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Abstract—In industrial application, the existing fault location 

methods of resonant grounding distribution systems suffer from 

low accuracy due to excessive dependence on communication, lack 

of field data, difficulty in artificial feature extraction and threshold 

setting, etc. To address these problems, this study proposes a 

decentralized fault section location method, which is implemented 

by the primary and secondary fusion intelligent switch (PSFIS) 

with two preloaded algorithms: autoencoder (AE) and 

backpropagation neural network. The relation between the 

transient zero-sequence current and the derivative of the transient 

zero-sequence voltage in each section is analyzed, and its features 

are extracted adaptively by using AE, without acquiring network 

parameters or setting thresholds. The current and voltage data are 

processed locally at PSFISs throughout the whole procedure, 

making it is insusceptible to communication failure or delay. The 

feasibility and effectiveness of the approach are investigated in 

PSCAD/EMTDC and real-time digital simulation system, which is 

then validated by field data. Compared with other methods, the 

experiment results indicate that the proposed method performs 

well in various scenarios with strong robustness to harsh on-site 

environment and roughness of data. 

Index Terms—Autoencoder (AE), backpropagation neural 

network, fault section location, resonant grounding (RG) 

distribution systems. 

I. INTRODUCTION

INGLE phase to ground (SPG) faults are the most prevalent

fault in resonant grounding (RG) distribution systems [1]. 

To avoid phase voltage rise and insulation degradation, it is of 

great necessity to identify and isolate SPG faults rapidly. 

Otherwise, it may cause two-point or even multi-point ground 

faults, thus critically threatening the system stability and power 

supply reliability [2]. Moreover, the existing fault indicators [3] 

in industry usually suffer from limited performances due to the 

communication failure and complex field environment, 

sometimes requiring the manual inspection to further confirm 

the fault point, which arouses wide concerns on the 

effectiveness of fault location in distribution systems. 

The existing SPG fault location technologies can be roughly 
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classified into three categories: signal injection method [4],[5], 

steady-state signal method [6],[7], and transient signal method 

[8]-[11]. As the limitations proposed in [8], the first two 

methods do not achieve satisfactory performances in RG 

distribution systems. 

The transient zero-sequence signal is hardly influenced by the 

arc suppression coil (ASC) in the RG distribution system, so its 

features (such as amplitude, polarity, and energy characteristics) 

can be solely used for fault location. In [9], the energy of the 

transient zero-sequence current (TZSC) in the selected frequency 

band was utilized to locate the fault section. The test results 

indicated that it performed well under strong noise background 

and showed excellent robustness to variations in fault resistance, 

fault initial angle, line parameter, and load type. In [10], the 

amplitude information of TZSC was used to locate SPG faults by 

adopting edge computing with no requirement of precise 

synchronization. It had high accuracy in most of the fault 

conditions and was robust to measurement error and noise 

interference. However, the methods in [9] and [10] were 

susceptible to communication interference as massive data were 

needed to be transmitted from detection nodes to the distribution 

station or edge nodes. A protection scheme based on the 

similarity of TZSCs was proposed in [11] to locate the fault 

feeder. To identify the feeder type, a threshold was required to 

compare with the magnitude of grey relation degree. However, 

the selection of thresholds highly relies on the network structures 

and system parameters, which usually leads to poor universality. 

Various algorithms have been used in literature to manually 

extract and analyze the features from transient signals, such as 

Hilbert-Huang transform [12], S-transform [13], mathematical 

morphology [14], etc. However, because the fault features are 

usually short and weak, methods that highly rely on artificially 

designed features are difficult to adapt to harsh field environment. 

With the development of machine learning techniques, adaptive 

feature extraction may offer a preferable solution. But many 

machine learning algorithms are dependent on massive training 

data, including the widely-applied convolutional neural network 

(CNN) [15],[16]. A fault location method based on the domain 

transformation with three-phase current and voltage signals was 
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proposed in [16]. The six signals were transformed from time 

domain to image domain, and then the transformed images were 

processed by CNN. Although it worked well under various 

situations, a large amount of data was needed for training the 

location model. But the field fault data is not easily accessible, 

which results in the insufficient training, thus deteriorating the 

performance of fault location in the field. Therefore, in this study, 

autoencoder (AE) is adopted to reduce the nonlinear dimension 

of fault data effectively and extract optimal features adaptively 

without training, which can largely reduce the dependency of the 

subsequent classification algorithm on the amount of training 

samples and improve the working efficiency in various situations. 

In most existing methods, massive data are required to be 

transferred from the feeder terminal units [17] to master station, 

which may lead to misidentification in case of communication 

error. Based on the primary and secondary fusion intelligent 

switch (PSFIS), a decentralized fault section locating method is 

proposed, which has the potential to solve the above problem. In 

this article, all the analyses are conducted at the PSFISs with the 

local data only, which can locally analyze fault data, identify 

section type and isolate fault section, with low communication 

requirements. 

