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Abstract 

Background: Osteoporosis is a common metabolic skeletal disease and usually lacks 
obvious symptoms. Many individuals are not diagnosed until osteoporotic fractures 
occur. Bone mineral density (BMD) measured by dual-energy X-ray absorptiometry 
(DXA) is the gold standard for osteoporosis detection. However, only a limited percent-
age of people with osteoporosis risks undergo the DXA test. As a result, it is vital to 
develop methods to identify individuals at-risk based on methods other than DXA.

Results: We proposed a hierarchical model with three layers to detect osteoporosis 
using clinical data (including demographic characteristics and routine laboratory 
tests data) and CT images covering lumbar vertebral bodies rather than DXA data via 
machine learning. 2210 individuals over age 40 were collected retrospectively, among 
which 246 individuals’ clinical data and CT images are both available. Irrelevant and 
redundant features were removed via statistical analysis. Consequently, 28 features, 
including 16 clinical data and 12 texture features demonstrated statistically significant 
differences (p < 0.05) between osteoporosis and normal groups. Six machine learning 
algorithms including logistic regression (LR), support vector machine with radial-basis 
function kernel, artificial neural network, random forests, eXtreme Gradient Boosting 
and Stacking that combined the above five classifiers were employed as classifiers to 
assess the performances of the model. Furthermore, to diminish the influence of data 
partitioning, the dataset was randomly split into training and test set with stratified 
sampling repeated five times. The results demonstrated that the hierarchical model 
based on LR showed better performances with an area under the receiver operating 
characteristic curve of 0.818, 0.838, and 0.962 for three layers, respectively in distin-
guishing individuals with osteoporosis and normal BMD.

Conclusions: The proposed model showed great potential in opportunistic screening 
for osteoporosis without additional expense. It is hoped that this model could serve to 
detect osteoporosis as early as possible and thereby prevent serious complications of 
osteoporosis, such as osteoporosis fractures.
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Introduction
Osteoporosis is a common metabolic skeletal disease, occurring primarily in post-meno-
pausal women and older men [1]. Osteoporosis leads to decreased bone mineral density 
(BMD) and changed bone microarchitecture, consequently increasing bone fragility and 
fracture risk [2]. With an aging population, the number of hip fractures caused by osteo-
porosis is predicted to reach about 6 million worldwide by 2050 [3].

DXA is regarded as the “gold standard” for osteoporosis detection in clinics [4]. Pro-
spective studies indicated that each standard deviation decrease in BMD can lead to a 
1.5 to 2.5-fold risk of fracture [5]. As a result, it is recommended that women aged over 
65, man over 70, and younger individuals with risk factors of osteoporosis should be 
screened for osteoporosis and take a DXA test [6]. However, only a limited percentage of 
these people are screened using DXA due to its relatively high cost, the risk of ionizing-
radiation, and insufficient awareness [7–9]. As a result, the detection and treatment rates 
of osteoporosis remain low. Osteoporosis usually lacks obvious symptoms and many 
individuals are not diagnosed until osteoporotic fractures occur [10]. Therefore, it is vital 
to develop methods to identify individuals at-risk based on methods other than DXA.

In addition to BMD measurement, clinical risk factors are important in osteoporosis 
assessment [11]. Indeed, a series of tools have been developed to predict osteoporosis 
risk based on clinical risk factors [12]. The international osteoporosis foundation pro-
posed a one-minute osteoporosis risk awareness test utilizing such as low body mass 
index (BMI), vitamin D deficiency, and poor nutrition to access potential osteoporosis 
risks [13]. Similarly, osteoporosis self-assessment tool (OST), osteoporosis risk assess-
ment instrument (ORAI), simple calculated osteoporosis risk estimation (SCORE), and 
osteoporosis index of risk (OSIRIS) were developed to predict osteoporosis risk [14–17]. 
Other clinical predictive tools have also been proposed to predict osteoporotic frac-
ture risk, such as FRAX, Garvan, and QFracture [18]. These methods usually utilize 2 
to 30 clinical risk factors, among which age, weight, and history of fracture were used 
most frequently [18]. Recently, some researchers have attempted to use machine learn-
ing (ML) methods to increase the accuracy of osteoporosis risk prediction based on 
clinical risk factors. These models go beyond the linear or nonlinear combination of all 
the input risk factors and have the potential to capture underlying trends and patterns, 
which is impossible for the tools mentioned above [19]. Yoo, et  al. [20] compared the 
performance of several ML methods, including supporting vector machine (SVM), ran-
dom forests (RF), artificial neural network (ANN), and logistic regression (LR), with tra-
ditional tools (OST, ORAI, SCORE, and OSIRIS) in identifying postmenopausal women 
at risk of osteoporosis. The results showed that SVM was more effective than traditional 
tools and other ML methods mentioned above. de Lira, et al. [21] used J48 decision tree 
algorithm to discriminate between osteoporosis and osteopenia in women via BMI, age, 
menopause status, and other risk factors and obtained an AUC of 0.65. Besides these 
demographic characteristics, other studies [22, 23] also considered several routine labo-
ratory tests data, including alkaline phosphatase, calcium, phosphorus, the numbers of 
hemoglobin and lymphocyte and albumin to predict osteoporosis risk. Such approaches 
underline the benefits of routine laboratory tests data in identifying osteoporosis risk.

