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Abstract
This paper proposes a novel hybrid meta-heuristic technique based on Nonsingular Terminal Sliding Mode Controller
(NTSMC), Time Delay Estimation (TDE) method, an Extended Grey Wolf Optimization (EGWO) algorithm and adaptive
super twisting control law. The fast convergence is assured by NTSMC owing to its inherent nonlinear property and
no prior knowledge of the robot dynamics is required due to TDE. The proposed EGWO algorithm determines an
optimal approximation of the inertial matrix of the robot. Moreover, adaptive super twisting control based on the Lyapunov
approach overcomes the disturbances and compensate the higher dynamics not achievable by the TDE method. Firstly,
the Fast NTSMC (F-NTSMC) relying on TDE is designed and is combined with super twisting control for chattering
attenuation. The constant gain matrix of the time delay is determined by the proposed EGWO algorithm. Secondly, an
adaptive law based on Lyapunov stability theorem is designed for improving tracking performance in the presence of
uncertainties and disturbances. The novelty of the proposed method lies in the adaptive law where the prior knowledge of
parametric uncertainties and disturbances is not needed. Moreover, the constant gain matrix of TDE method is obtained
using the proposed algorithm. The control method has been tested in simulation on a three Degrees of Freedom (DOF)
robotic manipulator in trajectory tracking mode in the presence of control disturbances and uncertainties. The results
obtained confirmed the effectiveness, robustness and the superior precision of the proposed control method compared to
the classical ones.

Introduction

The advancements in robotics and automation have reshaped
various processes in industry during last few decades [1-3].
Robotic manipulators are now an integral part of automation
where their performance is relies on the associated control
law [4]. Despite several research works reporting linear
methods [5-7] as well as non-linear approaches [8-12] to
control a robotic manipulator, it is still an open research
problem in the scientific community. It is reported that
modern control techniques based on nonlinear control laws
offer superior performance compared to linear and classical
approaches [13].

Owing to robustness against internal and external
uncertainties and modelling inaccuracies, Sliding Mode
Control (SMC) or its variants are prominent nonlinear
approaches to address the control problem of a robotic
manipulator [14,15]. Terminal SMC (TSMC) is a new control
variant that is recently widely investigated. Nonsingular
TSMC (NTSMC) is a discontinuous feedback control
which has been applied to control second or higher order
uncertain systems [16-20]. NTSMC can achieve a finite time
convergence and can precisely maintain the system dynamics
onto the selected nonlinear sliding manifold by means of a

discontinuous control law. Moreover, NTSMC offers other
distinguishing benefits compared to the conventional SMC
including but not limited to; (i) Fast and relatively simple to
implementation, (ii) Insensitivity to external disturbances and
parametric uncertainties, (iii) Improved dynamic responses,
(iv) Particularly useful for high precision control because
of speed-up rate of convergence near the equilibrium point.
However, NTSMC suffers from chattering problem [21].
The use of adaptive Higher Order SMC (HOSMC) is
an alternative approach, which is able to attenuate the
chatter phenomena while maintaining the adequate control
performance.

Another control technique based on Time Delay Estima-
tion (TDE) is considered as a simple and an effective control
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method when applied to nonlinear and complex systems.
This is a preferred technique when the system dynamics is
unknown. The basic idea of TDE is to estimate the unknown
dynamics by using time-delayed information. The applica-
tion of TDE to control a robotic maipulator is reported in
[16,22,23].

The literature reports several combinations of TDE and
NTSMC with and without adaptive HOSMC have been
proposed for controlling robotic manipulators. One such
work is reported in [17], where an experimental application
was successfully realized for a real 3-Degrees Of Freedom
(DOF) robotic manipulator. In [24] a continuous fractional-
order NTSMC scheme based on TDE is presented with
an application to a 2-DOF cable-driven manipulator. In
[25], an approach based on fast NTSMC (F-NTSMC) and
adaptive HOSMC was proposed in simulation for a 2-
DOF manipulator in the presence of parametric uncertainties
and external control disturbances. The chattering effect was
eliminated with the assumption that model of the robot is
available. Another research work relying on robot model
is reported in [18], where an adaptive dual TSMC was
proposed for controlling a rigid manipulator. Proportional
Integral Derivative (PID) sliding manifold based SMC
was considered in [26] which used function approximation
technique based on Legendre polynomial to approximate the
uncertainty factors online. An underwater manipulator was
explored in this work to validate the proposed method. In
[27], an inverse kinematics methodology based on adaptive
super-twisting controller was developed to compensate the
unknown uncertainty in the Jacobian matrix of a serial-link
manipulator. The research work reported in [28] represented
a robust hybrid fractional order proportional derivative SMC
for a 2-DOF robotic manipulator based on Extended Grey
Wolf Optimizer (EGWO).

A thorough review of literature revealed that most of the
relevant reported works suffer from one or more of the
following drawback(s):

(i) Chattering is removed by the use of saturation function.
However, use of this method limits the robustness
range to the saturation bound. Moreover the rapidity
and accuracy get depreciated.

(ii) The gain in TDE-based control methods is obtained
by trial and error approach, thus possibly limiting
the precision and robustness of the reported methods
[16]. Furthermore, TDE always involves a restricted
magnitude of gain in a robotic manipulator because the
stability criterion is closely related to the magnitude of
the TDE-based control gains.

(iii) The control is based on the model of a robot. In real-
world applications, it is not always possible to have a
realistic model of a robot.

(iv) A linear sliding manifold is used, which limits the
performance that can be achieved since all the systems
are inherently nonlinear in nature.

On the other hand, meta-heuristic optimization methods
have recently become an interesting multi-disciplinary
research area [29]. The principle of these methods is inspired
by the natural behaviour of animals [30]. One of the
recently reported meta-heuristic algorithms is GWO, which
mimics the behaviour of the leadership hierarchy and hunting
mechanism of grey wolves in nature [31]. This method is
used in the present work to optimize a constant diagonal
matrix that replaces the inertial matrix of the manipulator’s
dynamics [32].

