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Abstract. Component-based approaches and software product lines have been 

adopted by industry to manage the diversity of configurations on safety-critical 

software. Safety certification demands compliance with standards. ISO 26262 

standard uses the concept of Automotive Safety Integrity Level (ASIL) to allo-

cate safety requirements to components of a system under design. Compliance 

with standards is demonstrated through achieving those ASILs which can be 

very expensive when requirements are high. While achieving safety certifica-

tion of variant-intensive components without being unnecessarily stringent or 

expensive is desirable for economy, it poses challenges to safety engineering. In 

this paper, we propose an approach to manage the diversity of safety goals and 

supporting safety certification of software components. Our approach is built 

upon the integration among ASIL decomposition, software process modeling, 

and variability management techniques. The approach supports cost-effective 

safety certification and the efficient tailoring of process models to components 

according to their ASILs. We evaluated our approach in the automotive domain. 

The approach is feasible in supporting the management of the diversity of safe-

ty goals, and cost-effective safety certification of software components. 

Keywords: Safety certification, Safety critical software, Software development 

process, Model-based engineering. 

1 Introduction 

Safety-critical systems are systems in which failures may lead to catastrophic conse-

quences to the environment and/or to people involved with their operation. This criti-

cal nature demands addressing dependability properties, e.g., safety, reliability. Safety 

standards provide guidance to analyze and demonstrate safety properties at different 

levels of abstraction. The ISO 26262 [10] automotive standard prescribes a set of 

safety goals to be achieved, activities to be performed, and artefacts to be produced, 

depending on the criticality of an item, stated through an Automotive Safety Integrity 

Level (ASIL). The development lifecycles of automotive system components (items) 

may change according to their assigned ASILs. Safety goals and ASILs are assigned 
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to a function via systematic evaluation of severity, probability of occurrence and con-

trollability of a hazardous event. Highly critical functions demand addressing more 

expensive safety goals and development lifecycle processes in comparison with func-

tions that pose lower risks to the overall safety. Assigning stringent ASILs to classify 

the risk of failures on less critical system functions may incur in unnecessary certifi-

cation costs [15, 16]. To counter this, prescriptive safety standards [10, 23] establish 

rules for decomposing ASILs assigned to top-level failure conditions (hazards) 

through contributing component faults. 

Recent extensions in the scope of ISO 26262 have included support for functional 

safety on all road vehicles, with the introduction of requirements on trucks, buses, 

trailers, semi-trailers, motorcycles and their supporting processes. Such extensions 

introduce more variability in the development of automotive systems. Component-

based approaches and Software Product Lines (SPL) have been adopted in the auto-

motive [24] and aerospace [7] industry for their benefits of reduction of the time to 

market and development effort, and increased product quality [21]. SPL approaches 

have been extended to consider safety engineering and certification issues [15, 24]. A 

SPL is a variant-intensive architecture with common and variable functions shared 

among different systems from an application domain. Common and variable functions 

can be combined to derive different configurations. In variant-intensive automotive 

systems, variation in the design choices and usage context may impact hazard analy-

sis, assignment of top-level safety goals (ASILs) and their decomposition through 

components [7, 15, 16]. 

Existing Model-Based Safety Assessment (MBSA) techniques provide automated 

support for ASIL decomposition in standalone [1, 19, 20] and variant-intensive sys-

tem architectures [16]. ASIL decomposition results provide information to support the 

management of the diversity of safety goals and cost-effective safety-certification of 

system and software components in compliance with safety standards. Lifecycle mod-

els defined in cross-domain standards can be specified with the support of OMG 

Software & Systems Process Engineering Metamodel (SPEM) version 2.0 [17] com-

pliant modeling tools, e.g., EPF Composer
1
. The integration of process modeling and 

variability management techniques [8] within AMASS
2
 Platform enables variant 

management on EPF software process models. However, achieving safety certifica-

tion and deriving EPF process models for variant-intensive software components 

without being unnecessarily stringent is challenging. Moreover, the manual configura-

tion of EPF process models for each software intensive component in complex and 

large-scale system architectures can be burden. In addition, changes in the system 

design may impact on the ASIL allocation at the system level and decomposition at 

the component level, leading to modifications on the safety goals, and consequently 

the reconfiguration/generation of EPF process models for each individual component.  