Medical imaging also shows great potential in osteoporosis prediction. Kawashima, 
et  al. [24] found a potential utility in the differences of texture features derived from 
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non-contrast head CTs between individuals with and without osteoporosis. Mookiah, 
et al. [25] differentiated healthy and osteoporotic fracture individuals based on texture 
features extracted from CT images with a classification accuracy of 83%. This work 
showed the feasibility of opportunistic osteoporosis screening by texture analysis of 
CT images. Valentinitsch, et al. [26] utilized 3D texture features and regional volumet-
ric BMD obtained from CT images for opportunistic osteoporosis screening. RF classi-
fier was used and achieved an AUC of 0.88 in identifying individuals with and without 
osteoporosis. In addition to CT images, X-ray and MRI images have also been utilized to 
assess the risk of osteoporosis and osteoporotic fractures [7, 27, 28].

Thus, the individual potential of assessing osteoporosis risk factors, medical images, 
and routine laboratory tests data to predict osteoporosis risk is well-established. How-
ever, to our knowledge, systematic studies have not accessed osteoporotic risk by com-
bining osteoporosis risk factors, routine laboratory tests data, and medical images 
together. In this context, we attempt to construct a hierarchical model to identify indi-
viduals with osteoporosis as an alternative approach to a DXA test. The model consisted 
of three layers based on the popularity of test people usually underwent. To be specific, 
the first layer utilized demographic characteristics only, with clinical data (including 
demographic characteristics and routine laboratory tests data) for the second layer, and 
clinical data together with CT images that partly or completely cover the spine for the 
third layer. Six machine learning algorithms, including LR, SVM, ANN, RF, eXtreme 
Gradient Boosting (XGBoost) and Stacking that combined the aforementioned other 
five models, were successively used as classifiers to discriminate individuals between 
osteoporotic and non-osteoporotic.

Materials and methods
As shown in Fig.  1, the proposed model is comprised of four main parts: data collec-
tion, features extraction, features selection and classification. In data collection, par-
ticipants’ demographics characteristics, routine laboratory tests data and CT images 
covering lumbar spine were collected and then features were extracted from them. 

Fig. 1 Schematic elaboration of the study design
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Statistical analysis, including Mann–Whitney U test, Chi-square test, Pearson correla-
tion test and Kruskal–Wallis H-test, were used successively to eliminate redundant and 
irrelevant features. Comparing to texture features, the model based on the combination 
of texture and shape features didn’t achieve a better performance. Thus, the remaining 
features were used except for shape features as the input of the proposed model. The 
proposed model included three layers according to the features available. The features 
of three layers overlapped with each other. The higher the layer lay, more features were 
used. What’s more, three layers of the model worked independently, which means only 
one layer worked for a specific model input. The details of features for each layer were 
listed in Additional file 1: Table S7. The model was built based on six classifiers respec-
tively, including LR, SVM, ANN, RF, XGBoost and Stacking. The model performances 
were eventually evaluated on a hold-out test set, which accounted for 20 percent of the 
dataset.

