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Abstract
This article provides an optimisation method using a Genetic Algorithm approach to
apply feature selection techniques for large data sets to improve accuracy. This is
achieved through improved classification, a reduced number of features, and
furthermore it aids in interpreting the model. A clinical dataset, based on heart
failure, is used to illustrate the nature of the problem and to show the effectiveness
of the techniques developed. Clinical datasets are sometimes characterised as having
many variables. For instance, blood biochemistry data has more than 60 variables
that have led to complexities in developing predictions of outcomes using
machine-learning and other algorithms. Hence, techniques to make themmore
tractable are required. Genetic Algorithms can provide an efficient and low
numerically complex method for effectively selecting features. In this paper, a way
to estimate the number of required variables is presented, and a genetic algorithm is
used in a “wrapper” form to select features for a case study of heart failure data.
Additionally, different initial populations and termination conditions are used to
arrive at a set of optimal features, and these are then compared with the features
obtained using traditional methodologies. The paper provides a framework for
estimating the number of variables and generations required for a suitable solution.

Keywords: feature selection, feature optimisation, genetic algorithms, human
reasoning, wrapper selection

1. Research background—introduction

The explosion of data capture in general, and specifically in the health industry, has

created new challenges in terms of understanding and benefitting from the data [1].

This increase in data has led to an explosion in terms of the size and dimensional

complexity of datasets, with respect to the number of distinct measurements or
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features. When machine-learning and data mining algorithms are applied to
high-dimensional data, the performance of pattern modelling and the effectiveness
of classification is reduced [2], as the computational complexity increases in terms
of both processing time and the storage space required (see [3, 4] and [5]).

Reducing dimensionality can be done by using one of two primary methods,
namely feature selection and feature extraction. Feature extraction creates a new
smaller set of features that projects the original high-dimensional features to a new
feature subset with lower dimensionality. On the other hand, feature selection is the
process of creating a smaller subset by removing irrelevant and redundant features.
Hence, they are both considered as effective dimension reduction approaches,
having the advantage of improving learning performance, increasing computational
efficiency, decreasing memory storage, and building better generalisation
models [6]. A distinction between the two is that, in feature selection, a subset of
the original features is created, whilst for feature extraction, a set of novel features is
produced from the original features [7].

Feature selection is based on selecting a subset of features from the original
dataset where [8]:

(a) Reduction to the classification accuracy itself is minimised;
(b) The class distribution of the values for the selected features is optimised to be
close to the class distribution of the original set of all the features.

There are three recognised approaches to feature selection, namely filter, wrapper
and embedded approaches [9, 10]. Firstly, filter selectionmethods apply a
statistical measure to assign a weight to each feature according to its degree of
relevance. The advantages of filter methods are that they are fast, scalable and
independent of a learning algorithm.The most distinguishing characteristic of filter
methods is that a relevance index is calculated solely on a single feature without
considering the values of other features [11]. Such an implementation implies that
the filter assumes the orthogonality of features—which may not be true in
practice—ignoring any conditional dependency (or independence). This is known
to be one of the weaknesses of filters. Secondly,wrappermethods evaluate
features using a black box predictor to evaluate a feature subset [3, 12]. With these
methods, the possible number of subsets which can be created and evaluated could
be 2n, where n is the number of features and thus becomes an NP-hard problem.
Finally, the embedded approach combines the previous two methods, where the
feature selection is carried out alongside creating a model, with specific learning
algorithms that perform feature selection during the process of training.

In a typical case, the feature selection problem can be solved optimally using an
exhaustive search to evaluate all possible options. Typically, a heuristic method is
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employed to generate subsets of features for evaluation procedures, where each
subset is evaluated to determine the “goodness” of the selected features. The current
work focuses on the application of Genetic Algorithms (GAs) to the feature
selection problem, while also addressing some of the underlying fundamental
problems of Genetics Algorithms, namely (i) when do we terminate the algorithms,
(ii) how to determine the number of chromosomes to be used and (iii) how much of
the search space has been explored. By integrating a GA within a feature selection
problem, it is possible to develop a framework within which answers to these
questions can be obtained.

This paper first casts the problem of feature selection as an optimisation problem,
which automatically lends itself to the application of Genetic Algorithms (section 2).
Furthermore, by casting exploration of the subset set space as a graph problem, it is
feasible to derive specific properties for the GAs as applied to the feature selection
problem. Finally, in section 3, through the use of a Heart Failure dataset [11, 13] the
approach is applied and evaluated [14, 15]. Appendix A provides a list of all of the
variables for the case considered below, and Appendix B, Table 4 provides a list of
the main acronyms.

2. Methodology: optimisation of feature selection
This research was primarily based on an experimental approach, where feature
selection was applied to a published data set to identify the most important factors.
This was then compared with established practice by clinicians, to validate the
computer based identification of the key factors.

Section 3 describes the theory and relevant background material on feature
selection. It develops the theory and provides proofs of some of the relevant
properties that enables estimates of the number of iterations required to achieve a
solution. This is then applied to a large clinical data set to demonstrate the
effectiveness of the techniques and approach.