This research aims to propose a novel control method
based on the combination of NTSMC, TDE, GWO and an
adaptive HOSMC. NTSMC is used for ensuring precision
and robustness while TDE method is utilized to estimate
unknown dynamics of the robotic manipulator. GWO
algorithm is used to estimate inertial diagonal matrix M̄
termed as a gain in the present work. This is directly related to
the magnitude of the inertial matrix of a robotic manipulator.
However, it is not straight forward to determine the inertial
matrix of a robotic manipulator and thus this problem is
closely related to the practice aspect in real systems [16].
To the best of authors’ knowledge, the matrix M̄ in all
the works reported to-date has been found by trial and
error approach, which cannot guarantee the best performance
that could be offered by these control methods. From this
perspective, the primary novelty of the present research is to
propose a method to obtain the matrix M̄ by using a meta-
heuristic technique. An adaptive super twisting control law
based on Lyapunov stability condition is also proposed to
deal with chattering phenomena. The use of TDE generates
inevitable estimation errors that can further deteriorate the
control performance, especially when the system dynamics
varies quickly. This highlights the potential and need to use
robust control methods that work with TDE to maintain
adequate performance. The application of TDE requires a
diagonal matrix that replaces the robot inertia matrix. Instead
of determining this matrix by trial and error, an optimal
matrix is found by the proposed EGWO approach. TDE
usually acts as a basic structure without involving the system
model and subsequently, a robust control law is applied to
obtain a fast-dynamic response with high precision.

The contributions of the present research can be
summarized below:

(1) A novel Extended Grey Wolf optimized Fast-NTSMC
(EGF-NTSMC) technique is proposed by introducing
a new EGWO to obtain inertial diagonal matrix M̄
which previously was obtained by trial and error
method.

(2) The newly proposed EGF-NTSMC is combined with
an adaptive law to formulate a hybrid control scheme
termed as Adaptive EGF-NTSMC (AEGF-NTSMC).

(3) The effectiveness of the proposed control schemes
is demonstrated in trajectory tracking mode using
a 3-DOF robotic manipulator (Figure 1) based on
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comparative simulation results involving parametric
uncertainties and control input disturbances.

Figure 1. 3-DOF robotic manipulator, l1, l2, l3 denote the link
lengths, m1, m2, m3 re

present the link masses, τ1, τ2, τ3 are the control signals

The remaining of the paper is organized as follows: Section
II presents the preliminary background, which includes the
robot model and short description of the techniques and
methods relevant to the present work. Section III and Section
IV detail the design of the EGF-NTSMC and AEGF-NTSMC
respectively. Simulation results are presented in Section V.
Finally, Section VI concludes the paper.

II. Preliminaries

II.1. Robotic manipulator model [17,38]
The dynamic model of a n-DOF robotic manipulator is given
as

M (q, q̇) q̈ + C (q, q̇) q̇ +G (q) + F (q) + τd = τ (1)

where M (q, q̇) ∈ Rn×n is the inertial matrix, C (q, q̇) ∈
Rn×n is the vector of Centrifugal and Coriolis forces and
F (q, q̇) ∈ Rn×1 is the friction vector. G (q) ∈ Rn×1 is the
vector of gravity terms, q ∈ Rn×1, q̇ ∈ Rn×1 and q̈ ∈ Rn×1

are position, velocity and acceleration vectors respectively.
τ ∈ Rn×1 is the torque input vector and τd ∈ Rn×1 are the
unknown bounded disturbances. The following Property is
verifiable [38] M(q)− 2C(q, q̇) sew-symmetric.

II.2. TDE
The main idea behind TDE is to estimate unknown dynamics
and disturbances by using time-delayed information [12,17].
Re-writing the model (1) as

M̄u+N (q̈, q̇, q) = τ (2)

where M̄ is a diagonal constant matrix to be designed and
adjusted through EGWO algorithm. And u is given as

u = q̈ + ε (3)

where ε represents the mismatched modelling part
and N (q̈, q̇, q) =

[
M (q, q̇)− M̄

]
q̈ + C (q, q̇) q̇ +G (q) +

τd represents the remaining lumped unknown dynamics of
the close-loop control system. It is generally complex to
accurately determine N . So, (2) is also taken as equivalent
to

M̄u+ Ñ (q̈, q̇, q) = τ (4)

where Ñ (q̈, q̇, q) is the estimation of N (q̈, q̇, q) and can
be obtained using TDE method as

M̄ q̈t−L +Nt−L (q̈, q̇, q) = τt−L (5)

where L is sufficiently small time-delay to ensure that TDE
functions correctly. L is usually chosen to be the sampling
time [17]. If we take

Nt−L (q̈, q̇, q) = Ñ (q̈, q̇, q) (6)

Using (5) and (6), equation (4) becomes

M̄ (u− q̈t−L) + τt−L = τ (7)

II.3. TSMC
: SMC is a useful robust nonlinear technique to handle
disturbances and uncertainties [14]. During the last decades,
several variants of SMC have been proposed. NTSMC is
one of these variants characterized by the nonlinearity of the
sliding surface. The applications of TSMC and its variants
to robotic manipulators have been thoroughly investigated
in scientific literature [11, 16–18, 34–39]. TSMC has the
key advantage to ensure finite time convergence as reported
in [20, 25, 40]. Singularity problem of TSMC has been
overcome by the so-called NTSMC method [17]. F-NTSMC
has been investigated for a robotic manipulator in [37], where
this approach offered fast convergence of the robot even if the
system states are far from equilibrium. NTSMC based TDE
has been discussed in [11, 12, 22, 23, 40]. Numerous sliding
surfaces have been proposed in the literature [19,33,34] such
as

S = ė+ k1e
q/p (8)

S = e+ k1
−1ėp/q (9)

S = ė+ k1
−1|e|p/qsign(e) (10)

S = e+ k1
−1|ė|p/qsign(ė) (11)

For all these surfaces, S = [s1, . . . , si, . . . , sn]
T ∈ Rn

is the sliding surface, k1 = diag[k11, . . . , k1i, . . . , k1n] ∈
Rn×n is a matrix composed of positive constants, p and q
are positive odd integers with p > q. All previous TSMC
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will terminate subject to satisfying the following sufficient
condition:

SṠ ≤ −ρ(e, ė)|S| (12)

where ρ(e, ė) ∈ R+

ρ ̸= 0 must be a positive defined function. For each case of
the stability analysis, V = 1/2STS is used as a Lyapunov
candidate function. ρ can take a constant positive value. The
reach time of the sliding surface (i.e. when tr ̸= 0) of all
surfaces is defined as tri ≤ ∥S(0)|/Kwii

.with Kwii
> 0

For a robotic manipulator controlled with TDE-based
approach, the control laws in case of (8) and (9) are
respectively written as,

τ = M̄(q̈d − q̈t−L + k1γ
−1ėe1−γ +Kwsign (S)) + τt−L

(13)
τ = M̄(q̈d − q̈t−L + (γk1)

−1ė2−γ +Kwsign (S)) + τt−L

(14)

where γ = p/q, and 1 < γ < 2. Kw is a positive diagonal
matrix.
The control law given in (13) leads to singularity if e = 0
and/or ė = 0, because 1 < γ < 2.Moreover, e1−γ /∈R if
e < 0. The control law expressed in (14) suffers from
singularity if ė < 0, since ė2−γ /∈R. The design of (13) an
(14) designs are given in Appendix.

