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ABSTRACT
Cough is a protective reflex to prevent aspiration and
can be triggered by a multitude of stimuli. The
commonest form of cough is caused by upper
respiratory tract infection and has no benefit to the
host. The virus hijacks this natural defence mechanism
in order to propagate itself through the population.
Despite the resolution of the majority of cold
symptoms within 2 weeks, cough can persist for some
time thereafter. Unfortunately, the mechanism of
infectious cough brought on by pathogenic viruses,
such as human rhinovirus, during colds, remains
elusive despite the extensive work that has been
undertaken. For socioeconomic reasons, it is
imperative we identify the mechanism of cough. There
are several theories which have been proposed as the
causative mechanism of cough in rhinovirus infection,
encompassing a range of different processes. Those of
which hold most promise are physical disruption of the
epithelial lining, excess mucus production and an
inflammatory response to rhinovirus infection which
may be excessive. And finally, neuronal modulation,
the most convincing hypothesis, is thought to
potentiate cough long after the original stimulus has
been cleared. All these hypotheses will be briefly
covered in the following sections.

INTRODUCTION
Cough is a common symptom associated with
upper respiratory tract infections (URTIs).1–4

In some patients, coughing can persist
leading to a syndrome known as postviral or
postinfectious cough which is arbitrarily
defined as lasting from 3 to 8 weeks, with
normal chest radiograph findings.5 6 In some
individuals, cough persists even longer, when
it is termed a chronic cough.7 While a
normal cough is a vital protective reflex pre-
venting aspiration, cough hypersensitivity is
the mechanism thought to underlie almost
all types of pathological cough.8 This has
been demonstrated in URTI.9–11

Cough causes a plethora of complications
affecting the cardiovascular, gastrointestinal
and respiratory systems, with far-reaching psy-
chological, neurological and musculoskeletal
effects.6 7 12 While there are many agents on
the market to reduce the frequency of cough

and aid in the clearance of mucus, a system-
atic review of over-the-counter preparations
failed to recommend any available treat-
ment.13 For example, the use of codeine in
respiratory tract infection-associated cough
was found to be no more effective than its
vehicle,14 and prescription-only medications
are often unsuitable for certain groups of
individuals.15

There are three metrics which are used to
study cough: cough challenge, cough count-
ing, and subjective end points such as visual
analogue scale or quality of life. Cough chal-
lenge studies include the use of pro-tussive
agents, such as capsaicin and citric acid,
which stimulate transient receptor potential
(TRP) ion channels to induce cough.16–18

TRP channels have been popularised as pro-
tussive irritant receptors.19 20 However, on
account of repeated clinical trial failures in
patients with chronic cough using both
cough counting and subjective measures,
TRPV1 and A1 antagonists as anti-tussives
have failed to reach the clinic,21 and an
unpublished RCT of inhaled TRPA1 antagon-
ist GRC 17536 (personal communication
AHM, 2015). A recent shift of focus now pro-
poses that other channels and receptors,
such as P2X receptors, different TRP chan-
nels including TRPV4 and TRPM822–24 may
be responsible for the observed hypersensitiv-
ity. It seems unlikely that one single channel,
or receptor, is responsible for causing cough
hypersensitivity in all participants in cases of
postviral and chronic cough.
Research into URTI and cough faces many

problems. Research which relies on natural
infection of human volunteers is open to a
range of uncontrollable variability including
incubation time and causative agent (virus
genus and serotype). There is also a lack of
suitable animal models for studying HRV
due to high host specificity of attachment
receptors. Major group HRV requires human
ICAM-1 receptor25 which is not present in
guinea pigs, an animal classically used for
studying the cough reflex. However, patho-
gens such as parainfluenza virus, a rarer
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cause of the common cold, can infect guinea pigs and
produce a postviral cough with a hypersensitive airway
response to capsaicin.26 As a result, studying the effects
of HRV infection is often carried out in vitro using cell
systems. There is a plethora of research into viral
induced effects characterised from various respiratory
cell lines, leading to a variety of proposed mechanisms
for the induction of cough.