Patient characteristics

We conducted a retrospective study, which complied with the World Medical Associa-
tion Declaration of Helsinki. The study obtained local ethics committee approval (KYLL-
2020(KS)-743) and informed consent was not required owing to the retrospective nature 
of the study. The individuals over age 40 who underwent DXA screening were collected 
from Qilu Hospital of Shandong University and Shandong Provincial Hospital. Partici-
pants’ clinical data were derived from both centers, while CT images were derived from 
Qilu Hospital of Shandong University only. Routine laboratory tests, CT scans, and DXA 
screening for an individual were performed in the same time. These individuals were 
classified into normal and osteoporotic groups according to T-score (for postmenopau-
sal women and men over age 50) or Z-score (for others) based on BMD analysis report 
of DXA scanned lumbar spine. It is noted that patients diagnosed with secondary osteo-
porosis were not included in the cohort. Cases of osteopenia and cases with missing val-
ues were omitted. The flowchart of participant selection is shown in Fig. 2.

CT data and processing

CT images covering the lumbar spine were retrieved from the PACS and saved in 
DICOM format. Any data with noise or motion artifacts were excluded. The images 
were acquired with different CT scanners (SIEMENS SOMATOM Definition AS, and 
SIEMENS SOMATOM Definition) with the same single collimation width of 0.6 mm. 
The tube voltage of images ranged from 100 to 140  kV and the slice thickness of CT 
scans was 1.00  mm. No contrast agents were used in CT scans. Sagittal images were 
reconstructed in the RadiAnt DICOM Viewer and exported as BMP format. The sin-
gle mid-sagittal image of CT scans for each individual was utilized. The bone window 
was set to default parameters of RadiAnt (window width: 1500 and window level: 300). 
As the DXA test measures BMD of lumbar vertebral bodies L1-L4, the same regions of 
median sagittal images were segmented manually as ROIs. It’s noted that fractured ver-
tebral bodies were discarded and only intact vertebrae were considered as ROIs. Seg-
mented images were all resized to 64 × 64 pixels to eliminate the influence of size, and 
then saved as 8-bit grayscale images.
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Feature extraction

Analysis features were extracted from the clinical data and CT images, where clini-
cal data consisted of demographic characteristics (including age, gender, BMI, sys-
tolic pressure, diastolic pressure, pulse pressure, and menopause status) and routine 
laboratory tests data (comprising complete blood count, renal and liver function test, 
blood sugar test and lipid blood test). In total, 35 features were extracted from the 
clinical data; their details are included in  Additional file  1: Table  S1. Furthermore, 
gender information of individuals is included in the indicator of MPS rather than as 
a separate indicator to avoid redundancy. To be specific, MPS has three statuses, cor-
responding to women in menopause, women not in menopause or men, respectively.

Texture data of CT images has previously been shown to be useful in osteoporo-
sis identification [24–26], as has shape information [29]. Hence texture and shape fea-
tures were extracted from ROIs as descriptors of the CT images. Texture features 
were extracted from each ROI of cortical and cancellous bone to fit DXA [30]. Tex-
ture features consisted of five Gray-Level Co-occurrence Matrix (GLCM) parameters, 
4 Gray-Level Gradient Matrix (GLGM) parameters, and 6 Gray-Level Histogram (HI) 
parameters. GLCM proposed by Haralick, et al. [31] included 14 parameters in total, of 
which the 5 most widely-used parameters were chosen for this study, namely entropy, 
energy, contrast, correlation, and homogeneity [24]. The given GLCM distance was set 
to one in all four directions, and the number of gray levels was 256. In order to minimize 
directional ambiguity, the mean and standard deviation of GLCM parameters in four 
orientations (0°, 45°, 90°, and 135°) were computed [26]. Additionally, gradient informa-
tion was employed in GLGM that included mean, variance, skewness, and kurtosis [24]. 
HI incorporated the gray-level information of the image and mean, variance, skewness, 
kurtosis, energy, and entropy were used as its parameters.