Once the Terminal Sliding Surface S = 0 is reached, the
system dynamics of e is governed by

e = −k−1
1 |ė|p/qsign(ė)

Solving it for the finite time ts from e(tr) to 0, we get

ts = − 1

k1

∫ 0

e(tr)

e−q/p =
p

k1(p− q)
|e(tr|(γ−1)

II.4. Fast Nonsingular Terminal Sliding Mode
Controller (F-NTSMC)
The sliding surface (S) for F-NTSMC of the robotic
manipulator is chosen as

S = e+ k1|e|ζsign (e) + k2|ė|γsign (ė) (15)

where k1 and k2 are real positive design diagonal matrices,
e is the error vector i.e. e = qd − q, and ė = q̇d − q̇ is its time
derivative, sign is the signum function. The parametersγ and
ζ must satisfy the condition 1 <γ < 2 and ζ > γ. The choice
of this sliding manifold offers precision and robustness. The
term k1|e|ζsign (e) is added to handle the systems having
states far from the equilibrium point by dominating the
influence of the term k2|ė|γsign (ė). On the other hand, when

a state of the system is close to the equilibrium state, the
term k2|ė|γsign (ė) guarantees the convergence in a finite-
time [25].

The time taken to travel from e(tr) to 0 is finite and is given
in [35] as

ts = −k2
γ−1

∫ 0

e(tr)

1

(η + k1ηζ)γ
−1 dη

In order to examine faster convergence performance of
sliding surface (15) compared to that given in (10) and
(11), we considered the following sliding modes: S =

ė+ k1
−1|e|p/qsign(e) = 0, S = e+ k1

−1|ė|p/qsign(ė) =
0, and S = e+ k1|e|ζsign (e) + k2|ė|γsign (ė). For
homogeneous comparison, sliding surfaces parameters
are chosen as γ = p/q = 7/5, k1 = 1. Since S5 has a
supplementary term k2|e|ζsign(e), we can choose ζ(ζ > γ)
and k2 as per our convenience. In this simulation, k2 = 1
and ζ = 4. Moreover, initial condition comprises of two
values such as e(0) = 5 and e(0) = −5. Simulation results
are given in Fig 2. It is clear from the Figure 2 that time
convergence of Fast NTSMC using surface (15) is superior
to that of NTSMC surfaces given by (10) or (11).

Figure 2. Comparison of terminal sliding surfaces (S3 (10),
S4 (11) and S5 (15))

The time derivative of (8) is

Ṡ = ė+ k1ζ|e|ζ−1
ė + k2γ|ė|γ−1

ë (16)

By equating (16) to zero (i.e. Ṡ = 0 ) and replacing ë =
q̈d − q̈, we obtain

[(1 + k1ζ|e|ζ−1
)ė + k2γ|ė|γ−1

[q̈d − q̈]] = 0
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Combining with (3), we get

u = (k2γ)
−1

(1 + (k1ζ) |e|ζ−1
)|ė|2−γ

sign (ė) + q̈d +∆u
(17)

where ∆u is the discontinuous control part, which is chosen
as

∆u = −1

2
Γ1|S|

1
2 sign (S)−Γ2

∫ t

0

sign (S) dt− ηsign (S)

(18)

where Γ1 = diag (Γ1ii), Γ2 = diag (Γ2ii) and η = diag (ηii)
are diagonal matrices with positive real values. The
mismatched modelling term has been cancelled by the robust
discontinuous part ∆u. The term −ηsign (S) is called as
compensation term. Substituting (17) into (7), the NTSMC
law with TDE can be designed as

τ = M̄((k2γ)
−1

(1 + (k1ζ) |e|ζ−1
)|ė|2−γ

sign (ė)

+ q̈d +∆u− q̈t−L) + τt−L (19)

The super twisting control law given in (19) involves a
compensation term that improves robustness of the control.
The mismatched modelling has been cancelled by the
compensation term −ηsign (S). In addition, adaptive super
twisting law has two effects; firstly, it can reduce the
chattering phenomena and keeps the performances of the
robot under control. Secondly, the combination of super
twisting with the compensation term can potentially improve
the control performance and maintain superior robustness. In
(19), the gain matrix M̄ is multiplied with all the sub-items
of the controller which signifies its role. Thus, obtaining
the value of M̄ by trial and error results in a loss of
precision. In order to solve this crucial problem, a meta-
heuristic optimization method called EGWO is used which
is presented in Section III.

III. Optimized Fast NTSMC (GF-NTSMC) and
Extended GF-NTSMC (EGF-NTSMC):
The effect of M̄ on the control performance and robustness
is crucial as can be seen in (19). Optimization methods can
be classified into two main categories. The first category is
the optimization based on analytical methods. A well-known
example of this category is the gradient descent algorithm,
which suffers from a local minima problem. The second
category employs the bio-inspired optimization methods.
They are based on population coding and iterative search
of the optimal value of a fitness function in this population.
Owing to the random characteristics, these methods have less
possibility for stagnation into local minima. The observer
method is also a good alternative approach to design a

control law for a robotic manipulator, however the tracking
performance and robustness of these methods is a function
of the related design parameters. The M̄ matrix is optimized
by using GWO and an EGWO method. These algorithms and
the objective function are detailed below:

III.1. Grey Wolf Optimization (GWO)
GWO is an emerging optimization method inspired by
wolves’ natural hunting behavior and the social hierarchy
of the grey wolves. The algorithm offers simplicity and fast
convergence compared to other meta-heuristic algorithms
[31]. The social hierarchy of wolves is structured in four
sub-groups denoted respectively as α, β, δ and ω. Alpha (α)
is the leader of the pack group generally composed of one
wolf or two wolves. This group is responsible for essential
decisions/selections like hunting, place of sleeping, time to
walk and so on. Beta (β) is the subordinate of the leader
and their principal work is to assist α in accomplishment
of their tasks. Delta (δ) occupies third position in the group
in which the wolves are subordinates and assistants of β
wolves. Rest of the wolves belong to the last category of
the group named as omega (ω). The survival of wolves is
essentially based on the quest for eating and to achieve this
objective, a mission has to be organized with a high degree
of accuracy. The mission includes encircling, hunting and
then attacking a prey. The functionality of GWO algorithm
can be summarized in three steps: (i) The given problem is
mathematically formulated and required parameters are then
initialized. (ii) A pack of grey wolves is randomly initialized
in the search space domain. (iii) α, β and δ grey wolves
lead the pack to search, pursue, and encircle a prey. When
the prey is encircled by the grey wolves, the search finishes
and attack begins. These steps are modelled mathematically
and are detailed as follows: Wolves live by hunting and in
order to realize the hunt, they follow two steps; the first step
is exploration which involves search of a prey. Second phase
is the exploitation, which consists of encircling, hunting and
attacking the prey. Parameters A⃗ and C⃗ in (20-21) define
the exploration and exploitation behaviors. These parameters
are obtained by the combination of the parameter a⃗ and the
random numbers r1 and r2 as

A⃗ = 2r1a⃗− a⃗ (20)

C⃗ = 2r2 (21)

where r1 and r2 lie in the range [0, 1].
Parameter a⃗ is defined to be linearly decreasing from 2 to

0 using the following relationship

a⃗ = 2

(
1− actual iteration

max iteration

)
Exploration: This task becomes active when | A | > 1.

C⃗ plays the role of stimulating the algorithm in the event of
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stagnation into a local minima.

Exploitation: This step is initialized when | A | < 1. It
is further composed of encircling, hunting and attacking the
prey as detailed below:
Encircling: The encircling behavior can be modelled with
(22-23)

D⃗ =
∣∣∣C⃗X⃗p (t)− X⃗ (t)

∣∣∣ (22)

X⃗ (t+ 1) = X⃗p (t)− A⃗D⃗ (23)

where t indicates the current iteration, X⃗ is the position
vector of the grey wolf,

−→
Xp (t) represents the prey position

vector.
Hunting: This natural behavior is modelled mathematically

by (24)

X⃗ (t+ 1) =
X⃗1 + X⃗2 + X⃗3

3
(24)

where X⃗ is the position of the victim. X⃗1, X⃗2 and X⃗3 are
the position vectors of the α, β and δ wolves respectively.
When a prey is found, the iteration begins. Thereafter, the
α, β and δ wolves would lead the ω wolves to pursue and
eventually encircle the prey. Three coefficients each for C⃗
and D⃗ represent the encircling behavior:

D⃗α =
∣∣∣C⃗1X⃗α (t)− X⃗

∣∣∣, D⃗β =
∣∣∣C⃗2X⃗β (t)− X⃗

∣∣∣
D⃗δ =

∣∣∣C⃗3X⃗δ (t)− X⃗
∣∣∣, X⃗1 = X⃗α (t)− A⃗1D⃗α

X⃗2 = X⃗β (t)− A⃗2D⃗β , X⃗3 = X⃗δ (t)− A⃗3D⃗δ (25)

Attacking prey: After encircling the prey, the grey wolves
start to attack. Mathematically, this behaviour is modelled by
the A⃗ values, thus if |A| < 1 (20), A⃗ gets decreased with the
increase in a⃗.

III.2. Extended Grey Wolf Optimizer (EGWO)
In order to improve the position of the preys (24) so as
to consequently improve the hunting behavior, an EGWO
is proposed. In the start of the search, all wolves have the
same importance. With the progression of iterations, X⃗1 will
have more and more importance knowing that he is the
leader of all the other wolves. Meanwhile, X⃗3 will carry
progressively less importance. Following this concept, the
role of αs becomes more important as the prey is approached.
In order to mathematically formulate this behaviour, the
position of the prey is re-estimated using (26)

X⃗ (t+ 1) =
l1X⃗1 + l2X⃗2 + l3X⃗3

3
(26)

where l1 = 1 +∆
(
n
N

)
, l2 = 1 and l3 = 1−∆

(
n
N

)
. 0 <

∆ < 1, n is the actual iteration, N is the maximum number

of iterations. We can notice that with each iteration, the value
of l1 increases, while the value of l3 decreases.

In order to verify the effectiveness of the proposed EGWO,
it is tested under 10 benchmark fitness functions given in
Table 1 and Table 2. For the sake of fair performance
comparison between GWO and EGWO, we have used the
same number of iterations, dimension (D) and agents which
are: iterations=1000, D= 30, and agents=30.

The results obtained after 30 independent runs are listed
in Table 3 in case of the unimodal benchmark functions
and in Table 4 for the multimodal benchmark functions.
Following the quantitative performance comparison between
GWO and EGWO, the best, mean and worst values of
the benchmark fitness functions are presented. Moreover,
the standard deviation is also shown. The values close
to the optimums (global minimal) are represented in bold
face. Simulation results demonstrated the superiority of the
proposed EGWO to provide a solution closer to the valid
optimum value.

III.3. Objective function
The objective function is a special case of a generalized
function written in the form of:

J =

∫ t

0

tιeκdt

where e is the trajectory tracking error, ι and κ are both
integers whose values are respectively taken between 0-1
and 1-2. All combinations are possible. If ι = 0 and κ = 1,
we have the conventional Integral of Absolute Error (IAE)
while the values ι = 0 and κ = 2 lead to Integral of Absolut
error (ISE). IAE and ISE give equal importance to all the
errors corresponding to initial time and final time regardless
of the state of the control system. Therefore, optimizing the
control response using these finesses functions may result
in getting the responses with relatively small overshoot but
long stabilization time or vice versa [23]. In order to deal
with this problem, the Integral Time Absolute Error (ITAE)
(ι = 1 and κ = 1) and Integral Time Square Error (ITSE) (
ι = 1 and κ = 2) are proposed. Both of these functions are
based on time weights of the error such that the error values
associated with higher time range are significantly considered
in our case. In order to find the best M̄ , the GWO algorithm is
used to minimize the following objective function (integral-
of-error-squared over time)

IE2T =

∫ t

0

te2dt (27)

This objective function can ensure precision and robust-
ness of the optimized parameters in the global control law
[35].