An AE and backpropagation neural network (BPNN)-based 

fault section location method is applied to detect SPG faults in 

RG distribution systems. The fault section can be identified by 

this approach via analyzing the relation between the TZSC and 

the derivative of the transient zero-sequence voltage (DTZSV). 

At each PSFIS, the features of TZSC and DTZSV are extracted 

adaptively by AE without training, and the section type is 

discriminated by BPNN. Finally, the fault section can be locally 

isolated by PSFIS. In the whole process, network parameters or 

manually-set thresholds are not required, so that the proposed 

method can be better adapted to various network structures and 

severe fault conditions in the field. In addition, it achieves 

decentralized fault locating and adaptive feature extraction with 

low communication burdens, which is more applicable to the 

harsh on-site environment. 

The rest of the article is structured as follows. Section II 

explains the fault section location method in details. Section III 

expatiates the working principles of three compared methods. 

Section IV conducts simulations and experimental verifications. 

Finally, Section V concludes this article. 

II. FAULT SECTION LOCATION METHOD 

Once a permanent SPG fault occurs in the RG distribution 

system, the zero-sequence current (ZSC) and zero-sequence 

voltage are collected for the first half grid cycle by the PSFIS 

in each feeder section. Then, the DTZSV is obtained from the 

transient zero-sequence voltage (TZSV). After that, the two 

feature vectors are extracted adaptively from the normalized 

TZSC and DTZSV by using the AE network, which are then 

spliced to construct a characteristic vector (i.e. feature fusion). 

The first half of the characteristic vector is the current feature 

vector, and the second half is the voltage feature vector. Then, 

the characteristic vector is input into BPNN to identify whether 

the PSFIS is located at the upstream terminal of the fault point. 

If so, the PSFIS will wait for tripping according to a preset 

sequence defined by the ladder principle, which is a well-

known rule to set the responding time delay [18] at switches in 

case of faults: the farther away from the power supply, the 

shorter the time delay is. Finally, the identification results will 

be uploaded to the master station, and the SPG fault will be 

locally isolated by the PSFIS with the shortest delay. Note that 

the BPNN is pretrained by a small amount of historical data. 

The framework of the proposed method is shown in Fig. 1. 

A. Principle Analysis of Single Phase to Ground Faults 

A group of positive-sequence current, negative-sequence 

current and zero-sequence current can be obtained by order 

component decomposition of the fault current at the fault point. 

The negative-sequence current only flows through the fault path 

after an SPG fault occurs, theoretically can be used for locating. 

Nevertheless, it is greatly affected by load current and other 

factors, which may lead to location failure. The ZSC is 

unaffected by load current, and it can be detected at all sections 

after an SPG fault occurs. Therefore, the existing fault location 

methods are mostly based on zero-sequence analysis. 
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Fig. 1.  Framework of the proposed method.
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Fig. 2.  Equivalent zero-sequence network diagram of SPG fault in the RG 

distribution system. 

Fig. 2 shows the zero-sequence equivalent network of RG 

distribution system, the line series impedance and parallel 

conductance are ignored in this study. It is composed of three 

feeders with an SPG fault occurred in section-5. The feeders are 

divided into some feeder sections by detection nodes. And the 

number and location of detection nodes should be selected 

reasonably to optimize the reliability and economy of 

distribution system [19]. There are three detection nodes in each 

feeder in Fig. 2, which are numbered from 1 to 9. And the 

section number is defined as the nearest node number at its 

upstream terminal. In addition, the PSFISs are installed at 

detection nodes, with their numbers being the same as the 

corresponding nodes. In Fig. 2, C0i is the zero-sequence 

distributed capacitance of section-i; L and RL are the inductance 

and active loss resistance of ASC, respectively; Rf is the fault 

resistance; 0U is the voltage drop of virtual power supply at the 

point of fault; 0iI is the ZSC collected by the node-i; LI is the 

inductance current produced by the ASC. 

In Fig. 2, the fault section refers to the section-5 where the 

fault point is located, and the section-4 in the upstream of fault 

point. Similarly, the sound section refers to the sections in 

sound feeders (i.e. section-1, 2, 3, 7, 8, 9), and the section-6 in 

the downstream of fault point. 

In the fault sections (i.e. section-4, section-5), the relation 

between the TZSC and DTZSV is as follows: 

0

0 1 L

( )
( ) ( )i

i i

du t
i t C i t

dt
= − + .                          (1) 

In the sound sections (i.e. section-1, 2, 3, 6, 7, 8, 9), the 

relation between the TZSC and DTZSV is as follows: 

0

0 2

( )
( ) i

i i

du t
i t C

dt
=                                 (2) 

where 0 ( )ii t  and 0 ( )iu t  are the TZSC and TZSV measured by 

PSFIS-i, respectively; 0 ( )idu t

dt
 is DTZSV in PSFIS-i, obtained 

from TZSV; L ( )i t  is the inductance current produced by ASC. 