Trabecular microarchitecture has been proven to be a determinate of bone strength 
[32] and the inter-trabecular space expands as osteoporosis progresses [23]. Figure  3 

Fig. 2 Flow chart of participants selection
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demonstrated the differences between individuals with and without osteoporosis in 
CT images. It’s obvious that the individual with osteoporosis has larger inter-trabecular 
space and more notable permeability of vertebral body than the health. Shape parame-
ters describing the outline of inter-trabecular space were utilized, which includes perim-
eter, area, regional density (the ratio of the area to the squared perimeter), circularity, 
solidity, length–width ratio (the aspect ratio of the regional minimum bounding rectan-
gle), rectangularity (the ratio of the area to the area of regional minimum bounding rec-
tangle) and 7 Hu’s invariant moments [29]. The maximum between-class variance (Otsu) 
method [33] was utilized to acquire binary images that represented trabecular and inter-
trabecular space ahead of calculating shape features [34]. The Otsu method is subject 
to pixel (gray-scale) values, and cortical bone has higher pixel values than cancellous 
bone, which may influence the segmentation of trabecular bone, hence cortical bone was 
excluded from the shape analysis. furthermore, since the inter-trabecular space was usu-
ally comprised of several regions, the mean and standard deviation of shape parameters 
were computed for each vertebra. Additionally, lumbar vertebral bodies L1-L4 were seg-
mented for every individual. The mean and standard deviation of each image parameter 
were then computed to describe the overall condition of an individual. In total, 96 image 
features were extracted from the CT images; their details are presented in Additional 
file 1: Tables S2 and S3 and the distribution of them between two groups are shown in 
Additional file 1: Table S4. Furthermore, only reproducible features with intraclass cor-
relation coefficient greater than 0.8 were used [35]. The process of image features extrac-
tion mentioned above was carried out in MATLAB R2019a.

Fig. 3 Sagittal CT images of participants with osteoporosis and normal BMD
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Statistical analysis

Statistical analysis was initially used to remove redundant or irrelevant features. 
Firstly, Mann–Whitney U tests and Chi-square tests were utilized to assess differ-
ences between individuals with and without osteoporosis for numerical and nominal 
features respectively. Only features that significantly differ between the two groups 
were picked up. Then Pearson correlation tests were utilized to indicate the linear 
dependence between features. Redundant features (Pearson correlation coefficient 
|γ | ≥ 0.8 ) were removed to ensure no high correlation exists in the final selected fea-
tures for the model. At last, Kruskal–Wallis H-test was used to evaluate the effect of 
CT protocol settings on textural and shape features. P = 0.05 was regarded as the sta-
tistical level throughout our study. Statistical analysis was performed using IBM SPSS 
Statistics 24.

Classification

LR, SVM with radial-basis function kernel, ANN, RF, XGBoost and Stacking were 
used as the classifier to identify individuals with osteoporosis. Specially, the first layer 
of the Stacking used the above five models and the second layer used LR, which only 
trained on the predictions of the first layer. A grid-search coupled with stratified ten-
fold cross validation was employed to estimate the hyper-parameters of classifiers, 
which was performed on training set. Moreover, as these classifiers can’t handle nom-
inal features, One-Hot coding was utilized before model training. Min–max normali-
zation that transforms features by scaling each feature to (0,1) was also performed 
for LR which is sensitive to the dimension. ROC (receiver operating characteristic) 
curve analysis was adopted to assess the classification performance of classifiers; 
ROC weights sensitivity and specificity equally and has better discriminative ability 
than accuracy [36, 37].

The dataset was randomly split into training and test set with a ratio of 8:2. In order 
to diminish the influence of data partitioning, this process was repeated five times, 
and the training and test set had the same class distribution as the original data-
set. The model performance was then evaluated by averaging over all five randomly 
shuffled test sets. Feature importance was computed using coefficient of features in 
the decision function for LR, the average gain across all splits features was used for 
XGBoost and Gini importance for RF. Owing to the fact that there was not suitable 
property for SVM with radial-basis function kernel, ANN and Stacking to represent 
the importance of features, feature importance was not computed for them. The pro-
cess mentioned above was performed in Pycharm-Professional-2019.2.4. The detailed 
packages used are listed in Additional file 1: Table S5.

Results
Patient characteristics and CT data

The patients’ characteristics are shown in Table 1. 2210 individuals were collected ret-
rospectively, all of which had demographic characteristics. Among them, 2188 and 
268 individuals underwent routine laboratory tests and CT scans, respectively, while 
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246 individuals underwent both of them. 43.1%, 47.0%, and 47.6% of patients were 
diagnosed as osteoporosis among each group. Statistically significant differences were 
found in the ages between individuals with and without osteoporosis in all groups.

In the image group, the tube voltage of most cases (244/268) was 120 kV as well as oth-
ers were 80 kV (21/268) and 140 kV (3/268) respectively. No significant differences were 
found in the tube voltage between osteoporosis and normal BMD (p = 0.547). How-
ever, 12 image features showed significant differences in the tube voltage and then were 
excluded.