This paper proposes an approach, enhancing Oliveira et al. [16] work, supporting 

the management of the diversity of safety goals and cost-effective safety certification 

of variant-intensive components. It integrates MBSA and ASIL decomposition tech-

niques, EPF Composer and BVR tools within the AMASS Platform. We evaluated 

                                                           
1 https://www.eclipse.org/epf/ 
2 https://www.amass-ecsel.eu/content/about 
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our approach in an automotive braking system. This paper is organized as follows: 

Section 2 presents the background information needed for the reader understanding 

our approach. Section 3 presents our approach to support process-based certification 

of variant-intensive software components and its evaluation in the automotive do-

main. In Section 4, we discuss the related work. Finally, Section 5 presents the con-

clusions and future work. 

2 Background 

2.1 ISO 26262 

ISO 26262 is a safety standard that postulates requirements for functional safety on 

electrical and electronic systems embedded into small and medium sized (up to 3.5 

tons) general purpose road vehicles [10]. It is important for the development of soft-

ware intensive systems.  

ASILs are initially assigned to classify the risks that hazards pose to the overall 

safety, during the ISO 26262 Part 3 – Concept phase [10], after 3-7 Hazard Analysis 

and Risk Assessment. A hazard is a “potential source of harm caused by malfunction-

ing behavior of the item”. ASILs are assigned based on the severity of the harm, the 

probability of exposure to operational situations, and controllability of each hazard-

ous event at the 3-8: Functional safety concept. A safety goal is then derived for each 

hazard, according to its ASIL. Safety goals are top-level safety requirements, from 

which functional safety requirements are derived, thus, characterizing the Functional 

Safety Concept. The definition of the functional safety concept requires an analysis of 

how component faults contribute to hazards. Therefore, ASILs initially assigned to 

classify the risk posed by hazardous events are further decomposed throughout archi-

tectural component faults according to rules described in ISO 26262 Part 9. The bene-

fits of ASIL decomposition are obtained when architectural elements are sufficiently 

independent. In the case where only two independent components failing together 

leads to the occurrence of a hazard, the responsibility of addressing an stringent ASIL 

D assigned to a hazard, is shared between the components (ASIL B + ASIL B). ASIL 

decomposition allows addressing a higher ASIL assigned to a hazard without being 

unnecessarily expensive.  

ASIL allocation and decomposition are qualitative concepts that address systematic 

issues (i.e.: design and architecture) rather than random faults (i.e.: hardware reliabil-

ity). If applied correctly, it allows engineers allocating lower ASILs to components 

and reusing third party pre-certified parts, while still meeting the safety goals derived 

from the ASILs assigned to hazardous events [10]. ASIL D is assigned to the most 

critical hazards/items that demand rigorous assessment process. On the other hand, 

ASIL QM is usually assigned to hazards/items that pose no safety risks, i.e., not re-

quired to satisfy or demonstrate any specific safety goals. ISO 26262 prescribes a set 

of safety goals, activities, guidance, and work products that should be produced at 

each phase per ASIL. ASIL D demands more risk reduction measures, e.g., lower 

failure rates and extensive software verification, compared to ASIL A. 
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2.2 HiP-HOPS and ASIL Decomposition 

HiP-HOPS [19] is a method and tool for model-based safety analysis. HiP-HOPS 

supports ISO 26262 safety-lifecycle, fault tree analysis and FMEA, via semi-formal 

languages for specification, composition, and analysis of the system failure behavior 

based on a set of dependability information about the system components. Once the 

system models have been annotated with hazards and local failure logic, HiP-HOPS 

synthesizes fault trees for each hazard, and then combines them to create an FMEA 

for the system that can record the effect of combinations of component faults.  