1iC  is the sum of the capacitance of all sound feeders and the 

line between the PSFIS-i located at the upstream terminal of the 

fault point to the busbar; 2iC  is the sum of the capacitance from  

the PSFIS-i located downstream of the fault point or at the 

sound feeder to the end of the feeder. 

Moreover, for the sections located in the sound feeders (i.e. 

section-1, 2, 3, 7, 8, 9), the ZSC collected by the PSFISs can be 

expressed as follows: 
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                      (3) 

For the sections located in the fault feeder (i.e. section-4, 5, 

6), the ZSC collected by the PSFISs can be expressed as follows: 

( )

( )

04 01 07 L

05 01 07 L 0 04

06 0 06

3 3

3 3 j3

3 j3 .

I I I I

I I I I U C

I U C





 = − + −



= − + − −


=

            (4) 

Therefore, the directions of ZSCs in each feeder are clearly 

indicated in Fig. 2. The current amplitude and direction in the 

fault section depend on the relationship between the inductor 

current and capacitor current. The steady-state zero-sequence 

current or voltage at the fault point will be suppressed to zero 

by the compensation effect of ASC, so as to extinguish the arc 

rapidly. But it inevitably leads to a large reduction in steady-

state ZSC on fault path. In addition, the polarity of steady-state 

ZSC is the same in each section due to the overcompensation of 

ASC, and the directions are from the busbar to the feeder. As a 

result, in steady state, the fault features of overcompensation 

situation become too weak for location. As the inductance 

current of ASC can be ignored in the transient process due to its 

slow variation, the TZSC and DTZSV at the upstream node of 

fault point are opposite in polarity, while the polarity is the same 

amongst each other at other nodes. This above characteristic is 

used to identify whether the PSFIS locates in the upstream of 

the fault point. In addition, each PSFIS only needs to access its 

local data, which largely reduces the communication burden. 

B. Acquisition of Characteristic Vector Based On AE 

Currently, supervised-learning algorithms are widely applied 

to fault feature extraction in distribution systems, and require 

massive labelled training data. However, the field fault data is 

difficult to acquire, which results in insufficient training of 

supervised-learning algorithms and poor performances in the 

field. AE may provide a solution to improve the learning effect 

in case of small sample. It is an unsupervised-learning network, 

which can extract optimal features from unlabeled data 

adaptively and reduce nonlinear dimension effectively, thus 

contributing to an outstanding performance on site [20]. 

As shown in Fig. 3, AE is a three-layer network: input layer, 

hidden layer, and output layer. An activation function is 

required to activate the characteristics of neuron and map it out. 

The widely-used activation functions include sigmoid function, 

tanh function and ReLU function. Among them, only the tanh 
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function can map the data to the range of [-1,1]. Hence, the tanh 

function is used as the activation function in this study, which 

can better characterize the polarity features of fault information. 
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Fig. 3.  Autoencoder structure. 

The basic structure of AE is consisted of an encoder and a 

decoder. The encoder learns hidden features h from input data 

x, which is called data dimension reduction. Then the decoder 

reconstructs the data with the learnt feature h to make the output 

data x̂  approximates x. The encoding and decoding processes 

can be described as follows: 

tanh( )i i i= +h W x b                           (5) 

ˆ tanh( )j j j
 = +x W h b                          (6) 

where i=1, 2, …, n; n is the number of neurons in hidden layer; 

j=1, 2, …, m; m is the number of neurons in output layer, which 

is equal to that in input layer; the W matrix is the coded weight 

parameter; the W  matrix is the decoded weight parameter; b 

is the coding bias vector; b  is the decoding bias vector. 

To make ˆ x x , the error cost function is introduced in the 

training process. The objective function can be expressed as 

follows: 

2 2( ) ( )

2
1

1 1
ˆ

2 2

N
i i

i

E
N


=

= − + x x W                  (7) 

where N is the number of input data;   is the weight 

attenuation parameter, 
2

2

1

2
D = W  is the weight attenuation 

term, both of them can reduce the weight. 

After data collection, the data pretreatment is performed, 

including normalization. Its process can be described as follows: 

*

1 2max( , ,..., )

i

i

n

=
X

X
X X X

                    (8) 

where i=1, 2, …, n; n is the data points of X ; X is the original 

TZSC/DTZSV data; iX  and 
*

iX  are the ith data point of the 

original data and normalized data, respectively. 

Then, the normalized TZSC and DTZSV are applied to AE 

for optimal feature vectors acquisition from the hidden layer. 

And the current and voltage feature vector are spliced to 

construct a characteristic vector. It is a good solution in lack of 

field fault data as there is no requirement for sample quantities. 