Theorem 1: If F-NTSMC surface is set as given in (8),
then the states of the system defined in (1) converge to the
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Table 1. Unimodal benchmark fitness functions

Function Range fmin

f1 (x) =
∑n

i=1 x
2
i [-100,100] 0

f2 (x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| [-10,10] 0

f3 (x) =
∑n

i=1

(∑i
j−1 xj

)2

[-100,100] 0

f4 (x) = maxi {|xi| , 1 ≤ i ≤ n} [-100,100] 0

f5 (x) =
∑n−1

i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)

2
]

[-30,30] 0

f6 (x) =
∑n

i=1 (xi + 0.5)
2 [-100,100] 0

f7 (x) =
∑n

i=1 ix
4
i + random [0, 1) [-1.28,1.28] 0

Table 2. Multimodal benchmark fitness functions

Function Range fmin

f8 (x) =
∑n

i=1 −xisin(
√

|xi|) [-500,500] -418.9829 × 5
f9 (x) =

∑n
i=1

[
x2
i −10 cos (2πxi) + 10] [-5.12,5.12] 0

f10 (x) = −20 exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
− exp (

∑n
i=1 cos(2πxi)) + 20 + e [-32,32] 0

Table 3. Unimodal benchmark functions’ results

Function Algorithm Statistical results
Best Mean Worst St. Dev

f1 (x)
GWO 3.7837e-61 3.9639e-59 5.0973e-58 2.8530e+03
EGWO 1.3777e-64 1.3592e-61 2.8334e-60 2.6746e+03

f2 (x)
GWO 5.3292e-36 9.6229e-35 5.1713e-34 8.0499e+06
EGWO 1.0565e-37 9.2196e-37 2.6423e-36 2.3108e+07

f3 (x)
GWO 4.6007e-21 3.6962e-17 5.8420e-16 61.5379
EGWO 1.5049e-23 8.9245e-18 8.9531e-17 64.4167

f4 (x)
GWO 1.4308e-16 3.8166e-14 5.0953e-13 7.8262
EGWO 5.3970e-17 4.2837e-15 2.5536e-14 7.1891

f5 (x)
GWO 25.9619 26.9179 28.7173 8.7346e+06
EGWO 25.2165 26.9682 28.5399 8.6104e+06

f6 (x)
GWO 1.3040e-05 0.2462 0.7443 0.6046
EGWO 1.1218e-05 0.2739 0.7527 0.6490

f7 (x)
GWO 1.8207e-04 9.0674e-04 0.0024 3.3471
EGWO 1.7052e-04 8.4499e-04 0.0018 3.5025

Table 4. Multimodal benchmark functions’ results

Function Algorithm Statistical results
Best Mean Worst St. Dev

f8 (x)
GWO -7.1265e+03 -5.9646e+03 -4.3495e+03 608.6663
EGWO -7.1744e+03 -6.1359e+03 -4.4238e+03 522.8577

f9 (x)
GWO 0 0.6490 6.1150 44.3691
EGWO 0 0.2819 5.0300 44.3032

f10 (x)
GWO 1.5099e-14 1.5928e-14 2.2204e-14 2.1067
EGWO 7.9936e-15 1.5099e-14 2.2204e-14 1.9870

sliding surface in a finite time. The control law can be written
as follows:
τ = M̄∗((k2γ)

−1
[1 + (k1ζ) |e|ζ−1

)|ė|2−γ
sign (ė)

+ q̈d +∆u− q̈t−L] + τt−L (28)

The EGF-NTSMC law bears the same structure as that of
NTSMC, however here the matrix M̄∗ is computed through

the EGWO algorithm. In this case, compared with NTSMC,
the expected results become very consistent. However, the
control law can be further improved by introducing an
adaptive approach based on Lyapunov stability formulation
discussed in Section IV.
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IV. Adaptive Optimized Fast –NTSMC
(AEGF-NTSMC):
The control of the robotic manipulator using EGF-NTSMC
is not sufficient particularly in case of trajectory tracking in
the presence of uncertainties and disturbances. Therefore,
an adaptive control based on Lyapunov stability analysis is
proposed in this section.

Theorem 2: The system given in (1) and rewritten as in
(4) is controlled by the following law in finite time:

τ = M̄∗((k2γ)
−1

[1 + (k1ζ) |e|ζ−1
)|ė|2−γ

sign (ė) + q̈d +∆u− q̈t−L] + τt−L (29)

where ∆u is given by (18) and

Γ̇1 = 1
2δΓ1

STφ(ė)|S| 12 sign(S)
Γ̇2 = δΓ2

STφ(ė)
∫
sign(S)dt

}
(30)

with φ (ė) = kγ|ė|γ−1

Remark 1: The adaptive law (30) gives the time derivative
of the super twisting parameters. Γ̇1 and Γ̇2 are monotonous
functions which confirm the positivity condition of the super
twisting parameters. For the convergence time tr, S will be
equal to zero (i.e S (tr) = 0) so, the values of Γ̇1 and Γ̇2 will
have upper bounds.
Remark 2: The difference between the three controllers is
mentioned here: In (19), matrix M̄ must be found by the user
using trial and error. In case of (28), M̄ has been replaced
by M̄∗, which is obtained using GWO. Moreover, in case of
(29), an adaptive super twisting-based controller is proposed
in addition to the use of M̄∗.

Proof: Consider the Lyapunov candidate function

V =
1

2
STS +

1

2δΓ1

(Γ1 − Γ1
∗)

2
+

1

2δΓ2

(Γ2 − Γ2
∗)

2 (31)

where δΓ1 and δΓ2 are positive real constants. Γ1
∗and

Γ2
∗are optimal positive values of Γ1 and Γ2 respectively.