2.1. Classical features selection

All feature selection algorithms typically consist of four steps (see figure 1), namely:

1. a subset generation step;
2. evaluation of the subset;
3. a step to check against the stopping criteria, and once this is met, finally
4. a result validation step [5, 16], and [17].

Classically, a heuristic method is employed to generate subsets of features for
evaluation procedures, where each subset is evaluated to determine the “goodness”
of the selected features. The validation is done by carrying out different tests and
comparisons with the previous subset. If a new subset has worse performance,
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Figure 1. Four steps for feature selection process [8].

then the previous subset is retained. This process is repeated until a stopping
criterion is reached, as shown in figure 1. A feature is a variable in a dataset, and as
mentioned previously, if the number of variables is large, this can lead to problems
that are intractable, i.e. cannot be solved in polynomial time. One approach that can
aid in finding solutions is to reduce the number of features by selecting features, to
drop those features that are deemed unnecessary, or that may actually impede the
predictive performance of a model.

A general feature selection problem, with n features and a fixed subset size of d,
would require (nd) subsets to be examined to get the optimal result. Considering all
subset sizes, it would generally require 2n subsets to be evaluated, and it has been
shown that no non-exhaustive sequential search can be guaranteed to produce an
optimal subset [18]. However, by creating an ordered sequence of errors for each of
the subsets, a branch-and-bound feature selection algorithm can be used to find an
optimal subset more quickly than an exhaustive search [19]. The problem of feature
selection can be stated as follows [20]:

Given a set F of features (variables or attributes) {f1, f2, f3, … fm} and a set C of
classes; and wherem is the number of features, let
Sd = {(f 1,C1), (f 2,C2)(f 3,C3) … (f n,Cn))} be the dataset, where
F = {f1, f2, f3, … fm} is the set of features, and f i ∈ Rn, and Ci ∈ Z2 are the set of
features describing a possible class C. For simplicity, we assume two classes, but this
can be extended to more classes. The problem learning classifier can be stated as
follows: find a set of parameters 𝜃 such that

n

∑
i=1

D(Ci, Ĉi) (1)

where Ĉi = g(fi, 𝜃), and g is the model predictor function,The cost function D(Ci, Ĉi)
is an error squared function of the form D(Ci, Ĉi) = 1

2 (Ci − g(fi, 𝜃))2; where 𝜃 ∈ Rn is
the vector of parameters for the model.
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Given the ease of data collection, a particular issue is that they often have far
more variables than are strictly necessary to achieve a correct result. This is more
acute in clinical datasets. The problem becomes one of reconstructing the data set
with a reduced, optimal, number of features, Fi ⊆ F;

Definition 1. A feature set Fi ⊆ F, is said to be optimal if:

a. the relationships between F& C are maintained using Fi

b. Fi ⋂ FC =∅; where FC is the complement of Fi.

Such a formulation lends itself to a combinatorial search for an optimal set of
features (see [21–23]). An alternative approach is to consider the two problems of
feature selection and classification together [24], through the use of scaling
variables 𝜔i ∈ Z2, i = 1, 2, … , n.. for the features, such that the feature selection
problem becomes one of optimising an objective function over 𝜔. Thus, a particular
feature f i is removed if 𝜔i = 0. The overall problem becomes one of optimising for
both 𝜃 and 𝜔 and can be written as

n

∑
i=1

D(𝜔iFi, 𝜃) s.t.
m

∑
i=1

𝜔ij ≤ m, j = 1, 2, …n} (2)

Remark. The length of 𝜔i ∈ Z2, i = 1, 2, … , n is equal to the length of the number of
features in the data set, where 𝜔i is equal to 1 if the feature is present, and 0 if the
feature is to be ignored. Thus, the vector 𝜛 = {𝜔i} is a binary bit-string, and as will
be seen later is essentially the chromosome utilised in the genetic algorithm, where
{𝜛i}, i = 1, 2, 3, … , P is a set of chromosomes and P is the population size.

In order to investigate the properties of (2), we need the following proposition:

Proposition 1. Let

Ω ≜ {𝜔i ∶
m

∑
i=1

𝜔i − m < 0; 𝜔i ≥ 0} (3)

Then for 𝜔 ∈𝛺;

D(𝜔) ≜ arg arg{
n

∑
i=1

D(𝜔iFi, 𝜃); 𝜃 ∈ Rk} is a concave set.

The problem D (𝜔); s.t. 𝜔 ∈𝛺 is equivalent to solving equation (2).

The proof is routine and follows the methodology that can be found in [21] & [24].
The approach taken by a feature search algorithm for selecting optimal feature sets
is often an iterative one, where two problems are repeatedly solved, these are:
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Figure 2. Genetic Algorithms operations of mutation and crossover for FSP2.

1.
FSP1: for a given ̂𝜃 ∈ Rkmin{

n

∑
i=1

D(𝜔iFi, ̂𝜃)} (4)

2.