HiP-HOPS design optimization extension [1] implements ISO 26262 ASIL de-

composition rules [10]. HiP-HOPS tool uses the information within fault trees and 

FMEA results and rationalizes the allocation of ASILs to hazards and their decompo-

sition through system components, by showing how combinations of component fail-

ures lead to hazards. The HiP-HOPS design optimization capability was further ex-

tended to support ASIL decomposition through components of a variant-intensive 

system design [16]. This extension supports co-analysis of files containing HiP-HOPS 

ASIL decomposition results for each system variant, to obtain the ASILs that should 

be assigned to components to ensure their safe use across a set of variants relevant for 

the stakeholders. This is achieved by allocating the most stringent ASIL assigned to a 

failure mode of a component in a given system variant as the required ASIL to ensure 

the safely use of that component across all variants. 

ASIL decomposition results are inputs for deriving ISO 26262 lifecycle process 

models for individual variant-intensive components without being unnecessarily 

stringent or expensive. A component process model comprises a set of activities, 

guidance and artefacts to be produced at each lifecycle phase to comply with the tar-

geted ASIL requirements. Thus, the process of verifying the design of an ASIL C 

component should comprise design inspection and walkthroughs, control and data 

flow analyses, and simulation of the dynamic parts of the design to comply with ASIL 

C safety goals. The verification of the design of an ASIL D component, however, 

should address other safety goals demanding more costly guidance, e.g., formal veri-

fication. Component ISO 26262 life-cycle models can be specified with the support of 

SPEM 2.0 process modeling tools, e.g., EPF Composer, and their variability can be 

managed with the support of variant management tools like BVR.  

2.3 EPF Composer and BVR 

The EPF Composer is a tool built upon the Unified Method Architecture (UMA), 

which supports the specification and deployment of OMG SPEM 2.0 [17] compliant 

software process models [6]. UMA incorporates SPEM 2.0 and defines a library for 

method plugins and configurations. An EPF method plugin is divided into two catego-

ries: method content and processes. The method content describes the required steps 

and skills to achieve specific development goals comprising: content packages, stand-

ard custom categories [12]. Therefore, tasks, roles, work products and guidance are 

specified in a content package, and disciplines, domains, work product kinds, role sets 

and tools are standard categories. EPF Composer stores all method library content in a 

repository of XMI files. XMI is an OMG specification for storage and interchanging 
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metadata in XML format. The method content elements are semi-ordered, thus, 

providing the means to create a process lifecycle. EPF capability patterns are building 

blocks used for holding process knowledge for a given area of interest, and complete 

lifecycles are modeled as delivery processes. A method configuration is a subset with-

in a method library. EPF Composer supports the generation of a method configuration 

as a HTML web page that can be deployed in a web server for distributed collabora-

tion between team members. 

BVR [8] is a language and toolset, built upon CVL [9], which supports standard 

variability modeling in Eclipse Modeling Framework (EMF) models. Since BVR 

defines variability orthogonally for Meta-Object Facility (MOF) [18] compliant mod-

els, e.g., EPF method plugins, communication with other tools is required to map 

elements of a target configuration to variability abstractions. BVR supports the gener-

ation of configurations from a base model via VSpec, Realization and Resolution 

editors. The VSpec editor supports the specification of feature models [3]. A feature is 

a characteristic of the system visible to the end user. In the VSpec model, the manda-

tory features are connected to the parent feature via solid lines, and dashed lines rep-

resent optionality. The VSpec also supports the specification of constraints between 

features using implication, alternative, and negation operators. The Resolution editor 

allows engineers resolving variability in a base model to obtain configuration models 

representing the desired product variants. 

The BVR Realization editor supports engineers on mapping variability abstractions 

(features) to elements of a base model based on placements and replacements within 

fragment substitution elements. A fragment substitution removes base model elements 

within placements and substitutes them with replacement elements based on feature 

selection. BVR [8] provides an intuitive and visual representation where placement 

and replacement elements are highlighted in red and blue colors respectively. Frag-

ment substitutions are executed based the variability definitions in the abstract 

(VSpec) and realization layers for deriving configuration models from a base model. 

The integration of EPF Composer and BVR within the AMASS platform allows map-

ping EPF method plugin elements to VSpec features in the BVR realization editor, 

and it supports variability resolution in method plugins. 

3 The Proposed Approach 

The purpose of our approach is supporting the management of the diversity of safety 

goals in variant-intensive platform system architectures and safety certification with-

out being unnecessarily stringent or expensive. In this section, we present the struc-

ture (Section 3.1) and the steps (Section 3.2) of our approach. We evaluated our ap-

proach in an automotive braking system platform. 

