-

fidelity phase recognition and segmentation tool for the synchrotron X-ray 

tomography datasets which are essential for processing big datasets in 

multidimensional imaging-based materials characterization work.     
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