FSP2: for a given �̂� ∈ Ω;min{
n

∑
i=1

D(�̂�iFi, 𝜃)} (5)

2.2. Feature selection using genetic algorithms (GAs)

A Genetic Algorithm ensures that over successive generations, the population
“evolves” toward an optimal solution based on the principle of survival of the fittest
(see [3, 9, 17]). GAs allow the combining of different solutions generation after
generation to extract the best solution in the quickest time [25]. Generally, the
search method used by Genetic Algorithms has lower complexity than the more
formal approaches mentioned earlier [26].

The individuals in the genetic space are called chromosomes. The chromosome is
a collection of genes where a real value or a binary encoding can generally represent
genes. The number of genes is the total number of features in the data set. Thus, the
vector 𝜛 = {𝜔i} is a chromosome, and 𝜔i is the ith gene. The collection of all
chromosomes is called the “population”, P. Typically, a set P of chromosomes, are
generated randomly. The problem FSP2 is then solved iteratively through the use of
two operators, namely Crossover and Mutation (see figure 2).

Every iteration or generation, a new set of chromosomes are evaluated through
the use of a fitness function. This is typically the cost function used in FSP1. Given

AI, Computer Science and Robotics Technology 6/21



the population, P, there are essentially P subsets of features being evaluated at every
iteration. In this approach, the chromosomes with the least performance (or fitness)
are also eliminated, thus not available for the cross over or mutation operations. In
this manner, good subsets are “evolved” over time [22].The commonly usedmethods
for selection are Roulette-wheel selection, Boltzmann selection, Tournament
selection, Rank selection, and Steady-state selection. The selected subset is ready for
reproduction using crossover and mutation. The idea of a crossover operator is that
some combination of the best features of the best set of chromosomes would yield a
better subset. On the other hand, mutation takes one chromosome and randomly
changes the value of a gene. Thus, adding or deleting features in a subset. This
process is repeated until there is no improvement, or as is often the case, a set
number of iterations or generations is reached. This is illustrated in figure 3.

The general structure of the algorithm is as follows

Step 0: Choose an initial population,M, of chromosomes of length n

Step 1: Evaluate the fitness of each chromosome

Step 2: Perform Selection

Step 3a: Perform Crossover

Step 3b: PerformMutation

Step 4: Evaluate fitness,

if stopping criteria satisfied Stop; Else go to Step 2.

Steps 1 and 4 solve PSP2, steps 3a and 3b solve FSP1.

The solution to both FSP1 and FSP2, can be considered to be a set of Kuhn-Tucker
points, i.e. points that satisfy the K_T conditions for FSP1 and FSP2, but never
together at the same time [22].

For most optimisation techniques, there is often a requirement that the cost
function is monotone. However, there is no guarantee that this is satisfied globally.
However, if the cost function is not locally monotone somewhere, a solution to the
problem will not exist. It is possible to estimate the number of generations required
to arrive at an optimal set of features of the requirement of monotonicity is enforced
in the GAs.Thus, if it were made explicit that from one generation to generation the
best subset is an improvement on the previous best, the sequence of cost function
values would be monotone. One of the consequences of the monotone requirement
is that the initial population of chromosomes and the final set of chromosomes are
disjointed.

This condition can be satisfied for the initial population only; for subsequent
generations, this may be not possible, for the same operation on two different pairs
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Figure 3. GAs as a feature selection [9].

of chromosomes may result in the same set of chromosomes as children. However,
given this restriction, it is interesting to use this to gain an insight into the operation
of GAs.

Definition 2. A generation g is an ordered set of M chromosomes, where M is the
initial population of chromosomes. Thus if g = {f g1 , f g2 , … f gM}, then the fitness
function J has the property

J(f g1 ) < J(f g2 ) < ⋯ < J(f gM) (6)

Definition 3. The fitness function J (.) is said to be genetically monotone if for the
i’th generation

J(f i−1
1 ) < J(f i1) (7)

The second definition is interesting and required for further analysis. It
essentially focuses on the first or leading chromosome of any generation, since for
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each generation, the chromosomes are ordered (definition 2). This definition also
suggests that with every successive generation, the fitness of the leading
chromosome of the i’th generation is better than the previous generation.

Definition 4. Two generations gi and gi+1 are said to be generationally disjoint if gi

∩ gi+1 =∅.

This definition is required to keep in line with the requirements of analysis based
on graph searches.

Proposition 2. For a given fixed M, where M is the number of chromosomes, and a
genetically monotone fitness function J (.), if the genetic operators are such that
every generation is generationally disjoint, the maximum number of generations,
Ng, needed to determine the fittest chromosome is then given by

Ng = 2(n − 1)
M

(8)

The proof follows from the definitions. The conditions (assumptions) here are
often difficult to satisfy. Getting an ordered set for a generation is already present in
the algorithm, and so is the presence of a genetically monotone function in the form
of a fitness function. However, the genetically disjoint requirement is difficult to
satisfy, and there is no guarantee it will be fulfilled at all during a given run of the
algorithm.Thus, often the terminating criteria of a genetic algorithm are the number
of generations. In most random search algorithms, the function J (.) is guaranteed to
be monotone.

