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Summary
Dock (dedicator of cytokinesis) proteins represent a family of guanine nucleotide exchange factors (GEFs) that include the well-studied
Dock180 family and the poorly characterised zizimin family. Our current understanding of Dock180 function is that it regulates Rho

small GTPases and thus has a role in a number of cell processes, including cell migration, development and division. Here, we use a
tractable model for cell motility research, Dictyostelium discoideum, to help elucidate the role of the related zizimin proteins. We show
that gene ablation of zizA causes no change in development, whereas ablation of zizB gives rise to an aberrant developmental

morphology and a reduction in cell directionality and velocity, and altered cell shape. Fluorescently labelled ZizA protein associates
with the microtubule-organising centre (MTOC), whereas ZizB is enriched in the cortex. Overexpression of ZizB also causes an increase
in the number of filopodia and a partial inhibition of cytokinesis. Analysis of ZizB protein binding partners shows that it interacts with

Rac1a and a range of actin-associated proteins. In conclusion, our work provides insight into the molecular and cellular functions of
zizimin GEF proteins, which are shown to have a role in cell movement, filopodia formation and cytokinesis.
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Introduction
The Rho family of small GTPases (Rho, Rac and Cdc42) act as

small molecular switches during cellular signalling, where they

cycle between an active and an inactive state. These small G

proteins are involved in the regulation of many processes within

the cell, such as cytoskeletal organisation, cytokinesis, cell

morphogenesis, cell migration and development (Dumontier

et al., 2000; Jaffe and Hall, 2005; Kolsch et al., 2008; Mondal

et al., 2007; Para et al., 2009). The activity of these small GTPases

is regulated by the exchange of GDP and GTP, catalysed by

guanine nucleotide exchange factors (GEFs), GTPase-activating

proteins (GAPs) and guanine nucleotide dissociation inhibitors

(GDIs) (Jaffe and Hall, 2005). GEFs regulate GTPases by

facilitating the dissociation of GDP, allowing GTP to bind and

activate the protein. There are two main families of GEFs for Rho

GTPases, the conventional Dbl homology, pleckstrin homology

(DH-PH) domain GEFs and the dedicator of cytokinesis (Dock)

GEFs (Côté et al., 2005; Côté and Vuori, 2002; Meller et al., 2005).

The role of Dock proteins remains a high research priority, because

the Dock signalling pathway has been implicated in a number of

diseases such as lung cancer and immunodeficiency diseases

(Engelhardt et al., 2009; Ruusala and Aspenström, 2004;

Takahashi et al., 2006; Zhang et al., 2009).

Mammalian Dock proteins can be subdivided into four main
classes: Dock180-related, Dock4-related, zizimin and zizimin-
related (Côté and Vuori, 2002). The Dock proteins are composed

of two main domains, the Dock-homology region 1 (DHR1) and
the Dock-homology region 2 (DHR2) domains. The DHR1 domain
has been shown to bind phospholipids (Côté et al., 2005;

Kobayashi et al., 2001; Para et al., 2009). The DHR2 domain
interacts with the target GTPase and is responsible for the GEF
activity (Brugnera et al., 2002; Côté and Vuori, 2002; Côté and

Vuori, 2006). With regard to target specificity, the zizimin and
zizimin-related Dock family subgroups have been shown to have a
preference for Rac and Cdc42 (Meller et al., 2002).

Eight Dock proteins have been identified in D. discoideum:

four Dock180- or Dock4-related (DocA–DocD) and four zizimin
or zizimin-related (ZizA–ZizD) proteins. The D. discoideum

Dock180-related proteins, DocA and DocD regulate the actin

cytoskeleton and cell motility (Para et al., 2009). In our study,
we explore the role of the highest expressing D. discoideum

zizimins, ZizA and ZizB and show both novel and conserved
functions of these members of the ancient zizimin protein family.

Results
Evolutionary conservation, domain characterisation and
expression analysis of zizimin proteins

Eight Dock family proteins were identified within the D.

discoideum genome using homology screening. Phylogenetic
analysis of these proteins showed that they comprise four
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zizimin-related proteins (ZizA–ZizD), and four Doc proteins

(DocA–DocD) that are homologous to the Dock180-related clade

(Fig. 1A). This division into either Dock- or zizimin-type

homologues is supported by bootstrap analysis, confirming the

early separation of these proteins. The four D. discoideum

zizimin-related proteins have DHR1 and DHR2 domains and

show greatest sequence similarity to the human zizimin-related

proteins (Dock6–Dock8) (Fig. 1B), with the human Dock7 being

the closest homologue to D. discoideum ZizA (36% identity and

57% similarity), and human Dock8 being the closest homologue

to D. discoideum ZizB (28% identity and 49% similarity).

Comparison of the full-length D. discoideum ZizA and ZizB

proteins shows a 26% identity and 44% similarity (Fig. 1C),

where the DHR2 domain (the putative GTPase interacting

domain) shows highest homology, with slightly reduced

homology in the DHR1 (the putative phospholipid binding

domain) and the interdomain region, and low homology in the N-

terminal region. The domain structure of these zizimin proteins

supports a similarity of function with zizimin-related proteins,

rather than human Dock180 proteins that have an additional SH3

domain.