MECHANISMS
Inflammatory mediators
HRV infection results in the production a broad profile
of inflammatory mediators in the host. The primary
inflammatory cytokines reported in HRV infection are
interferon (IFN), interleukin (IL) 1, IL-6, IL-8, tumour
necrosis factor (TNF) α, granulocyte-macrophage
colony-stimulating factor and RANTES. The infection
leads to massive upregulation,27 and, consequently, it is
often described as a ‘cytokine disease’.28 Many symptoms
are thought to occur as a result of the effects of inflam-
matory cytokines releasing of mediators. For example,
sore throat may occur as a result of the release of brady-
kinin.29 The role of these endogeneous mediators is dis-
cussed below.

Bradykinin
The proinflammatory mediator bradykinin has been sug-
gested as a potent tussive modulator of TRPA1 and
TRPV1.30–32 It is thought to work through phospholipase
C (PLC) causing channel phosphorylation and subse-
quent sensitisation.33 Elevated levels of bradykinin are
found in the BAL fluid of patients with inflammatory
airway conditions.34 Bradykinin has also been suggested
to mediate ACE inhibitor cough32 which affects 15% of
patients.35 Bradykinin and PGE2 possess the ability to
sensitise the airways to cough stimulus in animal studies
which can be effectively abolished on simultaneous
application of antagonists to both TRPV1 and TRPA1.36

Tachykinins
Tachykinin peptides, neurokinin A and B, and substance
P, are inflammatory neuropeptides, which collectively
induce airway hyper-responsiveness, bronchial constric-
tion,37 and increased vascular permeability.38 They also
generate substantial mucus secretion39 and the secretion
of inflammatory mediators from immune cells.40–42 It
has been suggested that inhibition of tachykinin metab-
olism by ACE inhibitors is an alternate mechanism for
ACE inhibitor cough.43 In HRV infection, tachykinins
are released from neurons on TRPV1 activation.40

Unfortunately, the mechanism underlying this activity is
currently unknown, and understanding such channel
interaction may hold the key to modulating the develop-
ment of viral and postviral cough. Reduction of degrad-
ation of tachykinins by neutral endopeptidases in
respiratory viral infection44 are likely to enhance the
noxious effects of tachykinins.

Despite its scarcity, substance P in humans has been
found to be upregulated, both in nasal epithelium and
plasma in chronic cough sufferers.45–47 The efficacy of
substance P, mediated by tachykinin NK-1 receptors,48 is
greatly enhanced by prior inflammation. Furthermore,
when in excess, it is suggested to lower the threshold of
pain perception to noxious stimuli, as demonstrated in
several pain-associated disease states.49 50 In guinea pigs,
the role of substance P in cough has been extensively
investigated. Substance P results in bronchoconstriction
but highly variable cough.51 Likewise, in healthy indivi-
duals, inhalation of substance P does not cause cough.
However, at the same concentration, substance P has the
ability to elicit cough in patients with common colds,52

suggesting a hypersensitive state induced by the virus.
Additionally, the microvascular leakage of substance P is
thought to activate rapidly adapting receptors (RARs)53

which may add to the irritant effect in common cold.

Calcitonin gene-related peptide
Evidence for the role of another neuropeptide calci-
tonin gene-related peptide (CGRP) is mixed. TRP
channel (TRPV1) activation induces and controls the
release40 54 from C-fibre terminals.55 CGRP has an
inhibitory effect in substance P-induced bronchocon-
striction,56 and when deficient, causes airway hyper-
responsiveness.57 However, an increase in CGRP has
been shown in many pain-associated conditions, includ-
ing migraine and various forms of inflammation.58 59