Definition 5. Two generations gi and gi+1 are said to
be partially generationally disjoint if gi ∩ gi+1 ≠ ∅ and |gi ∩ gi+1| <M.

Proposition 3. If the sequence of generation sets g1, g2, g3, …, gN, whereN is the
Nth generations are all partially genetically disjoint, and given a monotone fitness
function, then asN→ ℵ∕M the top feature subset is given by f g1 is that that f1 → ̂f1
where ̂f1 is the optimal feature subset.

The proposition is both intuitive and follows the fact that every generation set gi

is ordered and that the fitness function is genetically monotone thus J(f i−1
1 ) ≤ J(f i1)

for all i. Essentially this proposition is suggesting that in the limit the maximum
number of generations leads to an exhaustive search through all subsets of features.
In practice there are feature sets, which can be discounted, these the sets with no
features, all the features and one feature; therefore, the number of subsets to be
evaluated is 2n − (n + 2). Simultaneously, ifM is sufficiently large, the number of
generations is reduced significantly. However, this is a technological limitation
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rather than an algorithmic limitation. In the limiting case asM→ nwhat is obtained
is nothing more than an exhaustive search.

Louis and Rawlins [27] have shown that the crossover operator has no role to play
in the convergence of the algorithms, as the average Hamming distance of the
population in every generation is maintained. Their analysis indicated that the
selection criteria are on which dictates the convergence rate of the genetic algorithm.
Their analysis shows that the traditional crossover operation, like 1-point, two-point
l-point, uniform crossover, does not change the average Hamming distance of the
chromosomes within a generation, and thus, the difference of the distance from
generation to generation is maintained.They suggested that selection criteria are the
main parameter for determining convergence. However, Greenhalgh and
Marshall [27], showed that irrespective of the coding (binary or otherwise), the key
controller of convergence (or the ability of the genetic algorithm to have visited all
the possible points available) is given by the mutation probability. They indicated,
following on from Aytug et al. (1996) [28] that a mutation rate of 𝜇 ≤ K−1

K ; where K
is the cardinality of coding rate 𝜇 ≤0.5, allows for convergence in the worst case (it is
essentially an upper bound). However, most implementations of genetic algorithms
allow for a mutation rate far smaller than this. This then leads to the following.

Proposition 4. For a given 0 ≤ 𝛾 < 1, and 𝜇 ≤0.5 (where 𝛾 is the crossover parameter)
the genetic algorithm generates feature subsets which are generationally disjoint. i.e.

gi ∩ gi+1 ≠ ∅ and |gi ∩ gi+1| < M. (9)

The proof is intuitive. Even though crossover may lead to all the subsets of a
particular generation being identical, the presence of mutation changes this.
However, with both present, it is always the case [27]. These two conditions imply
that every generation has a set of chromosomes which have not been evaluated in
the previous generation, that the crossover operations do not generate the same
solutions within a generation, and we would need at most P

2 + n − 1 generations to
arrive at a solution. Within the definitions of the GAs, it is not possible to guarantee
both of these can be satisfied. If they are, it is feasible to determine the number of
generations required to arrive at a solution given the initial population size.

2.3. Complexity of the GAs

In order to assess the complexity of the Genetic Algorithms, we need to consider the
following:

(a) The initial population size, and
(b) The number of generations required to satisfy the performance criteria.
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GAs can often reach a state of stagnation, a possible reason for this that the above
two points act as constraints, and it becomes feasible that the same population is
generated at every generation. In order to get a deeper insight into the process,
consider the following:

Since n-features means that each chromosome consists of n-bits, the total number
of possible chromosomes is 2n. However, two of these can be discarded—these are
when all the genes are either 0 or 1. If we consider these 2n chromosomes as the
vertices of an n-dimensional hypercube, an exhaustive search by the Genetic
Algorithm will cover all the possible vertices, given by

ℵ = 2n − 22 ( 60!
2(58! ) + 60!

59!) . (10)

However, the problem of the search can be reduced in complexity if searching
vertices can be interpreted as a search through a graph [26].

3. Selecting features for a clinical dataset
The dataset under consideration is a real-life heart failure dataset [29]. In this
dataset, there are 60 features for 1944 patient records (See Table 3 in Appendix A).
The classification here is simply “dead” or “alive”. The data sets were imputed by
different methods such as Concept Most Common Imputation (CMCI) and Support
Vector Machine (SVM).The different datasets obtained were tested in order to select
a good set for feature selection [29].The selection of a dataset was based on accuracy,
sensitivity and specificity. The dataset where the imputation was based on SVMwas
thus selected. The experiments were designed usingWeka (version 3.8.1-199-2016),
and validation was done using a 10-fold validation. It can be seen from Alabed et al.
(2020) [30] that this dataset, with all 60 features present gave the best results for
both the Random Forest and Bayes Net classifiers, the other two not far behind.

The GAs was implemented as described earlier and can be seen in [31]. The
parameters for the GAs are shown in Table 1.