Features extraction and statistical analysis

In total, 131 features were extracted in the study, involving 35 clinical data features and 
96 image features. 47 features including 16 clinical data features, 12 texture features, 
and 19 shape features exhibited a statistically significant difference (p < 0.05) between 
individuals with and without osteoporosis, no highly linear correlation between them, 
and no significant differences among tube voltage or good reproducibility. The details 
of selected features are listed in Additional file 1: Table S6. Additional file 1: Figure S1 
showed the violin plots for each feature between two groups and Additional file 1: Figure 
S2 showed the correlation between features in heatmap (Pearson correlation coefficient 
γ ranged from −0.764 to 0.779).

Classification

Table 2 shows the performances of clinical data and CT images in identifying osteoporo-
tic individuals. The performance of demographic characteristics outperformed routine 
laboratory tests, and texture features outperformed shape features. Moreover, when 
demographic characteristics and routine laboratory tests data were combined, all these 
classifiers showed better classification performances. Compared with using texture fea-
tures alone, the performance was not improved when texture features and shape fea-
tures were both utilized. Consequently, shape features were not taken into account for 
the third layer of the model. Furthermore, the model based on all the classifiers showed 
acceptable performances and specially, Stacking showed better performances than using 
single model in almost each feature group.

246 individuals who underwent both routine laboratory tests and CT scans were 
used to test the performances of three layers of the model. As shown in Table 3 and 
Fig.  4, more features used corresponded to better performance for all classifiers. 

Table 1 Demographic characteristics of each subgroup

Age was expressed as mean ± standard deviation and P-value was used to compare the difference between individuals with 
osteoporosis and normal BMD in age

Group Condition Number Age P-value

Clinical data group Osteoporosis 943 2188 65.67 ± 9.691 0.000

Normal 1245 55.77 ± 10.066

Image group Osteoporosis 126 268 65.66 ± 8.394 0.000

Normal 142 58.61 ± 9.912

Combination group Osteoporosis 117 246 65.68 ± 7.976 0.000

Normal 129 58.50 ± 10.152



Page 9 of 15Liu et al. BMC Bioinformatics           (2022) 23:63  

Since the third layer used the most features, its performance was the best among the 
three layers. Among these classifiers, LR, showed the better performances than oth-
ers. While, ANN performed worse especially in the second and third layer.

Figure 5 presents the feature importance for each classifier in discriminating indi-
viduals between osteoporosis and normal BMD. As demonstrated in Fig. 5, among 
the top 10 important features of each classifier, 8 features (3 clinical features and 5 
texture features) were the same for three classifiers. To be specific, 3 clinical features 
referred to Clinical 1 (menopause status), Clinical 2 (age), and Clinical 3 (BMI). 5 
texture features included Texture 1 (mean of GLCM’s mean contrast in 4 directions 
in ROIs), Texture 2 (mean of GLCM’s mean energy in 4 directions in ROIs), Texture 
3 (mean of the standard deviation of GLCM’s homogeneity in 4 directions in ROIs), 
Texture 5 (mean of HI’s mean in ROIs) and Texture 8 (standard deviation of GLCM’s 

Table 2 Classification performance of each classifier on clinical data and CT images

DC Demographic Characteristics; RLT Routine Laboratory Tests; CD Clinical Data; TFs Texture Features; SFs Shape Features; IFs 
Image Features

The performances of each classifier were evaluated by the mean of five repeated experiments

The highest values among the six classifiers for each feature set in test set were highlighted in bold

*Image features included texture and shape features

Features LR SVM ANN RF XGBoost Stacking N

DC Training 0.798 0.800 0.795 0.836 0.828 0.819 2188

Test 0.805 0.806 0.798 0.809 0.808 0.810
RLT Training 0.696 0.725 0.702 0.856 0.828 0.819

Test 0.677 0.694 0.680 0.687 0.687 0.694
CD Training 0.815 0.837 0.818 0.898 0.893 0.872

Test 0.813 0.824 0.815 0.820 0.820 0.828
TFs Training 0.970 0.971 0.942 0.989 0.976 0.976 268

Test 0.949 0.951 0.929 0.947 0.933 0.953
SFs Training 0.869 0.882 0.829 0.945 0.905 0.892