Moreover, the BPNN algorithm can have excellent 

performance without large training samples, making the 

proposed method have strong robustness to various conditions 

and harsh on-site environment. 

C. Identification of Fault Section Based on BPNN 

The structure of BPNN is similar to that of AE, which 

includes input layer, hidden layer, and output layer, as shown 

in Fig. 1. But the difference is that the number of neurons in the 

output layer of BPNN depends on the number of categories. 

BPNN has a simple computational structure with strong 

nonlinear mapping ability [21]. Therefore, the BPNN algorithm 

with two neurons in the output layer is used to discriminate 

section type in this article. 

The learning process of BPNN can be divided into two steps, 

which are forward propagation and back propagation. BPNN is 

trained by the input data in the input layer and then processed 

by the function layer by layer. After that, by checking the final 

output with the expected value, the error signal will be detected 

and sent back to the input layer. The network connection 

weights are learned and adjusted through back propagation 

algorithm to reduce the error, which finally achieves successful 

mapping between given input and output. 

The feature vectors of the current and voltage are extracted 

separately by AE and then spliced to generate a characteristic 

vector in each section. This characteristic vector is then 

identified by the pretrained BPNN to determine the section type. 

In this way, the fault data of each section is processed locally at 

the PSFIS of the respective section, which largely reduces the 

requirements for communication and improves the reliability of 

fault location. 

D. Fault Isolation Based on the Primary and Secondary 

Fusion Intelligent Switch (PSFIS) in Distribution System 

With the development of smart grids, rapid and local 

isolation to permanent SPG faults in RG distribution systems 

has become increasingly important. PSFIS is a device which is 

able to collect and analyze current/voltage data, so that it can 

isolate fault intelligently [22]. Thus, it may provide a potential 

carrier, whose structure is showed in Fig. 1, including current 

and voltage sensor, reclosing device, and control terminal. 

As shown in Fig. 2, when a permanent SPG fault occurs in 

section-5, the PSFISs will collect the local fault data (the first 

half of grid cycle of the ZSC and ZSV after fault). Then, data 

analysis is conducted through the proposed AE-BPNN method 

to discriminate that the PSFIS locates in a fault section or a 

sound section. In this step, section-4 and section-5 are identified 

as fault section, respectively, while the rest are identified as 

sound section, respectively. Finally, the fault section will be 

isolated subjecting to the ladder principle. That is, PSFIS-5 will 

trip to realize the local isolation of the fault. 

As defined in ladder principle, the responding delay of 

isolated action becomes longer as the fault occurs closer to the 

busbar. The delay time is generally set to millisecond level, and 

the inherent action time of PSFIS is about 30ms, which is within 

the acceptable range for RG distribution systems. In addition, if 

there are enough PSFISs to monitor the network, the suspected 

fault area where the SPG fault point is located will be shrunk as 

much as possible. But full coverage of detection equipment 

installation scheme has high investment costs [23]. Due to the 

tradeoff between reliability and economic concerns, only the 

feeder line with a high fault occurrence rate will be installed 
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with sufficient PSFISs. And the number of PSFISs will increase 

according to the fault occurrence probability. In this way, the 

areas that are more likely to fail can be fully covered by the 

detection units to quickly localized and isolated the fault 

through PSFISs in occurrence of a SPG fault [24]. 

The PSFISs upload identification results to the master station 

without sending massive fault data. Further analysis will be 

conducted at master station based on the network structure and 

these identification results. By deploying PSFISs in distribution 

networks, the proposed method is competent to realize rapid 

and decentralized SPG fault location and isolation without 

relying on communication and analysis of the master station. 

III. COMPARISONS 

To evaluate the performance of the proposed AE-BPNN 

method, three widely-applied fault location methods are studied 

for comparison in this article, including DTW-FCM algorithm 

(Method A), one-dimensional (1-D) CNN algorithm (Method B) 

and TZSC signal (Method C). Their working principles will be 

briefly illustrated in this section. 

A. Method A: Based on DTW-FCM Algorithm 

Fuzzy c-means (FCM) clustering is an effective pattern 

recognition method. Its feasibility to locate faults in distribution 

systems has been widely discussed in literature [25],[26]. For 

comparison, the improved dynamic time warping (DTW) 

together with the FCM are implemented to locate faults, which 

is entitled as Method A. See [25] for the principles of the 

improved DTW algorithm and FCM algorithm. 

The implementation procedure is described in Fig. 4(a). First, 

PSFISs upload the collected ZSC data in the first half grid cycle 

after fault to master station. Next, the improved DTW is used 

to calculate the amplitude cross-correlation matrix (ACCM) of 

TZSC between two adjacent sections. Then, the comprehensive 

cross-correlation matrix (CCCM) is constructed via combining 

ACCM with the polarity cross-correlation matrix (PCCM) to 

indicate the amplitude and polarity information of TZSC. After 

that, FCM is applied to CCCM to distinguish the fault sections 

from sound sections. Finally, the section where has the fault is 

located by the master station through the topology structure, 

and a signal is generated to control the corresponding PSFIS to 

trip. This is a simple method without training or setting a 

threshold, however, it highly relies on uploading massive data 

to master station for fault identification. 