Because the Rho family of small GTPases are known to play a

role in development and cell motility (Zigmond et al., 1997), and

these processes are often controlled by regulated gene expression

(Loomis and Shaulsky, 2011), we examined the expression of D.

discoideum zizA–zizD over the 24 hour developmental cycle.

In these experiments, wild-type cells were developed on a

nitrocellulose filter, from which RNA samples were prepared at 4

hour time intervals (Fig. 2). Analysis of the transcription level of

zizA–zizD by reverse-transcription (RT)-PCR showed that all four

genes were expressed throughout growth and development. zizB

has the highest expression level, in agreement with the RNA

sequence profiling resource (http://dictyexpress.biolab.si/), where

mRNA levels are shown to peak at an average of 30 copies per

cell during development, which puts it within the top 5% of the

most highly expressed genes (Parikh et al., 2010; Rot et al.,

2009). Because the D. discoideum ZizA and ZizB proteins

grouped within the zizimin or zizimin-related clade of the

phylogenetic tree have greatest homology to human Dock7 and

Dock8 (which share a similar domain structure) and have the

highest expression levels of the four D. discoideum zizimins,

these two were chosen for further investigation. The zizA and zizB

Fig. 1. Phylogenetic and domain

structure analysis of the Dock family

of proteins. (A) Phylogenetic tree

comparing the evolutionary

conservation of the D. discoideum Dock

proteins against Dock proteins from

other species. All analysis was

performed using Mega5 software. The

evolutionary distance was inferred using

the neighbour joining method. The

percentages of replicate trees in which

the associated taxa clustered together in

the bootstrap test (500 replicates) are

shown next to the branches. The box

illustrates the D. discoideum ZizA–

ZizD. (B) Schematic of the D.

discoideum zizimin domain structures

compared with the human zizimin-

related proteins (Dock7 and Dock8).

(C) Table of the identities and

similarities of the ZizA and ZizB DHR1

and DHR2 domains, the intervening

sequences (N-terminal intervening

sequence and the middle intervening

sequence) and the complete protein.
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genes were disrupted by homologous integration of a knockout

cassette in several independent cell lines (supplementary material

Fig. S1; zizA2 and zizB2). Gene disruptions were confirmed by

PCR analysis and subsequent loss of gene expression by RT-PCR

(supplementary material Fig. S1).

ZizB has a role in development and cell migration

During development in D. discoideum, cells release

chemoattractant cAMP, to which surrounding cells migrate,

initiating the formation of a multicellular fruiting body (Schaap

and Wang, 1986). We analysed development of cells following

both ablation and overexpression of zizA and zizB genes at

various stages throughout the developmental cycle (8, 13 and 24

hours) (Fig. 3). A highly active constitutive promoter (Actin6)

was used to express each full-length cDNA-derived open reading

frame linked to a C-terminal green fluorescent tag (to create

ZizA–GFP and ZizB–GFP expression constructs). Cells lacking

ZizA protein, or overexpressing either tagged protein in wild-

type cells (to form zizA+ and zizB+ cells) did not show altered

development, thus producing mounds at 8 hours and developing

to a first-finger stage at 13 hours, then mature fruiting bodies with

morphology similar to that of wild-type cells at 24 hours. By

contrast, cells lacking the ZizB protein were slightly delayed in

early development compared with wild-type cells (still showing

late streaming) at 8 hours, and were again delayed at first-finger

stage (13 hours) compared with wild-type cell development.

Finally, the zizB-null cells showed sparse collapsed fruiting

bodies with thickened stalks in comparison with wild-type cells

at 24 hours (Fig. 3). We confirmed this aberrant morphology was

caused by gene ablation of zizB because overexpression of ZizB–

GFP in zizB2 cells (producing zizB+/– cells) rescued aberrant

fruiting body morphology.

During the formation of fruiting bodies, the movement of

individual cells both towards the chemoattractant cAMP and

within an immature fruiting body are necessary to enable these

structures to be formed (Schaap and Wang, 1986). To identify

whether the developmental defect exhibited by the zizB2 cells

was due to a cell motility defect, we investigated the ability of the

zizB2 and zizB+ cells to chemotax along a cAMP gradient

(Fig. 4). In these experiments, we forced cells to a common

developmental point by pulsing with cAMP for 5 hours before

chemotaxis analysis. These cells were analysed using time-lapse

imaging to record the tracks of single cells during chemotaxis in a

shallow cAMP gradient (Dunn chamber). Analysis of migration

Fig. 2. D. discoideum zizimin gene expression throughout development.

RNA samples were prepared from D. discoideum cells during growth

(0 hours) or at 4 hour intervals during development, with derived cDNA used

to amplify specific zizimin genes. Lane L contains the 1 kb ladder used as a

molecular size marker. (A) Agarose gel electrophoresis of zizA–zizD cDNA-

derived PCR products throughout D. discoideum development. Ig7 was used

as an expression control. (B) Quantification of the expression levels of zizA–

zizD from three independent samples.