3.1 Approach Structure 

Our approach provides a conceptual framework to manage the diversity of safety 

goals, supporting the design and safety-certification of variant-intensive platform 
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components based on optimal and cost-effective ASIL allocation results, and auto-

mated (re)configuration of standard-compliant component process models. It relies on 

the integration of model-based safety analysis and ASIL decomposition, software 

process modeling, and variability management techniques. In this work, we consid-

ered HiP-HOPS ASIL decomposition extension for variant-intensive systems and 

product lines [16], EPF Composer for safety standard process modeling, and BVR for 

variability management on safety goals and EPF process models. This work enhances 

AMASS Platform with the support for configuring component process models ac-

cording to product line ASIL decomposition results provided by HiP-HOPS. In addi-

tion to the support for safety certification, our approach intends reduce the burden on 

configuring process models for components of large-scale and variant-intensive safe-

ty-critical software platforms. 

Fig. 1 shows an overview of our framework, comprising modules and their rela-

tionships in a SysML block diagram. The design of variant-intensive systems can be 

performed with the support of EAST-ADL [4] or MATLAB/Simulink and 

pure::variants integration. Preliminary ASIL decomposition for a given product vari-

ant is obtained through integration of HiP-HOPS [19] with Simulink or EAST-ADL 

based tools (e.g., EPM). Cross variant component lifecycle models are generated ac-

cording to component ASILs provided by product line HiP-HOPS ASIL decomposi-

tion extension. The generated process models provide standard-compliant guidance 

for specification and verification of the design of architectural subsystems and com-

ponents. Our approach requires the following input artefacts: ASIL decomposition 

results for a variant-intensive system design (provided by HiP-HOPS), the specifica-

tion of a superset (150%) process model for the targeted standard, e.g., produced us-

ing EPF Composer, the variability specification (VSpec) and realization models for 

the targeted standard Process Line using BVR tool. 

The concept of 150% model relates to the superset approach where different 100% 

configuration models are obtained, via selection and resolution of variation points 

from a 150% model containing both base and variable elements [2]. In our case, the 

150% model is an EPF/SPEM 2.0 standard Process Line. ASIL decomposition results 

for a variant-intensive system design are obtained from the analysis of ASIL decom-

position results from multiple system configurations (variants) relevant for the stake- 

 

Fig. 1. Tool framework modules and their relationships. 
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holders. Although the specification of 150% process model and its variability model 

seems to be a burden, these artefacts can be further reused across different projects 

and companies. 

The ASIL decomposition results, 150% process model for the targeted safety 

standard, and the BVR variability model are input artefacts to our Process Model 

Configurator and Generator algorithm
3
. For each system component, our algorithm 

invokes the BVR API to generate a new resolution model based on the assigned ASIL 

and it executes the BVR resolution method. We provide the following input parame-

ters to this method: the VSpec, VResolution, and VRealization models for generating 

an EPF method plugin that only contains the required activities, tasks and guidance to 

address the ASIL assigned to the component. This is done for each component of the 

hierarchical platform architecture. If a component contains subcomponents, the same 

procedure is executed to generate process models for each subcomponent. The algo-

rithm uses a recursive call for configuring and generating process models for architec-

tural subcomponents. This algorithm was implemented in Java and will be further 

deployed as an Eclipse plugin. 

The generated component process models provide development guidance and the 

basic claims for structuring an argument of conformance of component’s develop-

ment processes with safety goals established by the standard for the targeted ASIL. 

The produced lifecycle artifacts to address the safety goals provide the evidence that 

substantiate claims of conformance with safety standards. Component claims provid-

ed by development lifecycle models and the produced evidence can be used for struc-

turing modular safety arguments arguing the conformance of component development 

processes with safety standards, supporting the certification of platform components. 

Although there are similarities of our approach with what was done in EAST-ADL 

[4], the issue of variability is addressed more extensively here and it allows ASIL 

decomposition across a product line which was not done in EAST-ADL. 

3.2 Variant Management and EPF Model Configuration/Generation Process 

In this section, we describe the steps of our approach considering the ISO 26262 

standard and an automotive variant-intensive wheel braking system. 