Chronic cough sufferers have been shown to have
increased neuronal levels of CGRP60 61 associated with
the enhanced sensitivity to capsaicin.61 These effects
appear to be mediated through the cytokines, IL-1β and
TNF-α.59 In respiratory syncytial virus (RSV) infection, a
rarer cause of URTI in the adult, the development of
airway hyper-responsiveness appears to arise through a
disruption of CGRP balance.57 62 However, this fails to
explain the increased levels found in sufferers of
chronic cough. Unlike substance P, CGRP does not dir-
ectly induce mucus secretion,63 but may indirectly
enhance through vasodilation.
The likelihood that substance P, CGRP or neurokinins

have some role in cough hypersensitivity is high. Opiates
have been shown to be highly effective in a subgroup of
patients with cough.15 A possible mode of action is
through prejunctional inhibition of peptide release-
preventing neurotransmission either centrally, or from
afferent nerves adjacent to inflammatory mediator
receptors.40

Leukotrienes
Leukotrienes are potent inflammatory mediators of
chemotaxis, bronchoconstriction and vascular perme-
ation,64 which are predominately produced by leuco-
cytes, but also by other inflammatory immune cells. Data
is scarce on the extent leukotrienes play in HRV infec-
tion. However, Seymour et al65 identified a significant
increase of precursor enzymes within the airways during
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HRV infection in healthy individuals, which can poten-
tially increase the capacity of leukotriene B4 and C4 syn-
thesis. Muscarinic receptor involvement has been
implicated in the production of leukotriene B4.

66 In
cough-associated eosinophilic inflammation, blockade of
leukotriene receptors has been shown to be effica-
cious.67 However, in a recent study, montelukast, a
potent inhibitor of the receptor of leukotriene C4 and
D4, has no effect on cough in the common cold.68

Eosinophils
Eosinophils are important mediators of cough in allergic
disease but their role in viral infection is less clear.
Eosinophils, if activated, during viral infection release a
multitude of molecules including leukotrienes, growth
factors, cytokines and major basic protein (MBP).69

MBP binds to as well as alters prejunctional M2 receptor
function,70 71 and increases tachykinin release.44 MBP is
cytotoxic72 and has been implicated in peripheral nerve
remodelling.73 It is found in higher levels in nasal aspi-
rates from children during HRV infection.74 Not only
are eosinophils implicated in tachykinin modulation, but
during degranulation they also release a potent peroxid-
ase which generates reactive oxygen species (ROS) and
reactive nitrogen species. These harmful oxidants are
known potent TRPA1 agonists,75 76 which are receptors
ascribed to cause cough in humans and guinea pigs.20

Muscarinic receptors
Muscarinic receptors are highly characterised in airway
diseases such as asthma and chronic obstructive pulmon-
ary disease with limited evidence of their involvement in
respiratory infections. Of the five muscarinic receptors
(M1-5), only M1-3 can be found in the respiratory
system. M1 is expressed on epithelial cells and submuco-
sal glands of pulmonary veins.77 M3 receptors are
heavily expressed on smooth muscle, inflammatory and
submucosal cells78 where they mediate bronchoconstric-
tion, mucosal secretion and inflammatory responses.79

M2 receptors predominately regulate cardiac contrac-
tion, but can also be localised to respiratory smooth
muscle.77 However, the most important role of M2
receptors in the airway is the prejunctional inhibition of
acetylcholine release to limit the degree of bronchocon-
striction.80 Respiratory viral agents, parainfluenza and
RSV, have been shown to cause depletion and dysfunc-
tion of M2 receptors,81 thereby exaggerating cholinergic
activity. This has been further shown in double-stranded
(ds) RNA animal models, independent of inflamma-
tion,81 and mediated by IFN release.82 Therefore, viral
infection-induced bronchoconstriction, airway hyper-
responsiveness and mucus secretion causing cough may
be indirectly mediated through M2 receptors.82 M2 dys-
regulation can be reversed with dexamethasone83 or
pilocarpine.80 However, Lowry et al84 found anticholiner-
gic bronchodilators to be ineffective against cough in
natural URTI. The potent topical corticosteroid, flutica-
sone, was also ineffective in significantly reducing

symptoms of viral URTI and, indeed, significantly
increased the bacterial colonisation of the upper
airway.85

Many of the inflammatory mediators discussed above
do not directly evoke cough but work synergistically
through other pulmonary fibres where the threshold for
cough is lowered to provoke the urge to cough. Thus,
this change to sensory nerve functionality secondary to
these mediators may potentiate and prolong a cough
response during and after respiratory viral infection.