Fig. 3. Development of ZizA- and ZizB-null and overexpressor cells.

Wild-type (Ax2), zizA2, zizA+, zizB2 and zizB+ cells were developed on

nitrocellulose filters over 24 hours. Fruiting body morphology was recorded at

8, 13 and 24 hours from a side angle perspective. The zizA2, zizA+ and zizB+

cells all developed into mature fruiting bodies, comprising a stalk elevating a

spore head off the substratum and did not show any defects in early

development compared with wild-type cells. However, the zizB2 mutant

developed aberrant fruiting bodies with thickened, often horizontal stalks and

showed a delay in development. Scale bars: 1 mm.
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towards cAMP was used as a measure of cell directionality,

illustrated by the X–Y coordinate plots (Fig. 4A). Each line

represents the track of a single cell over a 5 minute period. In this

assay, the zizB2 mutant showed a strong reduction in the ability

to move along the chemotactic gradient (supplementary material

Movies 1, 2), in addition to a significant reduction in cell velocity

(P,0.05; Fig. 4A,B,E). By contrast, ZizB–GFP overexpression

in a wild-type background did not grossly alter cellular

movement during chemotaxis compared with wild-type cells

(Fig. 4C,E), but reversed the chemotactic deficits shown

following loss of ZizB (Fig. 4A,D,E). In addition, analysis of

cell shape (aspect) from wild-type, zizB2, zizB+ and zizB2/+ cells

showed that the zizB2 mutant had a more rounded cell shape

during chemotaxis (represented by a reduced ratio of cell length

to breadth) (Fig. 4B–E). This phenotype was reversed upon

overexpression of zizB. These results confirm a role of ZizB in

development and chemotaxis in D. discoideum, and show that

ZizB–GFP can catalyse the cellular events carried out by the

endogenous ZizB in D. discoideum.

Overexpression of ZizB produces increased filopodia and

a cytokinesis defect

Cellular localisation of both zizimin proteins was then examined

using GFP-tagged proteins by live-cell imaging. ZizA–GFP was

distributed throughout the cytosol (Fig. 5A), with enrichment in a

structure resembling the microtubule organising centre (MTOC,

white arrow) adjacent to the nucleus (supplementary material

Movie 5). This localisation of ZizA at the MTOC was confirmed

Fig. 4. Chemotactic effects of ZizB-null and overexpressor cell lines

where cells overexpress ZizB–GFP. Cell movement for wild-type, zizA2

and zizB2 mutants was recorded by time lapse photography over a 5 minute

period (at 6 second intervals) in a Dunn Chamber. Computer-generated cell

outlines using Image Pro6.3 software enabled recording of individual cell

movement over this period, illustrated here by X-Y coordinate plots. (A) X-Y

coordinate plots (directionality) of the zizB2, zizB+ and zizB2/+ cells

compared with wild-type Ax2 cells. Each line represents the track of a single

cell chemotaxing towards cAMP (5 mM). (B–D) Analysis of the velocity (mm/

s) and aspect (roundness) of the zizB2, zizB+ and zizB2/+ cells (grey),

respectively, compared with wild-type Ax2 cells (black). (E) Quantitative

analysis of cell migration. Aspect refers to the shape of the cell; a perfectly

round cell will have an aspect of 1, whereas a more elongated polarized cell

will have a number greater than 1. Statistical analysis was performed using a

Student’s t-test. All experiments were performed at least in triplicate with an

average of 20–30 cells analysed per experiment. *P,0.05.

Fig. 5. Cellular localisation and filopodia induction of ZizA–GFP and

ZizB–GFP proteins. (A) Live-cell fluorescent imaging of zizA+ cells

showing ZizA-GFP localisation to the cytosol and a small region associated

with the nucleus (indicated by the white arrows), and zizB+ cells showing

ZizB–GFP localisation to the cytosol with enrichment at the cortex. The zizB+

cells also show an increase in filopodia formation, indicated by the grey

arrows. (B) Live-cell fluorescent imaging of ZizA–RFP colocalised with a-

tubulin–GFP at the MTOC in a mononucleated and dinucleated cell. (C) DIC

images illustrate filopodia in wild-type, zizA+ and zizB+ cells.

(D) Quantification of filopodia/cell for wild-type, zizA+ and zizB+ cells, time

lapse images were analysed (averaging 27 cells) and compared using an

unpaired, two-tailed Student’s t-test (***P,0.0001). (E) Time-lapse images

of zizA+ and zizB+ cells following global stimulation with 1 mM cAMP, with

time points indicating seconds after cAMP addition. (F) Quantification of

relative fluorescent levels within the cytosol in zizA+ and zizB+ cells. Scale

bars: 10 mm.
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by expression of ZizA–RFP in cells containing a-tubulin–GFP,

where live-cell fluorescence showed colocalisation (Fig. 5B). By
contrast, ZizB–GFP was enriched at the cortex (Fig. 5A). The
zizB+ cells also showed a significant twofold increase in filopodia

formation compared with wild-type and zizA+ cells (P,0.0001)
(Fig. 5A,C,D). The D. discoideum Dock180-related Dock A and
Dock D proteins have been previously shown to rapidly
translocate to the cell cortex upon global stimulation with

cAMP (Para et al., 2009). We investigated whether the D.

discoideum zizimin proteins are also involved in the chemotactic
signalling response. Time-lapse images of cells following a

single 1 mM cAMP pulse show no change in ZizA–GFP
localisation (Fig. 5E,F). Unexpectedly, ZizB–GFP had a
different localisation pattern to the D. discoideum Dock

proteins. Stimulation with cAMP led to its transient removal
from the cortex to the cytosol, and then it was returned to the
cortex 8 seconds after stimulation (Fig. 5E,F).