Automotive Hybrid Braking System 

The Hybrid Braking System
4
 (HBS) [5] comprises one electrical motor per wheel. 

Fig. 2 shows the HBS architecture in a block diagram. The term hybrid means the 

braking occurs through the combined action of electrical In-Wheel Motors (IWMs), 

and frictional Electromechanical Brakes (EMBs). During braking, IWMs transform 

the vehicle kinetic energy into electricity, which charges the power train battery, in-

creasing the vehicle’s range. The HBS architecture comprises 4 variant wheel-brake 

modules (subsystems), 30 components with 69 connections. Each wheel brake mod-

ule comprises a Wheel Node Controller (WNC) for calculating the amount of braking  

                                                           
3 https://github.com/bressan3/HBS-HipHops-Results/tree/master/pseudocode 

4 https://github.com/bressan3/HBS-PL 
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Fig 2. Hybrid braking system architecture [5]. 

torque to be produced by each wheel braking actuator, and it sends commands to 

EMB and IWM power converters that control EMB and IWM braking actuators. 

While braking, the electric power flows from the Auxiliary Battery to the EMB via 

EMB Power Converter; and IWM acts as a power generator providing energy for the 

Powertrain Battery via IWM Power Converter. 

The wheel brake module is the HBS variation point. We can combine the four 

HBS wheel-brake modules into different ways to derive different system configura-

tions. The three HBS configurations for generating cost-effective EPF software pro-

cess models are: four wheel braking (4WB), front wheel braking (FWB), and rear-

wheel braking (RWB). The front-wheel brake modules and their connections to other 

components (Fig. 2) represent the realization of FWB configuration. Different hazards 

with different ASILs can rise from the interaction between components in each con-

figuration, impacting on ASIL decomposition. FWB and RWB raise two ASIL D 

hazards each with different causes. 4WB configuration raises two ASIL C and four 

ASIL D hazards [16]. 

The Process: Fig. 3 illustrates the approach steps, in an activity diagram, to support 

variability management on safety goals, configuration and generation of cost-effective 

EPF process models for variant-intensive software components. The starting points of 

the process are performing ASIL decomposition for a variant-intensive system design 

and the specification of 150% EPF process models. These steps can be performed in 

parallel. After that, we should manage variability on the process model(s) specified 

with the support of EPF Composer. In our approach, we use BVR for variability spec-

ification (i.e., specification of ASIL features) and variability realization (i.e., linking 

ASIL features to their respective process activities and guidance). Finally, the ASIL 

decomposition results, along with the EPF process model(s), BVR VSpec and realiza-

tion models are inputs to the process configurator. Finally, we derive process models 

for individual variant-intensive components according to their ASILs. We describe 

the inputs, purpose, and outputs of each step, considering the braking system and ISO 

26262 Part 6-7.4.8.1: System design and verification methods, as follows. 
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Fig. 3. Steps for configuration and generation of process variants. 

1 - Performing ASIL Decomposition in variant-intensive system design: Inputs: a 

set of ASIL decomposition results for configurations of a variant-intensive system 

design relevant for the stakeholders, obtained via execution of HiP-HOPS from con-

figuration’s fault trees and FMEA. Purpose: analyzing ASIL decomposition results 

from different system configurations to identify the ASILs that should be assigned to 

ensure the safe use of components across configurations. In our approach, we perform 

this activity with the support of HiP-HOPS ASIL decomposition extension for vari-

ant-intensive system design [16]. We send a set of configuration-specific ASIL de-

composition results (XML files) to the HiP-HOPS extensions performing the analysis. 

Outputs: the required ASILs to ensure the safe use of the components across system 

configurations. Three variants were examined from the HBS and the allocated re-

quirements (i.e., ASILs) to 30 components from which the variants are composed. 