Physical damage
By comparison with other respiratory viruses such as
influenza, HRV is renowned for its minimal cytopathic
effects.86 It has been suggested that influenza has a
higher incidence of cough than that seen with HRV
infections.87 Thus, physical disruption of airway integrity
may be a factor in a heightened cough response. HRV,
or synthetic dsRNA stimuli polyinosinic:polycytidylic
acid (poly(I:C)), is able to disrupt airway epithelial cells
via disruption of tight junction complexes at apicolat-
eral membranes through dissociation of zona occludin
(ZO) 1, occludin, claudin-1, E-cadherin and β-catenin.
This leads to a significant reduction in transepithelial
resistance88–90 indicating a loss of epithelial integrity
(figure 1A). Transepithelial resistance can also be
decreased through respiratory-localised TRPV4 activa-
tion,91 and causes disruption of tight junction com-
plexes leading to increased permeability. But whether
these are related or not, are unknown. Whether this
viral induced loss of integrity is dependent or independ-
ent of an inflammatory response is open to debate.

Inflammatory independent
ROS and other oxidants cause barrier disruption and
affect permeability in tissues throughout the body92

through cytoskeletal and tight junction interruption.
This effect is mirrored in polarised epithelial cells, such
as those within the airways.88 93 During infection, HRV
causes oxidative stress independent of viral replication
or ICAM-1-mediated viral attachment.94 The mechanism
is thought to be via a NOD-like receptor X-1 (NLRX-1)
interaction with dsRNA causing a translocation of
NADPH oxidase-1 (NOX-1) leading to the generation of
ROS and oxidants.93 95 By contrast, ROS production is
necessary for clearance of viral infections, but requires
stringent regulation. Interaction with dsRNA receptor
NLRX-1 induces mitochondrial ROS generation.96 97

This is likely a result of mitochondrial antiviral signalling
protein interaction with dsRNA,98–100 an important com-
ponent of HRV lifecycle.101 ROS are also potent agonists
of TRPA1 and TRPV1,75 76 which poses a potential inter-
action route between HRV and TRP channels.

Inflammatory dependent
Other investigators propose that physical disruption is
an inflammatory-dependent process caused by TNF-α,
IFN-γ, IL-4 and IL-8 which mediate the tight junction
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dysregulation.102–104 A cytokine-induced effect may,
however, be secondary to signalling pathways aforemen-
tioned, and which mechanism predominates may be
dependent on specific cell type.
Consequently, varying degrees of barrier disruption

and physical damage have the potential to cause a multi-
tude of effects. A loss of integrity to airway barriers
enables the transmigration of opportunistic bacteria
causing secondary respiratory infection.90 It can also
lead to dysregulation of intracellular signalling facilitat-
ing the upregulation of growth factors.105–107 Finally, in

exposed animals, an enhanced activation of sensory
nerve fibres leads to airway hyper-responsiveness108 and
epithelial repair is delayed.109 Thus, there is a cycle of
cytokine-induced barrier damage (figure 1B) leading to
epithelial shedding. Airway epithelial lining begins to
become permeable to larger molecules88 leading to a
cycle of hypersensitivity and further damage.
Physical disruption to airways described above is a well-

characterised part of the pathophysiology of lung dis-
eases including asthma and cystic fibrosis, but the role it
plays in URTI, such as HRV, has only recently begun to