3.1. Population size

In most evolutionary methods, and Genetic Algorithms in particular, the population
size—i.e. the number of chromosomes—is of particular interest. This often
influences the quality of the solution and computing time and is also dependent
on the available memory [32–34]. There have been a number of studies on
appropriate population sizes, see [35, 36], with many suggesting that a “small”
population size would result in poor solutions [37–39], while a “large” population
size would result in greater complexity in finding a solution [40, 41]. Indeed, this is
apparent if the problem is viewed as a search through the 2n vertices of the
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Table 1. GAs parameters.

GAsParameter Value

Number of features 60
Population size 50, 75, 100
Genome length 60
Population type Bit strings
Fitness function kNN-based classification error
Number of generations 130
Crossover Arithmetic crossover
Mutation Uniform mutation
Selection scheme Roulette wheel
Elite count 2

n-dimensional hypercube. However, none have so far suggested an appropriate size,
or at least an effective estimate.

3.2. Selection of chromosomes for genetic operations

The chromosomes are evaluated using a fitness function based on Oluleye’s fitness
function [31]. Here the function is minimising the error while at the same time
reducing the number of features (see equation (2)). The fitness function which
evaluates the chromosomes is based on the kNN-function [31]. The chromosomes
are ranked based on the kNN based fitness. In this case, chromosomes with the
lowest fitness have a better chance of surviving.

A roulette wheel selection approach was used for selecting the chromosomes for
the crossover operations where each individual is assigned as a “slice” of the wheel
in proportion to the fitness value of the individual. Therefore, the fitter an individual
is, the larger the slice of the wheel. The wheel is simulated by a normalisation of
fitness values of the population of individuals as discussed in FSP2. The selection
process is shown below

Step 1 Determine the sector angles for each chromosome

Step 2 Generate a random number r ∈ [0,2𝜋]

Step 3 Select the i’th chromosome

Step 4 And repeat.

It should be noted that the chromosomes are a bit string, clearly for such
representation we could use a single point or a n-point crossover. Of course, a single
point crossover would be limiting if the number of variables is large. However, an
n-point crossover strategy would be more suitable for a large set of
variables [42–44].
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Figure 4. Performance results of GAs for different population sizes and generations
(RF classifier- using 27 features).

Figure 5. Performance results of GAs for different population sizes and generations
(BN classifier- using 27 features).

4. Research overview—results

This paper focuses on two aspects of feature selection, (a) the total number of
subsets (population size) to be evaluated at each iteration, and (b) the number of
features in each subset.

In order to assess the appropriate population size, different population sizes were
tested. The results are presented in figures 4 and 5. The best results were obtained
where the population is 100 and k = 5 as shown in figure 5, using 27 features from the
60. As K is increased, the accuracy changes as shown in figures 4 and 5.
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Figure 6. Outcomes from the models with a variety of parameters. The lower set of
data in each figure shows the Best Fit.

In order to investigate if larger population sizes improve the performance
dramatically, the population was increased in steps to 400, 600, and 800. Figure 6
shows the accuracy for different generations, and the optimal accuracy is 86.3%
which is less than 87.7% that was achieved using a population of 100.The results also
indicate that an increase in population size does not change the results significantly
to warrant the increase in complexity to achieve these results.

Another test was carried out with 3 population sizes of 50, 75, 100 (see figure 4).
And running the Genetic Algorithms for a different number of generations, and
different values of k (the fitness function parameter). A small value of kmeans that
the noise will have a higher influence on the algorithm, while larger k not only
reduces the effect of noise, but also increases computational and numerical
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Figure 7. Performance GAs for different population sizes and generations (RF
classifier- using 14 features).

complexity. In all these tests, it can be seen that the mean value of the fitness
function was best with a k = 5.

At the same time, it can be noticed that the value of the best-fit chromosome in
each generation oscillates after the initial improvements. This clearly indicates the
algorithm has arrived at a set of features which are good, but it starts to oscillate,
and an increase in the number of generations does not change either the value of
fitness with the best chromosome, nor does the mean value change. Indeed,
the number of generations was increased to 130 and the results are similar. The
results shown in figure 6 show that the performance has not significantly improved
but confirmed the earlier analysis of the possible number of generations needed and
in [15]. Thus, for this dataset approximately 50 generations are needed for
convergence of the best-fit chromosome.

This is further illustrated in figures 7 and 8. Here the performance of the selected
features in classification is shown for the tests runs shown in figure 6. This further
confirms, what was shown in figures 4 and 5.

The question then remains one of determining whether an optimal solution has
been obtained. Figure 6, illustrates two aspects of the feature selection problem.
The first is that independent of the number of generations or population size the
optimal value of the fitness function is reached. However, what is the chromosome
which is the best is an answer which is difficult to arrive at independently. The
oscillatory behaviour of the fitness of the best chromosome in all cases shows that
there is no one chromosome which is the best and that it is possible there is more
than one chromosome which is good.This is where, an expert in the application
has to be consulted in order to pick an appropriate sub-set of features for the
application.
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Figure 8. Performance GAs for different population sizes and generations (BN
classifier- using 14 features).