The possible space allocations that satisfy the safety requirements in each HBS vari-

ant design is large, ranging from 1 to 850. The vast majority of those allocations 

would incur unnecessary costs, i.e., leading to component development at unneces-

sarily higher ASILs. From the analysis of the results provided by HiP-HOPS, one 

could see many allocations where costs were higher among those representing good 

solutions. For example, one allocation solution for a given HBS variant prescribes a 

stringent ASIL D to the BrakeUnit4.IWM component. Doing the allocation of ASILs 

manually could incur significantly higher waste of resources. Table 1 shows the best 

ASIL allocation solutions for HBS components per variant (see columns “4WB”, 

“FWB” and “RWB”) provided by HiP-HOPS. We further sent these allocations to the 

HiP-HOPS extension [16] for analyzing the ASILs assigned to 30 HBS components 

in each configuration to identify the allocations that ensure the safe use of compo-

nents across configurations (column “MAX ASIL”). 

2 - Specification of 150% EPF Process Models: Inputs: the targeted safety stand-

ard(s), e.g., automotive ISO 26262, to be modeled using EPF Composer. Purpose: 

specifying the superset (150%) standard process model(s) based on the standard(s) 

Table 1. ASIL decomposition results for HBS variant-intensive system components. 

Component MAX ASIL 4WB FWB RWB 

Auxiliary Battery D (4) D(4) D (4) D (4) 

BrakeUnit1.WheelNodeController B (2) A (1) B (2) - 

BrakeUnit1.EMB Power Converter B (2) A (1) B (2) - 

BrakeUnit4.IWM B (2) QM (0)  B (2) 
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documentation. This steps aims to obtain a superset model(s) with the required pro-

cesses, phases, activities, tasks, roles, work products and guidance per ASIL. We 

recommend engineers to follow the Snowball approach [14] rules for analyzing stand-

ard(s) and specifying EPF process models. The Snowball rules describe mappings 

between safety standard concepts and EPF/SPEM 2.0 abstractions. The ISO 26262 

Life-Cycle, Section, and ASIL recommendation concepts correspond to SPEM pro-

cesses, activities, and guidance respectively. In the EPF Composer, a process is a 

Delivery Process, activity is a Capability Pattern, and guidance is a Content Package: 

Guidance. Each content package contains optional, recommended, and highly rec-

ommended Tasks, Roles, Work Products, and Guidance to perform an Activity in 

compliance with all ASILs. Outputs: 150% EPF model(s), i.e., ISO 26262 Standard 

Process Line. We have followed the Snowball approach for specifying the EPF meth-

od plugin for the ISO 26262 Part 6-7.4.8.1: Verification of system design guidance 

(illustrated in Fig. 6a). Guidance can be highly recommended, recommended or op-

tional according to the targeted ASIL. We specified a method library with one content 

package with all the verification of system design guidance. 

3 - Specification of the Process(es) BVR VSpec Model: Inputs: the specification of 

superset (150%) standard(s) process models as an EPF method library with the re-

quired processes, phases, activities, roles, work products, and guidance per ASIL. 

Purpose: specify the VSpec model, using BVR, for the targeted standard(s) based on 

the standard guidance and the taxonomy of safety integrity levels. For example, ISO 

26262 defines five ASILs: QM, A, B, C, and D and a set of phases, activities, tasks, 

and recommended guidance to be followed per ASIL. Firstly, we create a VSpec mod-

el with an ASIL mutually exclusive feature group with the specification of each ASIL 

as a feature. We should also specify standard processes, phases, activities, tasks 

and/or guidance as features. For each task, we should create a feature group contain-

ing guidance features that represent the optional guidance to comply with each ASIL. 

Finally, we should specify constraints, using Basic Constraint Language (BCL) from 

BVR, to establish relationships between a given ASIL and its corresponding guidance 

feature. Outputs: the VSpec model for the EPF standard process model(s) with con-

straints highlighting the relationships between ASILs and their corresponding pro-

cesses, phases, activities, tasks, work products and guidance. Fig. 4 shows an excerpt 

of the VSpec model for the ISO 26262 Part 6-4.7.4.8.1: Verification of system design. 

We created an ASIL feature group with A, B, C, and D mutually-exclusive selection 

features. We also created features to represent: ISO 26262 Part 6 (process), clauses 

(tasks) and guidance that may present variability, e.g., Prototype generation and For-

mal verification features were specified as optional (Fig. 3). We specified constraints 

to link ASIL features to guidance features, e.g., (C or D) implies (not G+1d). 