Figure 1 (A) Normal healthy airway barrier. In a healthy airway, cells are connected together by tight junction complexes

including tight junctions, adherens and gap junctions. Cells are attached to basement membranes by hemidesmosomes and

focal contacts. Barrier permeability is minimal and tightly regulated to prevent the excessive release of essential molecules, ions

and proteins. The barrier is protective against infection. (B) Human rhinovirus infection in airway epithelial cells. There are two

main ways that HRV causes physical disruption of airway barriers, inflammatory-dependent and independent. Both replicating

and non-replicating viruses can interfere with airway membrane integrity by disrupting tight junction complexes. This causes a

reduction of transepithelial resistance with the potential consequence of contracting a secondary infection. Cytoskeletal

remodelling mediated by protein kinase D (PKD) causes an actin reorganisation within infected cells, altering their structure and

integrity, further allowing cells to lose their adjoining contacts. Replicating HRV produces a dsRNA intermediate structure which

can interact and activate NOD-like receptor X-1 ultimately producing reactive oxygen species. These alone are capable of

reducing transepithelial resistance and barrier disruption. Loss of gap junctions and cells leaves gaps within epithelial layers.

These allow cytokines, growth factors, immune cells and further viral particles to penetrate deeper layers within the airways,

causing dysregulation of cellular signalling. This dysregulation causes further upregulation of various molecules including growth

factors, which, in turn, can lead to an increase of receptor expression, such as transient receptor potential channels which have a

prolific effect to cause cough (TNF, tumour necrosis factor; IFN, interferon; IL, interleukin).
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become clear, but may be crucially important in patients
with pre-existing respiratory disease.

Mucus
Excessive mucus production and secretion is common in
URTI1 110 initiating symptoms such as a cough and
sneezing, and thus facilitating transmission of infec-
tion.3 111 HRV, in particular, upregulates the transcrip-
tion of various mucin genes including MUC5AC.112–114

This pathway is particularly involved in mucus produc-
tion and release, but this complex process (figure 2) has
yet to be completely characterised. Using nuclear factor
(NF) κB and mitogen-activated protein kinase inhibitors,
the pathway induced during HRV infection was origin-
ally identified. The mechanism is independent of sero-
type and genotype and is inducible by artificial genomic
stimulus using poly(I:C).112 NFκB is upregulated as part
of HRV lifecycle,115 116 so it is unsurprising that it plays a
pivotal role in the production of symptoms during infec-
tion, and is essential for MUC5AC production. HRV is
able to induce mucosal cell metaplasia through a novel
TLR3-epidermal growth factor receptor (EGFR) coup-
ling and the induction of EGFR ligands,113 including
transforming growth factor α. This results in the

production and secretion of mucins via MUC5AC pro-
moter regions.112 The process of mucus secretion and
tight junction disruption go hand in hand. A loss of epi-
thelial integrity where a dissociation of E-cadherens
from adherens tight junction complexes causes the
uncoupling of EGFR where it becomes readily activated.
However, an excess of EGFR activation promotes goblet
metaplasia and, thus, excessive mucus secretion.117

Muscarinic receptors are also involved in mucus secre-
tion, mediated predominately through M3 in cooper-
ation with M1118 and are regulated by M2.119 Since
stimulation of muscarinic receptors transactivate EGFR
to stimulate goblet cell mucus secretion,120 121 it is pos-
sible that HRV possesses the ability to interact with mus-
carinic receptors to cause this process. The implications
of this are far-reaching as not only may it begin to
explain the aetiology of a viral mucosal cough but also
chronic mucus secretion such as occurs in chronic
bronchitis.
A counter-regulatory mechanism to HRV-induced

TLR-EGFR coupling is by induction of the transcription
factor sterile-α-motif-pointed domain ETS-factor
(SPDEF). SPDEF inhibits TLR signalling and type I IFN
release to dampen the proinflammatory response

Figure 2 Sterile-α-motif-pointed domain ETS-factor (SPDEF) and epidermal growth factor receptor (EGFR) regulation of mucus

production and goblet cell metaplasia within the airways during upper respiratory tract infection (URTI). Reactive oxygen species

(ROS)-induced uncoupling of EGFR permits its translocation to the apical membrane of cells which readily allows its activation.