It has been suggested [43, 44] that the performance can be further improved by
running a second level GAs. Thus, using the 27 features, selected by the genetic
algorithm, the number of selected features were reduced from 27 to 14 features as
shown in figure 7; however, the performance of GAs has slightly reduced by 1%
where the accuracy was 87.8% to 86.77%. Figure 7 shows the results obtained for
these tests.

In order to assess this, further tests were carried out. Two further feature
selection algorithms were used. The Symmetrical Uncertainty [43, 44] and
Correlation-Based-Selector (CFS) [45]. These results were compared to those
obtained by Al-Khaldy [46]. Al Khaldy investigated several feature selection
methods, including wrapper and filters methods, and further used a representative
set of classification methods for evaluating the features selected. These methods
enabled the identification of a core set of features, from the same dataset. Table 2
represents the common features between this work and Al Khaldy [46] work. It
could be noticed that there is a common feature between both of them.

It is said that there is no so-called “best feature selection method” [47] since the
performance of feature selection relies on the performance of the learning method.
The number of features selected by the GAs was 27 features using GAs and the
accuracy was 87.8%. Of these features, three variables are the ones used by clinicians
in diagnosing heart failure [46], namely Urea, Uric acid and Creatinine.

5. Conclusions
Feature selection algorithms based on analytical methods are numerically complex.
On the other hand, Genetic algorithms, are less complex and can be used to arrive at
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Table 2. Common Features between GAs, CFS, Systematical uncertainty and the Al
Khaldy [46] study.

Common feature betweenGAs, CFS,
systematical uncertainty

AlKhaldy

Urea (mmol/L) 4
Uric Acid (mmol/L) 4
MCV (fL) 5
Iron (umol/L) 6
Ferritin (ug/L) 4
CRP (mg/L) 3
CT-proET1 7
LVEDD (HgtIndexed) 6
E 3
Height (Exam)(m) 2
FVC (L) 6

a solution to complex optimisation problems. Casting the feature selection problem

as an optimisation problem, and using a Genetic Algorithm for its solution provides

us with a solution which is useful. However, the key questions of population sizes,

the number of generations etc. remain to be answered. This paper, provides partial

answers to these questions. Through the analysis of a complex dataset, it has

illustrated the rules of thumb. What is interesting, is that the required number of

generations does not change much given the different population sizes. What

changes is the chromosome with the best fitness, this is natural for most feature

selection problems. It shows that although it is possible to select a good sub-set, this

subset is not unique and that there will always be a small variation in them.The

compromise here is based around (a) expert advice, (b) the extra computational

effort and (c) the marginal improvement in performance. The trade-offs are often

then dependent on the nature of the application, if the margins are very fine, then a

small marginal improvement in performance is well worth it.
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Appendix A
Table 3. All 60 features of the heart failure dataset [29].

Feature
Number

FeatureName (measurement) Feature
Number

FeatureName

1 Age 31 MR-proADM
Mid regional pro-adrenomedullin

2 Sodium (mmol/L) 32 CT-proET1
C-terminal proendothelin-1

3 Potassium (mmol/L) 33 CT-proAVP
Copeptin

4 Chloride (mmol/L) 34 PCT
procalcitonin

5 Bicarbonate (mmol/L) 35 Rate (ECG) (bpm)
6 Urea (mmol/L) 36 QRSWidth (msec)

QRS complex width
7 Creatinine (umol/L) 37 QT

QT Interval
8 Calcium (mmol/L) 38 LVEDD(cm)

left ventricular end-diastolic
diameter

9 Adj Calcium (mmol/L) 39 LVEDD (HgtIndexed)
10 Phosphate (mmol/L) 40 BSA (m2)

Body Surface Area
11 Bilirubin (umol/L) 41 Left Atrium (cm)
12 Alkaline Phophatase (iu/L) 42 LeftAtrium (BSAIndexed)
13 ALT (iu/L) 43 Left Atrium (HgtIndexed)

Alanine transaminase
14 Total Protein (g/L) 44 Aortic Velocity (m/s)
15 Albumin (g/L) 45 E

Examination
16 Uric Acid (mmol/L) 46 Height (Exam) (m)
17 Glucose (mmol/L) 47 Weight (Exam) (kg)
18 Cholesterol (mmol/L) 48 BMI

Body Mass Index
19 Triglycerides (mmol/L) 49 Pulse (Exam) (bpm)
20 Haemoglobin (g/dL) 50 Systolic BP (mmHg)
21 White Cell Count (109/L) 51 Diastolic BP (mmHg)
22 Platelets (109/L) 52 Pulse BP (mmHg)
23 MCV (fL) 53 Pulse BP (mmHg)

mean corpuscular volume
24 Hct (fraction) 54 FEV1 (l)

hematocrit Forced expiratory volume
25 Iron (umol/L) 55 FEV1 Predicted (l)
26 Vitamin B12 (ng/L) 56 FEV1
27 Ferritin (ug/L) 57 FVC (l)

Forced vital capacity
28 CRP (mg/L) 58 FVCPredicted (l)

C-Reactive Protein
29 TSH (mU/L) 59 FVC

Thyroid-Stimulating Hormone
30 MR-proANP 60 PEFR (l)

Mid-regional pro atrial
natriuretic peptide

peak expiratory flow rate

AI, Computer Science and Robotics Technology 18/21



Appendix B
Table 4. Acronyms and abbreviations.