4 - Specification of Process(es) BVR Variability Realization Model: Inputs: the 

specification of superset (150%) standard(s) EPF process models and the VSpec mod-

el. Purpose: specifying mappings linking features in the VSpec model with their real-

ization into EPF method plugin elements, e.g., content packages. For each 

ASIL/guidance related feature in the VSpec model, e.g., “G_1d”, we specify place-

ment and replacement (elements highlighted in blue in Fig. 5b) fragments, and create 
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Fig. 4. System design verification VSpec model. 

a fragment substitution by following the steps described in Section 2.3. After that, we 

link the created fragment substitution to a VSpec feature. Outputs: the variability 

realization model with mappings linking VSpec features to their realization into the 

EPF method plugin elements as illustrated in Fig. 5b. The variability realization mod-

el comprises two fragment substitutions that represent the realization of “G_1d” and 

“G_1e” VSpec features in the EPF process model. When G_1d feature is selected in 

the resolution model, we generate an EPF method plugin excluding the Prototype 

Generation guideline (highlighted in red in Fig. 5a) from the method plugin. If ASIL 

C or D is selected, then “G_1d” and “G_1e” features are chosen. 

 
Fig. 5. BVR variability realization model. 

5 - Process Configuration and Generation for Variant-Intensive Components: 

Inputs: ASIL decomposition results for a variant-intensive system design, 150% EPF 

method plugin, BVR VSpec and realization models. Purpose: generating EPF method 

plugins according to the ASILs assigned to each variant-intensive system component. 

We do this by providing the four aforementioned inputs to the Process Configurator 

and Generator program, which analyzes the ASIL decomposition results, and for each 

component: it selects the proper ASIL feature in the BVR resolution model, and in-

vokes BVR resolution passing the following parameters: VSpec, resolution, realiza-

tion, and the 150% EPF method plugin. These steps are performed to generate cost-

effective EPF method plugins for all system components. Outputs: a set of EPF 

method plugins, one per component. We generated EPF method plugins to 30 HBS 

components, e.g., ASIL D Auxiliary Battery and ASIL B IWM. Only ASIL D pro-

cesses contain stringent system design verification guidance. Therefore, we achieved 

a cost-effective configuration and generation of EPF method plugins for the HBS 

variant-intensive software components according to their ASILs. Fig 6 shows the base 

and derived component-specific method plugin models. It is important to highlight 

that any change in the system design and ASIL decomposition results directly impact 
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on the structure of component’s EPF process models. Our approach supports the man-

agement of the diversity on safety goals that can emerge from changes in the platform 

design, via automatic regeneration of EPF process models for components. 

The generated EPF process models provide the claims for arguing conformance of 

development processes of individual components with the allocated ASILs. The re-

sultant software development, verification, validation and testing artifacts from pro-

cess activities, provide the evidence that substantiate claims of compliance with safety 

goals defined for the targeted component ASIL requirements. Process conformance 

arguments for a given component can be automatically generated, with the support for 

model-based techniques, from component EPF process model and the respective de-

velopment artifacts. 

 

Fig. 6. Base method plugin and the generated component-specific process models. 

Considering an excerpt of the EPF process model for BrakeUnit1.IWM component 

(Fig. 6) to address ASIL B safety goals, we can build a safety argument with a claim 

arguing the “minimum torque is not violated while braking (ASIL B)”. This claim is 

further supported by sub-claims arguing the verification of system design (ISO 26262 

Part 4 Sec. 7.4.1.8) was performed following the recommended guidance to address 

ASIL B. These sub-claims argue that the following techniques were applied to verify 

the BrakeUnit1.IWM design: walkthrough, inspection, model simulation, control and 

data flow analyses. Finally, design walkthrough and inspection, control and flow 

analyses reports together with simulation results provide the evidence that substanti-

ate the sub-claims. The derived safety argument for each component can be organized 

into modules. 