We next used live-cell imaging to investigate the localisation

of both proteins during cell motility, within a cAMP gradient and
during random cell movement. In these experiments, ZizA–GFP
showed no change in localisation during either chemotaxis or

random movement (supplementary material Movies 3, 5).
However, ZizB–GFP was excluded from the trailing edge in
both conditions, and appeared enriched in the cortex at the front

and sides of the cell (Fig. 6A–C; supplementary material Movies
4, 6). These data support a role for ZizB in general cell motility
(rather than chemotaxis) with a potential cortical function.

Because Dock proteins have been widely associated with a role

in cytokinesis, we also examined this process in zizA2, zizB2,
zizA+ and zizB+ cells by extended (5 day) growth in shaking
suspension. These growth conditions eliminated traction-

mediated cytokinesis, giving rise to an increase in average cell
nuclei number associated with cytokinesis effects. Under these
conditions, zizB+ cells were commonly unable to complete cell
division where the cytoplasmic bridge between dividing cells was

not cleaved during cytokinesis to form daughter cells (Fig. 7A,B)
unlike wild-type, zizA2, zizB2 or zizA+ cells. Visualisation of
nuclei number per cell using DAPI staining (Fig. 7C–H) showed

a significant (P.0.05) increase in the number of nuclei in zizB+

cells compared with wild-type and zizA+ cells (Fig. 7I). This
increase was associated with an increase in cell size, and both

these effects are consistent with a partial inhibition of cytokinesis
in zizB+ cells. A decrease in growth rate was only seen in zizB2

cells; however, overexpression of ZizB protein resulted in a

highly significant decrease in cell density in the stationary phase
(P,0.0001).

ZizB interacts with Rac1a

To further examine the cellular mechanisms of ZizB, we then

sought to identify potential binding partners. In this approach,
lysates from zizB+ cells were immunoprecipitated with anti-GFP-
antibody-coated beads, and coimmunoprecipitated proteins were

visualised by Coomassie Blue staining to identify interacting
proteins. Mass spectrometry analysis of unique bands was then
used to identify these interacting proteins (Fig. 8; supplementary

material Table S1). This approach showed that ZizB bound a
range of actin- and/or myosin-associated proteins, including
the tubulins TubA and TubB (Triviños-Lagos et al., 1993)

(supplementary material Table S1), which is consistent with a
role in controlling cortical function and cell movement (Rivero
and Somesh, 2002). In addition, ZizB interacted with Rac1a, a

small GTPase, formin A, a protein that functions as an actin

filament nucleator (Kitayama and Uyeda, 2003), Cap32 and

Cap34, which are capping protein subunits (Schleicher et al.,

1984; Eddy et al., 1997; Hug et al., 1995) and the ArpC1 and

ArpC2 proteins (encoded by arcA and arcB) which form part of

the Arp2/3 complex (Langridge and Kay, 2007). These potential

binding partners position ZizB in a central role in actin

cytoskeletal organisation. To confirm the ZizB interaction with

Rac1a, ZizB–GFP protein was washed through a column

containing bound (bacterially produced) Rac GST proteins.

The protein complex was separated on a SDS-PAGE gel and

visualised by western blot analysis (supplementary material Fig.

S2). This approach confirmed a direct binding of ZizB to Rac1a,

and also showed an interaction with RacA, RacC and RacG.

Discussion
ZizB is essential for normal development and cell migration

D. discoideum contains four zizimin GEF proteins, with all four

containing the characteristic DHR1 and DHR2 catalytic domains

associated with the Dock family of proteins (Fig. 1). Expression

Fig. 6. Localisation of ZizB–GFP protein during chemotaxis and random

cell motility. (A) zizB+ cells were used in live-cell time-lapse imaging

experiments during chemotaxis towards cAMP (time indicated in seconds and

the large arrow represents the direction of the cAMP gradient) and (B) during

random cell motility (arrows indicate the front of the moving cell). ZizB–GFP

increased cortical association towards the front and sides of the cell with a

reduction in cortical localisation at the trailing end. (C) The absence of ZizB–

GFP in the trailing end is confirmed in 3D reconstruction of zizB+ cells during

random cell motility where retracting pseudopods (grey arrow) lack ZizB–

GFP cortical localisation. Scale bars: 10 mm.
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of all four genes was found to be constitutive throughout

development (Fig. 2), rather than showing developmental

regulation as seen in other D. discoideum GEF proteins such as

the putative Rac GEF GxcDD (Mondal et al., 2007; Shaulsky

et al., 1996) or Trix (Strehle et al., 2006). The expression patterns

of the zizimin genes therefore suggest that their cellular roles are

probably related to a potential role in cytoskeletal regulation

during movement (rather than just development).