Improved DTW

Data Collection

Data Pretreatment

Including Normalization

ACCM PCCM

CCCM

Fault Sections Sound Sections

FCM

Waveform Fusion

Data Collection
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                      (a)                                                      (b) 

Fig. 4.  Frameworks of the compared methods: (a) Method A; (b) Method B. 

B. Method B: Based on 1-D CNN Algorithm 

CNN shows great advantages on grounding fault location in 

comparison with traditional methods, as it extracts feature 

adaptively and achieves classification automatically. See [15] 

for the principle of 1-D CNN, and it is used to discriminate and 

isolate the fault section locally in this study for comparison. The 

ZSC and the derivative of zero-sequence voltage (DZSV) are 

normalized for first half grid cycle at PSFISs after faults. Then 

the normalized TZSC waveform and DTZSV waveform are 

spliced at each PSFIS (that is, waveform fusion). Then this 1-D 

spliced waveform is injected to 1-D CNN for fault section 

identification, as shown in Fig. 4(b). 

C. Method C: Based on TZSC Signal 

The similarity of TZSC waveforms between different feeder 

sections has been widely adopted for SPG fault location in RG 

distribution systems. Therefore, this transient signal is studied 

and compared with the proposed one. Firstly, the PSFISs upload 

the collected ZSC data in the first half grid cycle after fault to 

master station. After that, the AE is utilized to adaptively 

extract the feature vectors of TZSCs. Then, the two feature 

vectors of adjacent detection nodes are fused. And BPNN is 

applied to identify the fault sections from sound sections. 

Finally, the feeder section which has the SPG fault can be 

determined by master station through the distribution network 

structure. Method C does not require a voltage signal 

throughout the implementation process. But it relies on the high 

reliability of communication and the judgment ability of the 

master station. 

IV. SIMULATION AND VERIFICATION 

In this section, the simulation and experiment validation are 

expatiated and analyzed in details, which includes simulation 

platform and model parameters, adaptability analysis based on 

the PSCAD/EMTDC simulation, adaptability analysis based on 

the real-time digital simulation (RTDS) data, and adaptability 

analysis based on the field data. 

A. Simulation Platform and Model Parameters 

PSCAD/EMTDC software is used to build a representative 

10 kV RG distribution system model, which is often used in 

industrial applications, as shown in Fig. 5. The sampling 

frequency is set to 10 kHz and the sample points mentioned in 

this article refer to current/voltage data points collected by 

detection nodes. There are 18 PSFISs installed in the network, 

named F1-F18. The section number is defined as the detection 

node number at its upstream terminal, which is S1-S16. lo is the 

length of the overhead line, lc is the length of the cable line in 

km. The key parameters are specified in Table Ⅰ. 

It can be calculated that the sum of the grounded capacitance 

(CΣ) in Fig. 5 is 7.584 μF. A generated arbitrary SPG fault 

drives the capacitive current exceeds the threshold at the fault 

point (IC=41.2676A>20A). Therefore, an ASC is installed at 

neutral point according to the power system safety regulations. 

The overcompensation of the ASC is set to 5%, and its active 

power loss is set to be 3% of the inductive loss in this article. 

Accordingly, the equivalent inductance of ASC (L) is computed 
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to be 0.4241 H, the equivalent resistance (RL) to be 3.9970 Ω. 
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Fig. 5.  10 kV simulation model of RG distribution system. 

TABLE I 

PARAMETERS OF LINES 

Type of 

Line 

Sequence 

Components 

Resistance 

(ohm/km) 

Inductance 

(mH/km) 

Capacitance 

(μF/km) 

Cable 
Line 

Positive Sequence 0.27 0.255 0.339 

Zero Sequence 2.7 1.019 0.28 

Overhead 

Line 

Positive Sequence 0.17 1.21 0.00969 

Zero Sequence 0.23 5.478 0.008 

B. Adaptability Analysis Based on PSCAD/EMTDC 

Simulation 

Using the described PSCAD/EMTDC simulation model in 

Fig. 5, SPG faults in phase A are simulated with different fault 

points (Si), fault initial angles (θ) and fault resistances (Rf). The 

parameters of training samples and test samples are shown in 

Table Ⅱ, which called typical fault. The training sample set and 

test sample set each contain 20 groups of fault cases, with fault 

data of 9 detection nodes in each group, making 180 groups of 

training samples and 180 groups of test samples in total. 

The confusion matrix is employed to assess the performance 

of the proposed method and three compared methods. And the 

test results of typical fault are shown in Fig. 6 and Table Ⅲ. 