Component argument modules can be further used to support safety certification of 

the whole configurable platform defined in the HBS design, instead of a specific con-

figuration. A configurable platform allows engineers deriving different variants by 

combining alternative components. Thus, platform safety argument modules provide 

valid assurance claims, supported by evidence that demonstrate that the components 

are acceptably safe to operate across a set of targeted configurations. 
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4 Related Work 

Existing work on this topic comprises modeling techniques [11, 13, 14] and tools 

[12], and ASIL allocation and decomposition [16]. Krammer et al. [13] proposed a 

method content approach based on the EPF Composer to define and formalize soft-

ware development processes, improving process management and tailoring activities. 

Their approach supports the tailoring of ISO 26262 lifecycle processes according to 

ASILs assigned to items, thus, improving reusability and extensibility of method defi-

nitions. Our 150% variability modeling approach on EPF process models also consid-

ers the impact of ASILs on process activities, tasks, and guidance with the advantage 

of using only one method content, avoiding the specification of redundant guidance in 

different method contents as present in the Krammer et al. [13] approach. Krammer et 

al. also provides mappings between EPF Composer and SPEM elements and ISO 

26262 concepts, which are the basis for the “Snowball” [14] approach for extracting 

SPEM 2.0 process models from standards. Luo et al. [14] propose the “Snowball” 

approach to support the extraction of the conceptual and process models from safety 

standards to enable the usage of these models for demonstrating compliance and reus-

ing assurance artefacts. This is a rule-based approach that contributes to reduce the 

manual work and it provides traceability between conceptual and process models, and 

the standard. The Snowball approach was applied in the automotive domain for speci-

fying ISO 26262 Part 3 process models using EPF Composer. The approach can also 

be used to specify process models of standards from other domains, e.g., aerospace 

DO-178C [22], and industry IEC 61508. The work of Luo et al. is not focused on the 

generation of cost-effective process models for components as presented in this paper. 

Javed and Gallina [12] propose the integration between the EPF Composer and 

BVR Tool to support variant management and resolution on EPF method libraries, 

establishing the concept of Safety-oriented Process Lines (SoPL). In [11], Javed et. al. 

integrated BVR, CHESS Toolset and EPF Composer to support co-engineering and 

integration of SoPLs and SPLs. The approach supports the specification of traceabil-

ity links between variability in the software architecture and process elements, and 

automatic generation of component variants and their respective process models. Alt-

hough Javed and Gallina consider the association between ASILs and process activi-

ties, work products, and guidance in the BVR realization model, the generation of 

process models for multiple components with different ASILs demands the manual 

configuration of resolution models, which can be burden in the case of a complex 

system design. Our approach automates the configuration EPF models based on ASIL 

assignment. Oliveira et al. [16] propose an extension to the HiP-HOPS design optimi-

zation to support ASIL decomposition throughout components of variant-intensive 

system architectures. Our approach enhances Oliveira et al. [16] work with the sup-

port for variability management on safety-oriented process lines and automated con-

figuration of EPF method plugins for components accordingly to their ASILs. 
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5 Concluding Remarks and Future Work 

In this paper, we presented an approach to support variability management on safety 

goals and semi-automatic configuration and generation of software process models 

for certification of variant-intensive components. The approach comprises a concep-

tual framework, tooling integration and a systematic process. In this work, we inte-

grated HiP-HOPS ASIL decomposition extensions [16] for variant-intensive system 

design, EPF Composer, and BVR tools, to support variability management on safety 

goals, configuration and automatic generation of cost-effective EPF process models 

for software components according to ASIL assignment. The process provides a set of 

steps to support engineers on generating cost-effective EPF process models for indi-

vidual components based on ASIL decomposition results. This work contributed to 

reducing the costs and effort for certifying individual components within a system 

family. The approach automated tailoring of development processes, and enabled 

component safety certification in compliance with the assigned ASILs, without being 

unnecessarily expensive. Our approach also enabled the reuse and customization of 

process models across multiple projects. The generated process models provide the 

basis for arguing the conformance of component development processes with ASIL 

requirements. A limitation in our approach is the need for manually creating a 150% 

EPF process model for the whole standard and a BVR model. As future work, we 

intend to evaluate our approach in other domains, e.g., aerospace. We also intend to 

enable support for automatic generation of process-based conformance arguments for 

individual components from EPF process models. Furthermore, we intend to improve 

and implement the process configurator algorithm as an Eclipse plugin. 
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