The analysis of the role of ZizA and ZizB proteins in

development showed that cells lacking ZizA had no gross change

in developmental phenotype (i.e. in fruiting body formation);

however, loss of ZizB gave rise to aberrant fruiting body

formation (Fig. 3). The lack of developmental changes following

ZizA loss does not preclude an important role for the protein in

development because the cellular roles for the protein might be,

at least partially, compensated for by the other zizimin proteins.

This functional redundancy has been shown in other small

GTPase-related signalling families of D. discoideum Doc

proteins (Para et al., 2009), RacB and Rac GEF1 (Park et al.,

2004) and Trix Rac GEF (Strehle et al., 2006). However, ablation

of ZizB did perturb development, suggesting a crucial role that

cannot be replaced by related proteins, or that the relatively low

expression levels of ZizA, ZizC and ZizD cannot effectively

complement loss of ZizB.

ZizB is involved in filopodia formation and cytokinesis

Overexpression of ZizB–GFP identified a second role for the

protein in controlling filopodia formation (Fig. 5). Increased

filopodia formation (and microspike production) compared with

the wild-type has also been shown following zizimin1 (p220)

overexpression in fibroblasts, and this protein was shown to bind

to the activated Rac enzyme Cdc42 (Lin et al., 2006).

Furthermore, an increase in the number of filopodia has been

shown following the overexpression of DocD in D. discoideum,

which also binds Rac1a (Para et al., 2009). We showed a third

role for ZizB, where overexpression caused a large increase in

cells unable to complete daughter cell separation as demonstrated

by measuring the frequency of multinucleate cell formation

following growth in shaking suspension in the absence of

Fig. 7. ZizB overexpression mutants have a defect in cytokinesis.

(A,B) Live-cell images of zizB+ cells illustrating a cytokinesis defect where

(A) cells have failed to break the cytoplasmic bridge during repeated cell

divisions or (B) the cleavage furrow begins to develop filopodia. Cells were

cultivated in nutrient media for 5 days in shaking suspension before being

fixed and stained with DAPI to investigate whether they were multinucleate.

(C,E,G) DAPI-stained wild-type Ax2, zizA+ and zizB+ cells, respectively,

where zizB+ shows an increase in the number of multinucleate cells, indicated

by the arrows (G). (D,F,H) Corresponding cells under 543 nm emission

(GFP). (I) Histograms show the distribution of nuclei in wild-type Ax2, zizA+

and zizB+ cells. There was a significant increase in the number of nuclei in the

zizB+ mutant. *P,0.05. Scale bars: 10 mm.

Fig. 8. Immunoprecipitation of ZizB-interacting proteins. (A) Extracts

from wild-type (cont) or zizB+ cells (containing ZizB–GFP) were used to

identify specific binding partners. The purified complex was separated on a

SDS gel and visualised with Coomassie Blue stain. Binding partners for ZizB

(not found in extracts purified from wild-type cells) were ForA, TubA and

TubB, ArpC1 and ArpC2, AcpA and AcpB and Rac1a. A complete list of

binding partners is shown in supplementary material Table S1.
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traction-mediated cell division (Fig. 7). Interestingly, a similar

cytokinesis defect was found in the dynamin-A-null strain
(Gopaldass et al., 2012; Wienke et al., 1999). This phenotype
also suggests a role for ZizB in regulation of the actin-myosin

cytoskeleton involved in cell division (Rivero et al., 2002; Rivero
and Somesh, 2002). It is noteworthy that similar phenotypes
(increased number of filopodia and cytokinesis defects) can be
elicited by the overexpression of Racla (Dumontier et al., 2000).

Combined with the fact that Rac1a was identified as a potential
binding partner for ZizB, our data strongly suggest that ZizB
plays a role in activating Rac1a in filopodia formation,

cytokinesis and chemotaxis (Rivero et al., 2002).

Zizimin localisation

Our current model for the function of Rac GEF proteins during

chemotaxis is that, upon cAMP stimulation, these proteins are
rapidly translocated to the cortex (or leading edge in chemotaxing
cells) to initiate F-actin polymerisation through the regulation of

Rac GTPases, enabling forward movement (Para et al., 2009). In
contrast to this model, our data show that ZizB moves off the
cortex into the cytosol following global cAMP stimulation, thus
showing the opposite behaviour of previously described Rac GEF

proteins such as DRG (Knetsch et al., 2001), DocD (Para et al.,
2009) and Rac GEF1 (Park et al., 2004). One explanation for this
movement would be a cortex-stabilising mechanism for ZizB,

between cyclic periods of reorganisation caused by cAMP waves
during chemotaxis. This is consistent with ZizB localisation at
the front and side of the cell, with exclusion from the trailing

edge or retracting pseudopods, during both random cell
movement and in chemotaxis (Fig. 6). This localisation is
distinct to proteins involved in initiating cell movement that

are enriched at the leading edge (regulating and driving F-actin
polymerisation) (Han et al., 2006). Cortical localisation might
occur through DHR1 (phospholipid binding) activity, but
domain-specific localisation studies are needed to confirm this.