Among them, Method A does not require training and has a fast 

running rate. Only the amplitude and polarity of TZSC are taken 

as the artificially designed clustering feature in this method, 

which results in a low reliability and low recognition accuracy 

of 85%. The accuracy of Method B is low (only 77.2%), which 

is mainly due to the discontinuity caused by the conjugation of 

the spliced waveforms. See Fig. 7 for the spliced waveforms for 

Method B. The first 100 data is the normalized TZSC, while the 

following 100 data is the normalized DTZSV. The last data of 

TZSC (the 100th point) may change arbitrarily in the range of 

[-1,1]. Hence, the change from the last current data (the 100th) 

to the first voltage data (the 101st) is drastic, which has a 

significant influence on the trend of splicing waveform. This 

increases the identification difficulties and leads to a poor F1-

score. If there are massive training samples to cover more 

possible cases, the performance of Method B will be improved. 

In the proposed method, first, AE is used to extract the 

optimal feature vectors of TZSC and DTZSV, and then feature 

fusion is conducted. The last data of current feature vector (the 

10th point in Fig. 9) is mostly 1, 0, or -1, which is in the same 

range of all the other data, making the conjugated characteristic 

vector a whole. Therefore, the subsequent classification 

algorithm BPNN is not affected by the conjunction of current 

and voltage, which results in the correct fault location in all 20 

groups of typical fault cases. 
TABLE Ⅱ 

TRAINING AND TEST SAMPLES OF SIMULATION DATA 

Sample Type Si θ (degree) Rf (ohm) Quantity 

Training Sample S1-S9 0,30,60,90 100,500,1000 180 

Test Sample S8-S16 10,45,70,85 300,700,900 180 

TABLE Ⅲ 

PERFORMANCE OF THE PROPOSED METHOD AND COMPARED METHODS 

Method Accuracy Precision Recall F1-score 

Proposed Method 100% 100% 100% 1 

Method A 85.0% 69.4% 61.0% 0.649 

Method B 77.2% 50.0% 29.3% 0.369 

Method C 98.3% 97.5% 95.1% 0.963 
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Fig. 6.  Confusion matrixes of the proposed method and compared methods. 
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(b) 

Fig. 7.  Splicing waveforms of TZSC and DTZSV collected in (a) fault sections 

and (b) sound sections. 

Some specific fault conditions are simulated in this article, 

including network structure changes (C1), fault occurs at the 

end of the feeder (C2), compensation degree changes (C3), and 

unsynchronized sampling (C4). These verification results (see 

Table Ⅳ) show that the proposed method based on AE-BPNN 

has the ability to accurately identify section types, even under 

severe working conditions. The Method A is greatly affected by 

the studied fault conditions, especially the unsynchronized 

sampling case with the F1-score of only 0.357. The Method B 
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shows poor adaptability and low reliability with recognition 

rate less than 70%. Although Method C has good performance 

under most fault scenarios, it requires to transmit a large amount 

of current data. Since it is susceptible to the influence of 

communication quality, its reliability will have a downward 

tendency in practical application. 
TABLE Ⅳ 

TEST RESULTS OF SPECIFIC FAULT CONDITIONS 

Fault Method Accuracy Precision Recall F1-score 

C1 

Proposed Method 100% 100% 100% 1 

Method A 85.7% 83.3% 71.4% 0.769 

Method B 68.3% 55.6% 23.8% 0.333 

Method C 100% 100% 100% 1 

C2 

Proposed Method 100% 100% 100% 1 

Method A 88.9% 91.7% 78.6% 0.846 

Method B 69.4% 61.5% 57.1% 0.592 

Method C 100% 100% 100% 1 

C3 

Proposed Method 100% 100% 100% 1 

Method A 100% 100% 100% 1 

Method B 66.7% 50.0% 33.3% 0.400 

Method C 100% 100% 100% 1 

C4 

Proposed Method 100% 100% 100% 1 

Method A 50.0% 31.3% 41.7% 0.357 

Method B 61.1% 37.5% 25.0% 0.300 

Method C 100% 100% 100% 1 

C5 

Proposed Method 97.2% 94.1% 100% 0.970 

Method A 83.3% 88.5% 71.9% 0.793 

Method B 59.7% 56.0% 43.8% 0.491 

Method C 83.3% 100.0% 62.5% 0.769 

C6 

Proposed Method 86.1% 89.3% 78.1% 0.833 

Method A 66.7% 64.3% 56.3% 0.600 

Method B 54.2% 47.6% 31.3% 0.377 

Method C 75.0% 76.9% 62.5% 0.690 

C7 Proposed Method 94.4% 92.0% 95.8% 0.939 

An exemplary fault (phase A, θ = 70°, Rf = 50Ω) occurs in 

S9 in Fig. 5 to further illustrate the process of the proposed 

method. The fault data shown in Fig. 8 are collected by four 

PSFISs installed in F8-F11, respectively, where the SPG fault 

occurs at the 50th sample point. The ZSCs and DZSVs do not 

exist before the SPG fault occurs, but mutates after the fault. 