Parameters Γ1
∗ and Γ2

∗ are used in the stability analysis,
however, they do not appear in the final stability condition
or in the control law, so the knowledge of their values is not
necessary.
The time derivative of the Lyapunov function yields

V̇ = ST Ṡ +
1

δΓ1

(Γ1 − Γ∗
1)Γ̇1 +

1

δΓ2

(Γ2 − Γ∗
2)Γ̇2 (32)

From (3), we have

ë = q̈d − q̈ = q̈d − (u− ε) (33)

Substituting (33) in (16) and then using (17), we get

Ṡ = φ (ė) (∆u+ ε) (34)

Using (34), (32) can be re-written as

V̇ = STφ(ė)
(
∆u+ ϵ

)
+

1

δΓ1

(Γ1 − Γ∗
1)Γ̇1 +

1

δΓ2

(Γ2 − Γ∗
2)Γ̇2

(35)
Now, involving (18) into V̇ and adding and subtracting

1
2Γ1

∗|S|
1
2 sign (S) and Γ2

∗ ∫ sign (S) dt yields

V̇ = STφ(ė)
[
− 1

2
(Γ1 − Γ∗

1)|S|
1
2 sign(S)

− 1

2
Γ∗
1|S|

1
2 sign(S)− (Γ2 − Γ∗

2)

∫ t

0

sign(S)dt

− Γ∗
2

∫ t

0

sign(S)dt− ηsign(S) + ϵ
]
+

1

δΓ1

(Γ1 − Γ∗
1)Γ̇1

+
1

δΓ2

(Γ2 − Γ∗
2)Γ̇2

(36)
Equation (36) can be re-arranged as

V̇ = STφ(ė){−ηsign(S) + ϵ}+[
− 1

2
STφ(ė)|S| 12 sign(S) + 1

δΓ1

Γ̇1

]
Γ1

+
[
− STφ(ė)

∫ t

0

sign(S)dt+
1

δΓ2

Γ̇2

]
Γ2

− 1

2
Γ∗
1S

Tφ(ė)|S| 12 sign(S)− Γ∗
2S

Tφ(ė)

∫ t

0

sign(S)dt

(37)
Taking into account (30), (38) becomes

V̇ = STφ (ė) {−ηsign (S) + ε} −
1
2Γ1

∗STφ (ė) |S|
1
2 sign (S)− Γ2

∗STφ (ė) ∫ sign (S) dt

Since the second and third terms are negative, so the
stability is verified iff

STφ (ė) (−ηsign (S) + ε) ≤ 0

Since φ (ė) ≥ 0, we can guarantee that V̇ ≤ 0 iff

ε ≤ η (38)

On the other hand, ε = M̄−1
(
N (q̈, q̇, q)− Ñ (q̈, q̇, q)

)
which results in(

N (q̈, q̇, q)− Ñ (q̈, q̇, q)
)
≤ M̄∗η (39)

Remark 3: Inequality (39) confirms that the stability is
strongly related to the accuracy of the estimation of
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N (q̈, q̇, q). It is pertinent to mention here that the estimation
of the N (q̈, q̇, q) is a strong function of sampling time
involved. The objective of TDE is to estimate N given the
value of (Ñ) such that the estimation error is minimal.
Ideally, the error should be zero which essentially implies that
a good estimation stability is guaranteed.
The criteria that help to decide sampling time for the
TDE algorithm is the time required to make the model
operational and to perform control calculations as well as
their interactions at each iteration. The sampling time is also
related to the specification of the processor used. In case,
the sampling time (period time) is insufficient due to the
rapid change in the system dynamics, the proposed robust
controller overcomes this issue.
Remark 4: The condition given in (38) can also be verified in
case ε has a superior bound. Interested readers are referred to
[17].
Remark 5: In order to guarantee that M̄ does not affect
the convergence proof, the search space of M̄ is chosen
intentionally to be positive. In addition, we can see the
advantage of this method from the stability perspective that
the final convergence condition is only dependent on M̄ . This
implies that the value of M̄ is determined prior to applying
the adaptive control law.

V. Simulation Results and Discussions
The effectiveness of the proposed control strategies
is demonstrated by conducting series of simulations
on a 3-DOF rigid-link planar robotic manipulator in
MATLAB/Simulink 2021 environment running on HP
Pavilion laptop with 1.3Ghz CPU, AMD E1-6010APU
and AMD Radeon R2 Graphics and 4.00 GB RAM. The
physical parameters of the robotic manipulator shown in
Fig 2 are listed in Table 5. The derived dynamic model of the
manipulator is given in (40). Simulations have been carried
out using two nonlinear trajectories given in (41) and (42).
The simulation time and sampling time are 10 sec and g=9.8
m/sec2 respectively. Selected control parameters for our
proposed controller are summarized in Table 6.

M11 M12 M13

M21 M22 M23

M31 M32 M33

q̈1q̈2
q̈3

+

l1l1sin (q2)

C11 C12 C13

C21 C22 C23

C31 C32 C33

q̇1q̇2
q̇3

+

 0
0

−m3g


+

 0.2sign (S1)
0.2sign (S2)
0.2sign (S3)

 = τ + τd (40)

where
M11 = l21

(
m1

3 +m2 +m3

)
+ l1l2 (m2 + 2m3) cos (q2) +

l22
(
m2

3 +m3

)

Table 5. Robot parameters

Parameter Unit Link 1 Link 2 Link 3
m Kilogram (Kg) 1 0.8 0.5
l Meter (m) 1 0.8 0.6

M12 = M21 = −l1l2
(
m2

2 +m3

)
cos (q2)− l22

(
m2

3 +m3

)
M13 = M23 = M31 = M32 = 0
M22 = −l22

(
m2

2 +m3

)
M33 = m3

C11 = −q̇2 (m2 + 2m3)
C12 = C22 = −q̇2

(
m2

2 +m3

)
C13 = C22 = C23 = C31 = C32 = C33 = 0

The numerical simulation involves the sampling L,
which is the time period to execute one control task. This
includes calculation of the model, the control law and
transmission and reception of information to/from the
system. So, L corresponds to time involved in one iteration
of a closed-loop task. Various control techniques under
discussion (F-NTSMC, GF-NTSMC, EGF-NTSMC and
AEGF-NTSMC) are compared in simulation in terms of
performance achieved by each of these. Results consist of
illustrations of joints’ responses, errors in angular positions,
sliding variables, command signals, phase portraits and
adaptive gains. NFTSMC parameters are chosen by trial
and error. For GF-NTSMC and EGF-NTSMC, M̄∗matrix
parameters are obtained through GWO and EGWO algorithm
respectively. The obtained values in case of GWO are M̄∗ =
diag (mii) = diag (0.19377, 0.0419184, 0.55882) kgm2

and in case of EGF-NTSMC is M̄∗ = diag (mii) =
diag (0.38808, 0.06075, 0.83928) kgm2. The M̄
matrix parameters obtained by trial and error are:
M̄ = diag (mii) = diag (0.4, 0.2, 0.1) kgm2 In AEGF-
NTSMC, the super twisting parameters such as Γ1 and Γ2

are computed using (30).
The control task under discussion involves moving

three links of the manipulator from an initial position
(qd1 (0) , qd2 (0) , qd3 (0)) = (0, 0, 0) rad to the trajectory
given by

qd1 (t) = 1 + sin (πt)
qd2 (t) = 1 + sin (πt)
qd3 (t) = 1 + sin (πt)