Test 0.855 0.875 0.850 0.867 0.853 0.876
IFs* Training 0.977 0.979 0.932 0.978 0.973 0.982

Test 0.950 0.957 0.931 0.960 0.938 0.959

Table 3 Performance of proposed model based on each classifier

The highest values among the six classifiers for each feature set in test set were highlighted in bold

*The first and second layer utilized demographic characteristics and clinical data respectively, while the third layer utilized 
clinical data and texture features

Layers LR SVM ANN RF XGBoost Stacking

1st Layer* Training 0.848 0.849 0.823 0.899 0.897 0.883

Test 0.818 0.810 0.812 0.807 0.804 0.808

2nd Layer* Training 0.878 0.887 0.827 0.944 0.958 0.927

Test 0.838 0.850 0.816 0.849 0.837 0.846

3rd Layer* Training 0.983 0.980 0.909 0.995 0.993 0.989

Test 0.962 0.960 0.917 0.950 0.947 0.960
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mean energy in 4 directions in ROIs). It can be found that HI’s mean denoted by 
Texture 5 was considered as the most important feature in three classifiers.

Discussion
In this study, we proposed a hierarchical model as an alternative approach to differenti-
ating individuals with and without osteoporosis. Considering the availability of the data, 
the hierarchical model was built with three layers utilizing demographic characteristics, 
clinical data, as well as clinical data and CT images, respectively. Six machine learning 
algorithms were used and LR, SVM and Stacking showed similar performances in the 
three layers according to Table 3. According to Occam’s Razor that “entities should not 
be multiplied beyond necessity” [38], a simpler model based on LR would be preferred in 
our work, which achieved an AUC of 0.818, 0.838 and 0.962, respectively.

Fig. 4 ROC curves of the proposed three-layer model based on a LR, b SVM, c ANN, d RF, e XGBoost and f 
stacking respectively on combination group

Fig. 5 Feature importance for a LR, b RF and c XGBoost. These features were represented briefly by the 
combination of category and number. The details are listed in Additional file 1: Table S6
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Clinical data have been used previously for the identification of individuals with osteo-
porosis or osteoporotic fracture [22, 23] and demographic characteristics, in particular, 
have been widely used in multiple osteoporosis assessment tools [18]. In the first and 
second layers of the proposed model, the performance of demographic characteristics 
and clinical data were tested, respectively. Demographic characteristics showed better 
performance than routine laboratory tests data but their combination slightly improved 
model performance for all classifiers as shown in Table  2. Moreover, all these classifi-
ers provided similar performances, which demonstrated the effectiveness of clinical data 
in osteoporosis discrimination. Among clinical data, menopause status, age, and BMI 
were the most important indicators that were consistent with known risk factors [18, 
22, 23]. Additionally, Clinical 6 (red blood cell count), Clinical 9 (alkaline phosphatase), 
and Clinical 11 (albumin) were also helpful in identifying individuals with osteoporosis, 
since they were considered as top 10 important features by one or two classifiers. What’s 
more, comparing to other osteoporosis assessment tools based on demographic char-
acteristics only, the proposed model with an AUC of 0.818 showed better performance 
than OST (0.790) [14], ORAI (0.789) [15], and OSIRIS (0.710) [17], and similar perfor-
mance with SCORE (0.811) [16]. However, it is should be noted that the performance 
(AUC: 0.827) of [20], which used 11 features, is better than our model based on 5 fea-
tures. The reason is partly attributed to the more features used in [20].

It is difficult to distinguish differences in trabecular bone between osteoporosis and 
non-osteoporosis, even for experienced doctors [35], but texture analysis has been uti-
lized in an attempt to solve the problem. Texture analysis is a non-invasive and quan-
titative image analysis method [24], which is used widely in medical images deriving 
from CT, X-ray, and MRI [39]. Several studies have suggested that texture analysis aided 
the discrimination of osteoporosis or osteoporotic fracture in multiple medical images 
[19]. In our study, several texture features deriving from GLCM, GLGM, and HI were 
extracted from CT images. Moreover, shape analysis was also employed to quantify the 
microarchitecture of trabecular bone, which probably could enhance the classification 
accuracy [29]. The results demonstrated that texture features were more important than 
shape features in detecting osteoporotic individuals, and the model performance was 
not improved utilizing both texture and shape features compared with that of texture 
features alone (Table 2). This could be partly explained by two reasons. On the one hand, 
shape features mainly described trabecular microarchitecture, while texture features 
reflected the condition of trabecular microarchitecture as well as cortical bone, con-
taining more valuable information than shape features [24]. On the other hand, DXA 
test was used as the label to discriminate osteoporotic and normal individuals, however, 
DXA didn’t consider the influence of trabecular microarchitecture. As a result, conflicts 
may exist between shape features and model label. Based on this, shape features were 
not taken into account in the model.