Hence, these two signals are utilized to implement 

decentralized fault section location. Specifically, the ZSC and 

DZSV in the first half grid cycle after fault are obtained at F8-

F11. Each group of data contains 100 data points (50th point to 

149th point). It can be seen from Fig. 8(b) that the DTZSVs in 

four PSFISs are similar, whereas the amplitude and polarity of 

the TZSCs collected at detection points (F8-F9 and F10-F11) 

are different. This is consistent with the principle of SPG fault 

in RG distribution systems analyzed above. Then, TZSC and 

DTZSV are normalized and fed into AE network to extract the 

feature vector, respectively. After that, feature fusion is 

conducted, in which the feature vectors of current and voltage 

are spliced to construct a characteristic vector in each section 

(see Fig. 9). Each contains 20 data points, where the first ten is 

the current feature vector, and the last ten is the voltage feature 

vector. It can be seen from Fig. 9 that the characteristic vectors 

at the upstream node of fault point are significantly different 

from vectors at the other nodes. Then, the spliced characteristic 

vector is fed into the trained BPNN to identify the section type. 

There is no need to set a threshold during the whole process. To 

achieve a good convergence performance, the number of hidden 

layer nodes in AE and BPNN are both set as 10 in this article. 

C. Adaptability Analysis of High Impedance Fault and PSFIS 

Sampling Error 

In an high impedance fault (HIF) generates somewhere, the 

amplitude of fault current is relatively small. Most fault section 

location methods are susceptible to this weak fault feature. 

Therefore, the Emanuel model [27] is used to generate HIFs for  
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Fig. 8.  (a) ZSCs. (b) DZSVs during pre- and postfault. 
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Fig. 9.  Characteristic vector in each detection node. 
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Fig. 10.  TZSCs and DTZSVs of HIFs. (a) Rf = 2000 Ω, θ = 60°. (b) Rf = 3000 

Ω, θ = 45°. 
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validating the proposed method. The HIFs with fault resistances 

of 2000 and 3000 Ω (C5) are simulated and the results are 

shown in Table Ⅳ. The proposed method has a high accuracy 

of 97.2%. The TZSC and DTZSV waveforms of HIFs are 

shown in Fig. 10. It can be seen that the TZSC and DTZSV of 

fault sections keep the opposite polarity during the initial stage 

after the fault occurs, while the polarity of the sound sections is 

always the same, which is sufficient for the method to 

accurately identify the fault section. However, the proposed 

method is susceptible to noise in HIF, as the F1-score is 0.833 

in the case of HIF accompanied by noise interference (15, 20dB) 

(C6). The sampling accuracy of PSFIS will also limit the 

accuracy of fault location method, especially after synthesis to 

zero sequence, this error will be further amplified. The 

combined effects of three-phase asynchronous sampling and the 

inaccurate sampling of amplitude are considered in this article. 

At this time, the polarity relationship is not destroyed, and the 

method shows a high accuracy and precision in PSFIS sampling 

error condition (C7). 

D. Adaptability Analysis Based on RTDS Data 

As the RTDS system shown in Fig. 11, eight PSFISs are 

installed in the network. About 12 groups of SPG fault are 

generated, including 48 sets of data. The sampling frequency is 

set to 10 kHz. See Table Ⅰ for the parameters of lines. The 

TZSCs, DTZSVs, and spliced characteristic vectors of two fault 

sections and two sound sections are shown in Fig. 12. 

Significant differences in the fault and sound section 

characteristic vectors indicate the effective feature extraction of 

AE. As a result, the section types can be effectively 

discriminated by BPNN. 

The RTDS data is used as an example to illustrate the sample 

coverage of the BPNN in this study due to the lack of field fault 

data. The parameters of the 12 fault cases are listed in Table Ⅴ. 

Six of the fault cases are selected as training samples (25 sets 

of data in total) while the rest are test samples. The test accuracy 

shown in Table Ⅵ is only 82.6% with low reliability. That is 

because there are more samples of sound sections and fewer 

samples of fault sections, which makes the fault sections in test 

sample set difficult to be identified. Hence, the fault data with 

ten fault sections and ten sound sections are selected as training 

samples, which improves the test accuracy to 96.4%. Finally, 

the test results of the proposed method and the compared 

methods are shown in Table Ⅶ. The number of test data is 48 

in Method A. And Method C is not tested due to the small 

amount of fault data. 

1 2 3

5 6 7

110 kV/10 kV

L

LR

4

8

 
Fig. 11.  Network structure of RTDS system. 
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Fig. 12.  TZSCs, DTZSVs, and spliced characteristic vectors of RTDS data. 