 (41)

In case of F-NTSMC, GF-NTSMC and EGF-
NTSMC, the values of diag(Γ11 (t), Γ12 (t) ,Γ13 (t) ) =
(100, 80, 100),diag(Γ21 (t), Γ22 (t), Γ23 (t)) = (1, 1, 1) are
considered. For AEGF-NTSMC, same parameters
are used, however we started with the initial values
of diag(Γ11 (0), Γ12 (0) ,Γ13 (0) ) = (0, 0, 0) and
diag(Γ21 (0), Γ22 (0), Γ23 (0)) = (0, 0, 0). Later, these
values are updated based on the law given in (30).

Figures 3-5 depict an example of sinusoidal control
task. It is evident that the input of AEGF-NTSMC varies
smoothly showing very minimal fluctuations caused by the
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(a)

(b)

(c)

(d)

Figure 3. Position tracking performance of joint 1: (a) Joint response (b) Angular error (c) Sliding surface (d) Control input
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(a)

(b)

(c)

(d)

Figure 4. Position tracking performance of joint 2: (a) Joint response (b) Angular error (c) Sliding surface (d) Control input
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(a)

(b)

(c)

(d)

Figure 5. Position tracking performance of joint 3: (a) Joint response (b) Angular error (c) Sliding surface (d) Control input
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Figure 6. Adaptive gains of the AEGF-NTSMC (a) Alpha (b) Beta

actuator’s efforts. These oscillations are decreased from
link 1 to link 3 which is justified by the fact that link
1 makes more effort compared to link 2. The same
holds true in case of link 2 and link 3. Therefore, by
using EGF-NTSMC and AEGF-NTSMC, the three-joint
robotic manipulator achieves the desired performance with
good tracking precision. It can also be remarked that the
precision of the AEGF-NTSMC is better (i.e. maximal
errors for joints are |emax1| ≤ 0.0058 rad, |emax2| ≤
0.0062 rad, |emax3| ≤ 0.0034 rad ) compared with others
controllers under discussion. Indeed, F-NTSMC presents
some imprecision particularly in case of link 1. The plots
of sliding variables in different cases prove significant
reduction in the chattering effects for all the controllers,
owing to the role of the super twisting. The reduction is
more in AEGF-NTSMC because of the adaptive action. All
the controllers demonstrated robustness as indicated by the
sliding surfaces. Adaptive parameters are shown in Fig. 6,
which demonstrates that all the parameters converge to
constant values indicating that the parameters are adaptively
tuned until the sliding variables converge to the equilibrium.
The fast convergence to zero phase portraits shown in Fig. 7
confirm the superiority of AEGF-NTSMC compared with F-
NTSMC, GF-NTSMC and EGF-NTSMC. The control input
signals in case of GF-NTSMC, EGF-NTSMC and AEGF-
NTSMC show minimal chattering compared with F-NTSMC
particularly corresponding to link 1 and link 2. For link 3,

same chattering level is demonstrated by the three controllers
which is justified by the fact that the control of link 3 does
not require any supplementary effort to maintain the joint in
the desired angle.

Table 6. Parameters for the proposed control strategies

Parameter Value for Link 1-3
γ 1.6667
ζ 1.8333
k1 1
k2 1
η 1

Robustness verification
For robustness verification, the robotic manipulator is
subjected to trajectory tracking mode involving parameter
variations and external disturbances. The robot’s joints are
initialized to the position of (qd1 (0) , qd2 (0) , qd3 (0)) =
(0, 0, 0) rad. The joints are then commanded to track the
desired trajectory given by (42). The robustness is tested by
modifying the link lengths and masses which are supposed
to be uncertain. Hence, an additive variance of 10% for the
joint one, 20% for joint 2 and 100% for joint 3 from their
nominal values are considered as given in (43). The length of
link 3 is assumed to have an additive uncertainty of 20% from
its nominal value as indicated in (44). The choice to increase
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(a)

(b)

(c)

Figure 7. Phase portraits of: (a) Joint 1 (b) Joint 2 (c) Joint 3

only the uncertainty in the length of link 3 is due to the fact
that this link is associated with the end-effector for object
manipulation. A time-varying external disturbance given in
(45) is considered for robustness analysis.

qd1 (t) = 2 + 0.1(sin (t) + sin (2t))
qd2 (t) = 2 + 0.1((cos (2t) + cos (3t))
qd3 (t) = 1 + 0.1(sin (3t) + sin (4t))

 (42)

m1 = m01 + 0.1m01,

m2 = m02 + 0.2m02,

andm3 = m03 +m03 (43)

l1 = l01, l2 = l02, l3 = l03 + 0.2l03 (44)

τd =

 2 sin (t) + 0.5sin (200π)
2 sin (t) + 0.5sin (200π)
cos (2t) + 0.5sin (200π)

(45)

As in the first trajectory, results in this second trajectory
tracking consists of each joint’s response, corresponding
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(a)

(b)

(c)

(d)

Figure 8. Position tracking performance of joint 1: (a) Joint response (b) Angular error (c) Sliding surface (d) Control input

Prepared using TRR.cls



16 XX(X)

(a)

(b)

(c)

(d)

Figure 9. Position tracking performance of joint 2: (a) Joint response (b) Angular error (c) Sliding surface (d) Control input
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(a)

(b)

(c)

(d)