Excessive activation of EGFR promotes various cellular processes including goblet cell metaplasia and upregulation of

mucus-associated genes including MUC5AC. Simultaneously, SPDEF is activated to dampen the inflammatory response

mounted against the rhinovirus infection through blockade of TLR signal transduction. SPDEF also functions as a transcription

modulator and causes upregulation of MUC5AC. Ultimately, increased MUC5AC and goblet metaplasia results in the

hyperproduction of mucus, characteristic of rhinovirus infection.
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induced by HRV.122 SPDEF is a transcriptional modula-
tor with a wide variety of roles including endocrine and
androgen interaction,123 124 however, recently this tran-
scription modulator was found to regulate goblet cell
metaplasia123 125 and upregulate genes associated with
mucus production,126 including MUC5AC.125 It has
been suggested that SPDEF initiates recovery and pro-
tects against excessive inflammatory damage during
metaplasia. Dysregulation of this pathway may permit
the cycle of cough and damage to persist, exposing basal
membranes and nerve fibres, allowing HRV-induced
physical damage and mucus overproduction to act
synergistically.
Many patients have a dry or non-productive cough,

and thus, an important cofactor mucus production
alone is insufficient to explain coughing in URTI.
Excessive mucus may exacerbate cough by several
mechanisms including a stretch response and altered
tonicity. Present within mucus are nucleosides and
nucleotides, namely ATP and its breakdown products.127

ATP release occurs through cellular swelling mediated
via pannexin-1128–130 and subsequent ATP-induced ATP
release.131 Purinergic receptors are increasingly thought
to be important mediators of cough hypersensitivity, and
are discussed further in the section on neuronal
mechanisms. In terms of mucus secretion, P2Y receptors
enhance intracellular calcium concentrations and subse-
quent ciliary beat frequency.132 133 P2X7 is known to
colocalise and interact with Pannexin-1.134–136 As part of
the pore-forming complex of P2X7 receptor, pannexin-1
forms a death complex through extended pore dilation
and increased permeability.135 137 138

In recent years, an increasing number of studies have
begun to implicate TRPV4 in mucociliary clearance and
airway defence, as it is essential for epithelial barrier
function,91 and is highly expressed in ciliated tracheal
cells.139–141 As well as arachidonic acid metabolites,142

TRPV4 can be activated through mechanical and
osmotic stimulus,143 such as viscous and hypotonic
mucus, to induce and regulate calcium release.144 Not
only does this activate the channel but it also regulates
ciliary beat frequency141 and mucus secretion, mediated
by aquaporin 5.145

Neuronal modulation
Cough is clearly a neuronal reflex, so the hypothesis that
neuronal modulation underlies the pathogenesis of viral
cough is the most convincing. However, at present, there
is no single comprehensive mechanism which explains
cough induced by HRV or indeed any other respiratory
pathogen. Theories include a cooperative role of pul-
monary oxidative stress in vagal sensory nerves between
TRPV1, TRPA1 and P2X receptors.146 Direct viral
damage to mitochondria leading to ROS production
may modulate or influence cough.
During URTI sensitivity to capsaicin, citric acid and

histamine are transiently increased with a reduction
in cough threshold,10 11 147 148 without concurrent

hyper-responsiveness to methacholine.11 This suggests
that HRV-induced cough is independent of bronchial
smooth-muscle tone. This was originally proposed to
occur through the sensitisation of RARs,149 but despite
convincing evidence, RARs do not express TRPV1 recep-
tors and are insensitive to chemical stimuli.150 As such,
they are no longer proposed to be the primary fibre
involved in the cough reflex,23 but may have a synergistic
interaction with C-fibres.151 As a result of these findings,
capsaicin-sensitive nerves are not the same nerves known
to initiate pathological cough, despite the clear observa-
tion that inhaled aerosolised capsaicin produces a
cough.18 These observed differences may be explained
by phenotypic changes to nerve fibres induced during
inflammation.152