Acronym Meaning

CFS Correlation-based-selector
D Cost function
F Set of features
FSP Feature search problem
GA Genetic algorithms
J Fitness function
NP Non-deterministic polynomial-time

References
1 Katoch S., Chauhan S. S., KumarV. A review on genetic algorithm: past, present, and future.Multimed.
Tools Appl., 2021; 80: 8091–8126. https://doi.org/10.1007/s11042-020-10139-6.

2 Moslehi F.,Haeri A. An evolutionary computation-based approach for feature selection. J. Ambient
Intell. Human Comput., 2020; 11: 3757–3769. https://doi.org/10.1007/s12652-019-01570-1.

3 ChandrashekarG., Sahin F. A survey on feature selection methods. Comput. Electr. Eng., 2014; 40(1):
16–28.

4 PanthongR., SrivihokA.Wrapper feature subset selection for dimension reduction based on ensemble
learning algorithm. Procedia Comput. Sci., 2015; 72: 162–169.

5 KumarV.,Minz S. Feature selection: a literature review. Smart Comput. Rev., 2014; 4(3): 211–229.

6 Cheng L. J.,WangK.,Morstatter S., Trevino F., Tang, J. R. P., LiuH. Feature selection: a data
perspective.ACM Comput. Surv., 2017; 50(6): 1–45.

7 Xue B., ZhangM., BrowneW.N., YaoX. A survey on evolutionary computation approaches to feature
selection. IEEE Trans. Evolut. Comput., 2016; 20(4): 606–626.

8 DashM., LiuH. Feature selection methods for classifications. Intell. Data Anal., 1997; 1(4): 131–156.

9 Cai J. et al. Feature selection in machine learning: a new perspective.Neurocomputing, 2018; 300: 70–79.

10 ShikhpourandR. et al. A survey on semi-supervised feature selection methods. Pattern Recognit., 2017;
64: 141–158.

11 AnbarasiM. et al. Enhanced prediction of heart disease with feature subset selection using genetic
algorithm. Int. J. Eng. Sci. Technol., 2010; 2(10): 5370–5376.

12 Kohavi R., JohnG.H.Thewrapper approach. In: Liu H., Motoda H. (eds), Feature Extraction,
Construction and Selection. The Springer International Series in Engineering and Computer Sciencevol.
453, Boston, MA: Springer, 1998; p. 33.

13 Akhil J.,Deekshatulu B., Chandra P. Classification of heart disease using K-nearest neighbour and
genetic algorithm. Procedia Technol., 2013; 10: 85–94.

14 Tiwari R., SinghM. P. Correlation-based attribute selection using genetic algorithm. Int. J. Comput.
Appl., 2010; 4(8): 28–34.

15 Alander J. T.On optimal population size of genetic algorithms. In: CompEuro 1992 Proceedings Computer
Systems and Software Engineering, The Hague, Netherlands. 1992; pp. 65–70.

AI, Computer Science and Robotics Technology 19/21

https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s12652-019-01570-1


16 LiuH., YuL. Toward integrating feature selection algorithms for classification and clustering. IEEE
Trans. Knowl. Data Eng., 2005; 17(4): 491–502.

17 JainA. K.,DuinR. P.W.,Mao J. Statistical pattern recognition: a review. IEEE Trans. Pattern Anal.
Mach. Intell., 2000; 22(1): 4–37.

18 Cover T.M.,VanCampenhout J.M. On the possible orderings in the measurement selection problem.
IEEE Trans. Syst. Man Cybern., 1977; 7: 657–661.

19 Narendra P.M., FukunagaK. A branch and bound algorithm for feature subset selection. IEEE Trans.
Comput., 1977; 26: 917–922.

20 JainA. K., ZongkerD. E. Feature selection: evaluation, application, and small sample performance. IEEE
Trans. Pattern Anal. Mach. Intell., 1997; 19(2): 153–158.

21 Selim S. Z., IsmailM.A. K-means-type algorithms: a generalised convergence theorem and
characterisation of local optimality. IEEE Trans. Pattern Anal. Mach. Intell., 1984; PAMI-6(1): 81–87.

22 SiedleckiW., Sklansky J. A note on genetic algorithms for large-scale feature selection. Pattern Recog.
Lett., 1989; 10(5): 335–347.

23 Sushil L. J.,Gregory J. E. Predicting Convergence Time for Genetic Algorithms. 1993; pp. 141–161.

24 Bradley P. S.,MangasarianO. L. Feature selection via concave minimisation and support vector
machines. In: Shavlik J. (ed.), Learning Proceedings of the Fifteenth International Conference (ICML’ ’98).
San Francisco, CA: Morgan Kaufmann, 1998; pp. 82–90.