Zizimin B forms complexes with Rac1a and actin-binding
proteins

The binding partners for the D. discoideum zizimin proteins were

previously unknown. In other model systems, the zizimin family
of proteins is known to regulate the Rho family of small
GTPases, which have a number of roles within the cell, including

regulating the actin cytoskeleton during cell movement and other
processes (Dumontier et al., 2000; Para et al., 2009; Rivero and
Somesh, 2002). In relation to cell movement, dynamic regulation

of F-actin polymerisation at the leading edge of the cell enables
cytoskeleton reorganization, pseudopod formation and cell
movement. Small GTPases play a key role in this process
(Sasaki and Firtel, 2006). Here we demonstrate using

coimmunoprecipitation that ZizB binds Rac1a, in addition to a
number of actin- and myosin-associated proteins, within the
natural environment of the cell. We further showed a direct

binding of ZizB to Rac1a by binding of the bacterially expressed
Rac1a protein, confirming this interaction in vitro, and in
agreement with a role for ZizB in regulating the cytoskeleton

(Fig. 8; supplementary material Table S1, Fig. S2). Direct
binding has also been shown for the mammalian ZizB
homologues (Dock7 and Dock8) with Rac1. This suggests that

zizimin proteins have a crucial role in regulating Rac1 as a
central small GTPase, which have been shown to promote
filopodia and membrane ruffles in several model systems

(Ruusala and Aspenström, 2004; Watabe-Uchida et al., 2006a;

Watabe-Uchida et al., 2006b). The binding, in vitro, of other less

highly expressed Rac proteins identified here will need to be

confirmed in further studies, because the low expression levels of

these proteins might explain why only Rac1a was found in the

direct co-immunoprecipitation reaction.

ZizB interacted with ARPC1 and ARPC2, two D. discoideum

Arp2/3 subunits (Langridge and Kay, 2007). These subunits form

the core of the Arp2/3 complex, which drives pseudopod

formation and cell movement by catalysing nucleation of new

actin filaments and thus overcoming the kinetic barrier to actin

polymerisation (Insall and Machesky, 2009). The Arp2/3

complex represents one of many actin-modifying enzymes that

accumulate at the leading edge driving pseudopod formation and

cell movement (Sasaki and Firtel, 2006). Other ZizB binding

partners identified here include ForA, Cap32, Cap34 and severin.

ForA is a formin protein that functions as an actin filament

nucleator. Knockout of ForA did not show any distinct phenotype

for growth and development (Kitayama and Uyeda, 2003);

however, another D. discoideum formin ForH (dDia2), has been

implicated in filopodia formation, where the knockout mutant

showed numerous defects in development, pseudopodia

formation, filopodia formation and a decrease in cell motility

and chemotaxis (Schirenbeck et al., 2005; Van Haastert and

Bosgraaf, 2009). ForA could therefore be involved in filopodia

formation by forming a complex with Rac1a and ZizB. Cap32

and Cap34 are subunits of the heterodimeric actin capping

protein (Eddy et al., 1997). Capping proteins cap but do not sever

(or nucleate) actin filaments and thereby prevent the addition or

loss of actin subunits at the barbed filament end (Hug et al.,

1995). Severin is a protein that severs the actin filament and

remains bound to the barbed end (Eichinger et al., 1991). Both

Cap32–Cap34 and severin play key roles in the regulation of the

actin cytoskeleton, further supporting a role for ZizB in the

dynamic regulation of the actin cytoskeleton.

Zizimin-related proteins are relatively poorly characterised

members of the important Dock family of GEF proteins. In this

paper, we examined the cellular function of ZizA and ZizB

proteins in D. discoideum. We conclude that the D. discoideum

ZizB has a significant role in development, and is necessary for

normal cell movement and shape. We show that ZizB has an

elevated association with the cortex (compared with the cytosol),

and shows an unusual cortex delocalisation following global

chemotactic stimulation. Furthermore, an elevated level of ZizB

gives rise to an increase in the number of filopodia and partially

interrupts cytokinesis. Finally, in agreement with these cellular

functions (Dumontier et al., 2000), ZizB forms a complex with a

number of cell cytoskeletal proteins, including Rac1a, and this is

consistent with the role of mammalian zizimin proteins in

preferentially binding Cdc42 and Rac small GTPases (Allen et al.,

1998; Ruusala and Aspenström, 2004; Watabe-Uchida et al.,

2006c). Our data therefore illustrate an important role for zizimin

proteins in controlling development, cell shape and motility,

filopodia formation and cytokinesis.