TABLE Ⅴ 
PARAMETERS OF RTDS DATA 

Si θ (degree) Rf (ohm) Quantity 

S1, S2, S5, S6 30,45,60,90 10,100,1000 48 

TABLE Ⅵ 
TEST RESULTS OF PROPOSED METHOD WITH RTDS DATA 

Training sample 

distribution 

Number of 

training data 

Number of  

test data 
Accuracy 

Nonuniformity 25 23 82.6% 

Uniformity 20 28 96.4% 

TABLE Ⅶ 

TEST RESULTS OF RTDS DATA 

Method Accuracy Precision Recall F1-score 

Proposed Method 96.4% 90.0% 100% 0.947 

Method A 62.5% 52.0% 68.4% 0.591 

Method B 64.3% 42.9% 33.3% 0.375 

TABLE Ⅷ 

TEST RESULTS OF FIELD DATA 

Method Accuracy Precision Recall F1-score 

Proposed Method 95.7% 83.3% 100% 0.909 

Method A 62.2% 46.2% 37.5% 0.414 

Method B 78.3% 0% 0% 0 

E. Adaptability Analysis Based on Field Data 

In a 10 kV substation in China, 11 groups of SPG fault data 

(45 sets in total) are collected in sampling frequency of 4 kHz. 

See Fig. 13 for the network structure of this substation, and 17 

PSFISs are installed for detection. The data with 11 fault 

sections and 11 sound sections are selected for training while 

the remaining are used for testing. The TZSCs, DTZSVs, and 

spliced characteristic vectors of four sections are selected, as 

shown in Fig. 14. 
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Fig. 13.  Network structure of 10 kV substation. 
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As shown in Table Ⅷ, the recognition rate of Method A is 

even worse than that of simulation, as FCM is susceptible to 

interferences and artificial extraction of fault features cannot 

guarantee to obtain all the essential features. As discussed in 

Section IV-B, the performance of 1-D CNN is deteriorated due 

to the discontinuity caused by directly splicing TZSC waveform 

and DTZSV waveform. Therefore, Method B has low reliability 

in industrial application. However, due to the adaptive feature 

extraction, the proposed approach still maintains a high 

accuracy of 95.7%, which indicates its high robustness and 

adaptability in case of the harsh field environment and irregular 

field data. 
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Fig. 14.  TZSCs, DTZSVs, and spliced characteristic vectors of field data. 

By analyzing the relationship between TZSC and DTZSV in 

each section, the proposed method can locate the fault section 

without relying on communication and analysis of the master 

station. In addition, the AE is adopted to extract the optimal 

features adaptively without training process, providing the 

proposed method a strong learning effect in case of small 

sample amount and harsh field environment. What is more, 

there is no need to manually set a threshold in the whole process. 

Whilst the available field fault data is limited in this study, 

the excellent performance of the proposed method seen in the 

case studies shows a promising prospect of being implemented 

in real applications. However, it is still suggested to add new 

field fault data as available to the training set to enhance the 

coverage of training samples and conduct more comprehensive 

validation tests. 

In the process of local intelligent research and judgment, the 

PSFISs of distribution systems will send their corresponding 

serial numbers and discriminant results to the master station for 

correctness check. The reidentification or manual inspections 

will be executed in case of misidentification to guarantee the 

accurate fault section isolation. 

V. CONCLUSION 

The deployment of the PSFIS brought new opportunities for 

locating the single phase to ground fault in resonant grounding 

distribution systems. The proposed decentralized fault section 

location method was to analyze the relation of TZSC and the 

DTZSV via AE, feature fusion, and backpropagation neural 

network. The simulation and experiment validation were 

expatiated and analyzed in details, which included simulation 

platform and model parameters, adaptability analysis based on 

the PSCAD/EMTDC simulation, adaptability analysis based on 

the real-time digital simulation data, and adaptability analysis 

based on the field data. The proposed method could provide a 

good performance in a wide range of fault scenarios in the case 

studies, indicating its high effectiveness and adaptability. In 

addition, the noise interference needs to be further considered 

in subsequent research. 

Compared with the existing fault location methods, there 

were two main contributions of the proposed method. 

1) The performance of existing methods were greatly 

affected by communication problems in practical applications. 

By using the waveform relation between TZSC and DTZSV in 

each section, the data could be analyzed locally at each PSFIS, 

which largely reduced the communication burden. And the 

local isolation capability of this method avoided the massive 

manpower consumption with improved reliability and 

efficiency. 

2) The fault features were usually short and weak, methods 

that highly relied on artificially designed features showed poor 

robustness in industrial applications. In this article, the optimal 

features of fault data were adaptively extracted by AE without 

training process. The implementation of adaptive feature 

extraction and feature fusion greatly improved the adaptability 

of this method to factors like line type, network structure, fault 

resistance, compensation degree, sampling error, harsh field 

environment, and roughness of data. 
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