As mentioned above, 5 texture features were of great importance in distinguish-
ing patients with osteoporosis, including GLCM’s contrast (denoted by Texture 1), 
GLCM’s energy (denoted by Texture 2 and Texture 8), GLCM’s homogeneity (denoted 
by Texture 3), and HI’s mean (denoted by Texture 5). Contrast represents the depth of 
texture grooves and the image sharpness, energy reflects the orderliness and homo-
geneity computes the distribution compactness of GLCM diagonal elements [25]. 
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Mean, the most important feature, reflects the mean signal intensity of images, which 
was consistent with other literature [35]. Meanwhile, violin plots shown in Addi-
tional file  1: Figure S1 demonstrated distributions of selected 47 features between 
two groups. As shown in Additional file 1: Figure S1, the five important texture fea-
tures mentioned above exhibited the obvious differences between osteoporosis and 
non-osteoporosis. These features maybe reveal the distinct differences of cortical 
and cancellous bone between osteoporotic and non-osteoporotic individuals, such as 
the permeability of vertebral body increasing, cortical bone thinning, and trabecular 
bone disappearing in osteoporotic individuals [23].

Figure 6 showed the decision boundary of LR based on different predicting features 
(texture 5 and 2 as well as texture 8 and 3), which were important texture features 
mentioned above. The values of features in Fig. 6 were all scaled by Min–max normal-
ization. As shown in Fig. 6a, most samples could be classified correctly, since the two 
most important features, texture 5 and 2 (shown in Fig. 5) were used. Samples marked 
with 1 and 2 were chosen to explain the underlying cause for wrongly classifications. 
Sample 1 with the label of osteoporosis was classified correctly according to texture 
5 and 2 as shown in Fig. 6a, while it was classified wrongly based on texture 8 and 3 
as shown in Fig. 6b. Similarly, predictions of sample 2 were inconsistent in Fig. 6a, b. 
Thus, it could be inferred that wrong classifications of the model were mainly due to 
confoundedness of predicting features.

We recognize that our study has some limitations. First, the number of samples was 
relatively small, especially for cases with CT images collected from a single center, 
which limited the robustness and generalization of the proposed model. Secondly, 
the image features were extracted from 2D CT slices, whilst 3D texture features are 
likely to contain more valuable information and have been used to screen osteoporo-
tic fractures [26]. Adding 3D image features to our model is one of our on-going aims. 
Thirdly, lumbar vertebral bodies were segmented manually, which could lead to the 

Fig. 6 Decision boundary of LR based on Texture 5 and 2 (shown in a) as well as Texture 8 and 3 (shown in 
b). The gray and light blue area represent osteoporosis and normal individuals, respectively. Red and blue 
dots represent the samples labelled by osteoporosis and non-osteoporosis, respectively. Samples marked 
with yellow stars (such as dots marked with 1 and 2) represent the ones that are incorrectly classified by LR 
in five repeated experiments. All incorrectly classified samples are marked with yellow stars in (a), while only 
two are marked in (b)
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variations of inter- and intra-observer on feature extraction. An automatic segmenta-
tion method is another question we will address in future work.

Conclusions
The proposed model based on clinical data and CT images using machine learning 
methods showed great potential in opportunistic screening for osteoporosis without 
additional expense. In other words, different form DXA test, the features used in our 
model could be acquired for other purpose rather than osteoporosis detection only. 
Thus, it can be employed as an auxiliary tool for clinicians to screen whether an indi-
vidual has a risk of osteoporosis in advance of a DXA test, which would be beneficial in 
scenarios without DXA equipment, e.g. community or family physical examination, and 
individuals with high osteoporosis risks but failing to take the DXA test. It is hoped that 
this model could serve to detect osteoporosis as early as possible and thereby prevent 
serious complications of osteoporosis, such as osteoporosis fractures.
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