Materials and Methods
Materials

Axenic medium was purchased from ForMedium (Hunstanton, UK). All restriction
enzymes, First Strand cDNA synthesis kit were purchased from Fermentas (St Leon-
Rot, Germany). Nonidet P-40 (NP40), Trizma hydrochloride (Tris-HCl), sodium
chloride (NaCl), ethylene glycol tetraacetic acid (EGTA), ethylenediaminetetraacetic
acid (EDTA), dithiothreitol (DTT), phenylmethanesulfonyl fluoride (PMSF),
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49,6-diamidino-2-phenylindole (DAPI), cyclic adenosine monophosphate (cAMP),
potassium phosphate monobasic (KH2PO4), potassium phosphate dibasic (K2HPO4),
methanol and caffeine were purchased from Sigma. The High Pure RNA isolation kit
and the protease cocktail inhibitor was purchased from Roche (Welwyn Garden City,
UK). Penicillin-streptomycin and blasticidin were purchased from PAA Laboratories
(Yeovil, UK) and hygromycin from Invitrogen (Paisley, UK). The DNasefree kit was
purchased from Ambion (Austin, TX). The anti-GFP antibody and the GFP trap
agarose beads were purchased from ChromoTek (Planegg-Martinsried, Germany).

Cell culture, strains and plasmids

All D. discoideum strains were grown at 22 C̊ in Axenic medium containing
100 mg/ml penicillin and 100 mg/ml streptomycin. A wild-type (Ax2) strain was
used to generate all the mutants. Knockout constructs were created using methods
as described previously (Terbach et al., 2011). Briefly, 59 and 39 fragments
flanking the gene of interest were amplified by PCR (peqSTAR 96 Universal
Gradient, Erlangen, Germany) from Ax2 genomic DNA. The 59 and 39 PCR
fragments were cloned into the pLPBLP expression vector (Faix et al., 2004) using
the BamHI-PstI and the NcoI-KpnI restriction sites, respectively, incorporating
the blasticidin resistance cassette. The knockout cassette was linearised and
transformed into Ax2 wild-type cells by electroporation (Gene Pulser Xcell, Bio-
Rad). Positive transformants were selected in nutrient medium containing
blasticidin (10 mg/ml). Independent clones were screened for homologous
integration by PCR, using a genomic and vector control, as well as a diagnostic
knockout band. Loss of gene transcription was confirmed using reverse
transcription PCR, where RNA was extracted from the independent positive
transformants using the High Pure RNA isolation kit according to the
manufacturer’s instructions. Contaminating DNA was removed using the
DNasefree kit prior to cDNA synthesis, using the First Strand cDNA synthesis
kit and 1 mg of RNA per sample. The cDNA was analysed by PCR to confirm loss
of gene transcription. Primers were designed, where possible, to flank an intron,
thus confirming cDNA amplification owing to the decrease in size of the cDNA-
derived product (in comparison to genomically derived product).

Overexpression constructs were prepared using full-length open reading frames
of zizA and zizB that were amplified from cDNA with BamHI and NheI as flanking
restriction sites. Endogenous BamHI sites were removed (silent mutations). The
PCR products were cloned into a PCR ligation vector and sequences of the inserts
were compared with the reference sequence on DictyBase. Correct clones were
digested with BamHI and NheI and ligated into the D. discoideum GFP and RFP
expression vectors pDM450 and pDM451, respectively, under the control of
Actin6 promoter (Veltman et al., 2009). Constructs were transformed into
appropriate cell lines by electroporation and selected for using hygromycin
(50 mg/ml). GFP or RFP overexpressor cell lines were confirmed by fluorescence
microscopy and western blot analysis using antibodies against GFP or RFP.

Development assays

Filter assays were performed as described previously (Boeckeler et al., 2006;
Williams et al., 2002). Briefly, cells were harvested in log-phase growth, washed in
potassium phosphate buffer, and resuspended at a density of 16107 cells/ml and
evenly distributed on a 47 mm nitrocellulose filter (Millipore, Watford, UK). The
filter was incubated for 24 hours on an absorbent pad soaked in potassium
phosphate buffer. Images were captured using a dissection microscope (MZ16
Leica Microsystems, Milton Keynes, UK) and a QImaging RetigaExi Fast1394
digital camera (QImaging, Surrey, Canada).

Cell movement and image acquisition

Chemotaxis assays were performed as described previously (Robery et al., 2011).
In brief, cells were pulsed at a density of 1.76106 cells/ml with 30 nM cAMP at 6
minute intervals for 5 hours before plating on coverslips. After cells had adhered,
the coverslip was inverted onto a Dunn chamber (Hawksley, Lancing, UK)
containing 5 mM cAMP in the outer well. The response of the cells was recorded
using time-lapse imaging and ImagePro 6.3 software (Media Cybernetics,
Bethesda, MD) (one image every 6 seconds for 5 minutes). Experiments were
repeated at least three times with an average of 20–30 cells quantified in each
experiment. Computer-assisted analysis of cell movement and cell shape was
performed using ImagePro 6.3, measuring the velocity (mm/s) and the aspect. The
aspect parameter is a measure of roundness, perfectly round cells have a value of 1,
whereas elongated cells have a value of .1. For fluorescence chemotaxis,
aggregation-competent cells expressing either ZizA–GFP or ZizB–GFP were
loaded into an Insall chemotaxis chamber (Muinonen-Martin et al., 2010). The
phosphate buffer in the outer well was replaced with 1 mM cAMP, and
chemotaxing cells were visualised on a Nikon confocal microscope as above.