Figure 10. Position tracking performance of joint 3: (a) Joint response (b) Angular error (c) Sliding surface (d) Control input
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Figure 11. Adaptive gains of the AEGF-NTSMC (a) Alpha (b) Beta

error profile, sliding surface and control signal as illustrated
in Fig 8, 9 and 10 in case of joint 1, joint 2 and joint
3 respectively. The tracking performance under parametric
variations and external disturbances (42-44) dictates that the
desired trajectory is tracked adequately. We can observe
that all joints converge to the desired trajectories (within 2
sec). Moreover, all error values tend to zero after a transient
time due to errors in the initial conditions. One can observe
that the control signals are affected by the disturbances
added to the control law. However, this does not affect the
system response. The time responses of the sliding surfaces
confirm the fast convergence of the system dynamics. The
system states reach the sliding manifold in finite-time and
then they converge to zero along the pre-described surface.
Moreover, the controller AEGF-NTSMC demonstrated fast
convergence compared to F-NTSMC, GF-NTSMC and
EGF-NTSMC. From the angular position errors, one can
observe the greater precision of the AEGF-NTSMC in the
presence of uncertainties and disturbances (i.e. maximal
errors for joints are |emax1| ≤ 0.00067 rad, |emax2| ≤
0.0012 rad, |emax3| ≤ 0.0021 rad) compared with EGF-
NTSMC where the maximal errors for joints are |emax1| ≤
0.0026 rad, |emax2| ≤ 0.0012 rad, |emax3| ≤ 0.0026 rad.
Finally, it is concluded that the AEGF-NTSMC offers
superior performance, such as high tracking precision,
fast response, singularity avoidance and strong robustness
to external disturbances and modelling uncertainties as
evidenced by the desired trajectories demonstrating above-
mentioned error profiles. Fig. 11 presents adaptive gains
of AEGF-NTSMC. The estimated parameters adaptively
increase based on the adaptive laws. The convergence of the
estimated parameters indicates that the adaptive mechanism

continues to perform adequately and the sliding mode is
reached. The positive functions Γ1 and Γ2 are obtained by
integrating equation (30), which presents the time derivatives
of Γ1 and Γ2. Integration of (30) yields monotonic functions
as confirmed in the simulation results (Fig. 6 and Fig 11).
Fig. 12 shows phase portraits of different joints confirming
the convergence of the system.

The effectiveness of the proposed AEGF-NTSMC in
comparison to other variants of NTSMC is demonstrated
considering performance indices ISE and IAE. With a final
time of tf = 50 Sec, the initial time t0 for ISE and IAE
is 2 Sec and 0 Sec respectively. The simulation time is 50
Sec. The performance indices are obtained for the trajectory
expressed in (45) in the presence of the disturbances (43-44).
The results obtained are given in Tables 7-8.

We can conclude from the numerical results that AEGF-
NTSMC has offered best performance compared with the
other controllers. Compared to F-NTSMC, ISE and IAE have
been improved by 234.99% and 175.24% respectively. It can
also be noticed that GF-NTSMC and EGF-NTSMC offer
very close performance. However, better results are obtained
in case of NTSMC-based GWO compared with the classical
one.

Conclusion

In this paper, four robust control methods F-NTSMC,
GF-NTSMC, EGF-NTSMC and AEGF-NTSMC have been
proposed and applied to a 3-DOF robotic manipulator.
AEGF-NTSMC controller was based on TDE method while
the optimization has been performed through an emerging
meta-heuristic method GWO. An extended GWO (EGWO)
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(a)

(b)

(c)

Figure 12. Phase portraits of: (a) Joint 1 (b) Joint 2 (c) Joint 3

Table 7. ISE of AEGF-NTSMC and other NTSMC variants

F-NTSMC GF-NTSMC EGF-NTSMC AEGF-NTSMC∫ tf
t0

e1
2dt 0.1248 0.0693 0.0690 0.0505∫ tf

t0
e2

2dt 0.4455 0.1860 0.1859 0.1655∫ tf
t0

e3
2dt 0.0931 0.0834 0.0830 0.0663

left
∑3

i=1 ei
2 0.6634 0.3387 0.3379 0.2823

%age improvement 100% 195.86% 196.33% 234.99%
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Table 8. IAE of AEGF-NTSMC and other NTSMC variants

F-NTSMC GF-NTSMC EGF-NTSMC AEGF-NTSMC∫ tf
t0

t|e1|dt 1740.2 1556.5 1556.5 895.2912∫ tf
t0

t|e2|dt 2.959.9 1753.1 1753 1384.1∫ tf
t0

t|e3|dt 1773.5 1644.9 1643 1414.5∑3
k=1 t|ei| 6473.5 4954.6 4952.5 3693.9

%age improvement 100% 130.65% 130.71% 175.24%

is also proposed in this paper to improve the results of
the classical GWO. The main purpose of using GWO and
EGWO is to obtain an optimal gain matrix M̄ , which
carries an essential role is TDE-based control methods.
Adaptive control proposed in the present work is based
on Lyapunov theorem. Simulation results demonstrate that
AEGF-NTSMC over-performs in terms of accuracy and
finite time convergence. The strong robustness against
parametric uncertainties and external disturbances has also
been confirmed in AEGF-NSTMC based control law. As per
the authors knowledge the present work is a first attempt to
synthesize the gain matrix M̄ using a metaheuristic method
thus avoiding trial and error method. The adaptability of
AEGF-NTSMC makes the proposed control technique highly
recommended for controlling the robots subjected to high
nonlinearities and uncertainties while still demanding the
adequate performance.
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Appendix
proof of eq. 13

Time derivative of (8) is given as

Ṡ = ë+ k1
q

p
eq/p−1ė = q̈d − q̈ + k1γ

−1e1−γ ė

From (3) we can write Ṡ = 0 as

q̈d − (u− ε) + k1γ
−1e1−γ ė = 0

Then
u = k1γ

−1e1−γ ė+Kwsign (S)

The mismatched modelling ε has been cancelled by the
compensation term −Kwsign (S). Replacing u in (7), we
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obtain the control law given in (13).

Proof of eq. 14

Time derivative of (9) is given by

Ṡ = ė+ k−1γėγ−1ë

From (3), we can write Ṡ = 0 as

ė+ φ (ė) (q̈d − u+ ε) = 0

with φ (ė) = k−1
1 γėγ−1

Then,
u = q̈d + k1γ

−1ė2−γ +Kwsign (S)

The mismatched modelling ε has been cancelled by the
compensation term −Kwsign (S). Replacing u in (7), we
obtain the control law given in (14).
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