25 Leardi R., Boggia R., TerrileM. Genetic algorithms as a strategy for feature selection. J. Chemometr.,
1992; 6(5): 267–281.

26 Louis S. J., RawlinsG. J. Predicting convergence time for genetic algorithms. Found. Genet. Algorithms,
1993; 2: 141–161.

27 GreenhalghD.,Marshall S. Convergence criteria for genetic algorithms. SIAM J. Comput., 2000; 30:
269–282.

28 AytugH., Bhattacharrya S., KoehlerG. J. AMarkov chain analysis of genetic algorithms with power of 2
cardinality alphabets. Eur. J. Oper. Res., 1997; 96: 195–201.

29 KhaldyM., Kambhampati C. Performance analysis of various missing value imputation methods on
heart failure dataset. In: SAI Intelligent Systems Conference, London, UK. 2016.

30 AlabedA., Kambhampati C.,GordonN. Genetic algorithms as a feature selection tool in heart failure
disease. In: Advances in Intelligent Systems and Computing. vol. 1229 AISC, 2020; pp. 531–543,
https://doi.org/10.1007/978-3-030-52246-9_38.

31 Oluleye B., Armstrong L., Leng J.,DieevenD. Zernike moments and genetic algorithm: tutorial and
application. Br. J. Math. Comput. Sci., 2014; 4(15): 2217–2236.

32 Alander J. T.On optimal population size of genetic algorithms. In: CompEuro 1992 Proceedings Computer
Systems and Software Engineering, The Hague, Netherlands. 1992; pp. 65–70.

33 Diaz-Gomez P. A.,HougenD. F. Initial population for genetic algorithms: a metric approacs. In:
Proceedings of the 2007 International Conference on Genetic and Evolutionary Methods, GEM, Nevada,
USA. 2007; pp. 55–63.

34 PiszczA., Soule T. Genetic programming: optimal population sizes for varying complexity problems. In:
Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, Washington, USA. 2006;
pp. 953–954.

35 Reeves C. R. Using genetic algorithms with small populations. In: International Conference on Genetic
Algorithms. vol. 5, San Mateo, CA: Kaufmann, 1993; pp. 90–92.

AI, Computer Science and Robotics Technology 20/21

https://doi.org/10.1007/978-3-030-52246-9_38


36 RoevaO. Improvement of genetic algorithm performance for identification of cultivation process models.
In: Proceeding of the 9thWSEAS International Conference of Evolutionary Computing. Sofia, Bulgaria:
World Scientific and Engineering Academy and SocietyWSEAS, 2008; pp. 34–39.

37 Koumousis V. K., Katsaras C. P. A sawtooth genetic algorithm combining the effects of variable
population size and reinitialisation to enhance performance. IEEE Trans. Evol. Comput., 2006; 10(1):
19–28.

38 PelikanM.,GoldbergD. E., Cantu-Paz E. Bayesian optimisation algorithm, population sizing, and time
to convergence. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computing.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000; pp. 275–282.

39 Lobo F. G.,GoldbergD. E.The parameter-less genetic algorithm in practice. Inform. Comput. Sci., 2004;
167(1–4): 217–232.

40 Lobo F. G., LimaC. F. A review of adaptive population sizing schemes in genetic algorithms. In:
Proceedings of the Genetic and Evolutionary Computation Conference. 2005; pp. 228–234.

41 RaymerM. L., PunchW. F.,GoodmanE.D., KhunL. A., JainA. K. Dimensionality reduction using
genetic algorithm. IEEE Trans. Evol. Comput., 2000; 4(2): 164–171.

42 YangX.Nature Inspired Optimisation Algorithms. London, UK: Elsevier, 2014ISBN: 978-0-12-416743-8.

43 Lengler J. General dichotomy of evolutionary algorithms on monotone functions. IEEE Trans. Evol.
Comput., 2020; 24(6): 995–1009.

44 Quinlan J. R. Induction of decision trees.Machine Learning, 1986; 1: 81–106.

45 HallM.A. “Correlation-based feature subset selection for machine learning”, Ph.D. thesis, Department
of Computer Science, The University of Waikato, Hamilton, New Zealand, 1999.

46 AlKhaldyM. “Autoencoder for clinical data analysis and classification: data imputation, dimensional
reduction, and pattern recognition”, PhD thesis, Engineering and Computing Department, University of
Hull, Hull, 2017.

47 Bolón-CanedoV., Sánchez-MaroñoN., Alonso-BetanzosA. A review of feature selection methods on
synthetic data. Knowl. Inf. Syst., 2013; 34(3): 483–519.

AI, Computer Science and Robotics Technology 21/21


	1. Research background—introduction
	2.  Methodology: optimisation of feature selection
	2.1.  Classical features selection
	2.2.  Feature selection using genetic algorithms (GAs)
	2.3.  Complexity of the GAs

	3.  Selecting features for a clinical dataset
	3.1.  Population size
	3.2.  Selection of chromosomes for genetic operations

	4. Research overview—results
	5.  Conclusions
	Data availability
	Conflict of interests/funding details
	Appendix A 
	Appendix B 