For localisation, cells containing fluorescently tagged GFP fusion proteins
were cultivated in nutrient media, washed with potassium phosphate buffer and
allowed to adhere to a glass coverslip before being visualised with an Olympus
IX71 microscope (U-RFL-T laser, 543 nm emission, Olympus UPlanFL 606oil-
immersion objective with NA 1.25) with a QImaging RetigaExi Fast1394 digital
camera and ImagePro6.3 software. To investigate cytokinesis defects, cells were
cultured in a shaking suspension for 3 days and fixed with 100% methanol at

220 C̊ for 15 minutes before being fluorescently labelled with 49,6-diamidino-2-
phenylindole (DAPI) to visualise and count the number of nuclei per cell. All
specimens were analysed using an Olympus IX71 microscope (U-RFL-T laser,
350 nm and 543 nm emission, respectively, Olympus UPlanFL 606 oil

immersion objective with NA 1.25) with a QImaging RetigaExi Fast1394
digital camera. Data were processed using Adobe Photoshop or ImageJ software
packages. To analyse the number of filopodia, time lapse images were taken
every 5 seconds over a 10 minute period (Nikon Eclipse TE2000-E with a 1.4
NA Plan Apo 606 objective) using a QImaging RetigaEXi camera. To quantify
the number of filopodia for wild-type, zizA+ and zizB+ cells an average of 27
individual cells were counted for three time points (0, 5 and 10 minutes) over the

10 minute period. A filopodia is identified as a thin projection that extends from
a pseudopod. The time-lapse movies were analysed and an average number of
filopodia over the three time points was calculated for statistical analysis
(unpaired, two-tailed Student’s t-test). To show the colocalisation of the MTOC
and ZizA, ZizA–RFP-containing cells were co-expressed with a-tubulin–RFP
(King et al., 2010) and visualised using live-cell fluorescent imaging with a
Nikon A1R confocal microscope, 543 nm and 647 nm emission with a 1.4 NA

Plan Apo 606 objective using a QImaging RetigaEXi camera.

For global stimulation, aggregation-competent cells expressing either ZizA–
GFP or ZizB–GFP were loaded into a m-slide (Ibidi, Martinsried, Germany) and
allowed to adhere to the surface. Cells were perfused with 200 ml of 1 mM cAMP
and images were recorded on a Nikon A1R confocal microscope with a 1.4 NA
Plan Apo 606 objective.

In vivo pull-down and purification of ZizA- and ZizB-interacting proteins

and MS analyses

Aggregation-competent cells were washed with potassium phosphate buffer (KK2;
16.5 mM KH2PO4, 3.8 mM K2HPO4, pH 6.2), resuspended at a density of 36108

cells/ml in potassium phosphate buffer, before being shaken for 20 minutes at 250
r.p.m. with 2.5 mM caffeine. Cells were lysed (0.5% NP40, 40 mM Tris-HCl,
pH 7.5, 20 mM NaCl, 5 mM EGTA, 5 mM EDTA, 10 mM DTT, 1 mM PMSF, 26
protease cocktail inhibitor). The cell lysate was incubated with GFP-Trap agarose

beads as per the manufacturer’s instructions. Briefly, the lysate was incubated with
the GFP-Trap agarose beads at 4 C̊ for 1 hour before being collected and washed
with wash buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 1 mM
PMSF, 26 protease cocktail inhibitor). Immunocomplexes were dissociated from
the beads by incubating at 95 C̊ for 10 minutes before the beads were collected by
centrifugation. The coimmunoprecipitated proteins were separated by SDS-PAGE
(Invitrogen, Paisley, UK) and analysed by Coomassie Blue staining and mass

spectrometry (MS) analysis.

GST pull-down assays were performed as described previously (Mondal et al.,
2007). Briefly, GST-Rac proteins were expressed in E. coli and bound to
glutathione–Sepharose beads (GE Healthcare). For the interaction of ZizA and
ZizB with Rac proteins, 36108 D. discoideum cells expressing ZizB–GFP were

lysed in a lysis buffer [25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA,
0.5% Triton X-100, 1 mM NaF, 0.5 mM Na3VO4, 1 mM DTT, 1 mM PMSF, 26
protease cocktail inhibitor (Roche)] and incubated with equal amounts of GST-
Rac-bound beads for 1 hour at 4 C̊. Beads were washed with the wash buffer
[25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, 26 protease cocktail
inhibitor (Roche)]. The eluate of the pull down was immnoblotted, the zizimin
protein was detected using the GFP-specific monoclonal antibody (ChromoTek)
and the Rac proteins were identified with a GST-specific monoclonal antibody

(Millipore Calbiochem OB03). Cells expressing only GST were used as a
control. The immunoblot was visualised using the Odyssey Sa infrared imaging
system.
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Côté, J. F. and Vuori, K. (2006). In vitro guanine nucleotide exchange activity of DHR-

2/DOCKER/CZH2 domains. Methods Enzymol. 406, 41-57.
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