Phenotypic changes imply altered gene expression
and differentiation. In the guinea pig, low threshold
mechanosensitive sensory nerves express TrkA,153 and
application of other growth factors induce the func-
tional expression of TRPV1 and TRPA1 de novo.152 In
vivo research in the rat and guinea pig models have
found inflammatory states through increased nerve
growth factor (NGF) levels causing a phenotypic change
of A-delta fibres. They now resemble C-fibres as shown
by the coexpression of substance P and NGF.154 155 NGF
is transported to sensory neurons via DRG and is able to
alter transcription of various proteins and peptides.156

Further research into the effect of NGF on TRPV1 by
Chuang et al33 and Ganju et al157 found that NGF acti-
vates the PLC pathway. TRPV1 associates with phosphati-
dylinositol 4,5-bisphosphate (PIP2) in its resting state,
but PLC activation causes the hydrolysis of PIP2 to
release TRPV1 from constitutive inhibition, thus increas-
ing the opening probability of TRPV1.
Similarly, HRV infection in the human has been

shown to cause the upregulation of a number of growth
factors.105–107 Specifically, HRV can induce the upregula-
tion of NGF158 and inhalation of aerosolised NGF can
enhance cough in the guinea pig citric acid-induced
cough model through TRPV1 and TrkA (NGF receptor)
activation.159 160 Despite the differences between human
and guinea pig airway innervation, it is these modifica-
tions in expression that may lead to a phenotypic
change during URTI.
Interest into the role of TRPV4 and P2X receptors in

cough has been growing exponentially. A recent abstract
publication showed that the application of a TRPV4
agonist facilitated the subsequent activation of P2X3
receptor through sensitisation of airway sensory
nerves.161 This is not the first time TRPV4 and P2X3
receptors have been hypothesised to play a cooperative
role in pathophysiology.162 It has become apparent that
there is significant overlap between TRP channel and
purinergic receptor functionality, which have given rise
to the persuasive theory that TRPV4 and purinergic
receptors play a cooperative role in pathological cough.
ATP, which has been shown to enhance cough reflex
sensitivity24 in response to citric acid and histamine
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challenge,163 potentiates through P2X2/X3-mediated
bronchoconstriction.164 165 A successful clinical trial
using AF-219, a P2X3 antagonist, reduced the incidence
of coughing in patients with chronic cough by 75%,166

provides more convincing evidence that cough sensitivity
may be strongly upregulated by the P2X pathway.
Neurogenic inflammation from afferent sensory

neurons167 is mediated mostly, but not exclusively, by
neuropeptides CGRP, neurokinins and substance P.
When present, it is thought to be a protective reflex,
facilitating healing and modulation of local immunity.
Unfortunately, there is wide interspecies and, in man,
intersubject variability in afferent sensory innervation
making interpretation of experimental findings difficult
to translate into clinical relevance. However, neurogenic
inflammation is well characterised in several diseases,
including migraine,168 and more controversially in
asthma169 and rhinitis, the latter of which is common in
URTI,170 where it likely amplifies maladaptive responses.
Neurogenic inflammation is essential for sensory
neurons to prime and respond to noxious stimuli
quickly. Consequently, afferent neurons are abundant in
TRP channels, P2X, PAMPs and DAMP receptors. Only
a limited set of TLRs, 3, 4, 7 and 9, are present within
nociceptive neurons,171–173 therefore, not all pathogens
are capable of directly causing neurogenic inflamma-
tion. Stimulation of these TLRs induce an inward
depolarisation to elicit neuronal sensitisation to pain
stimuli.171–173 A recent interesting finding identified
TLR 7 stimulation leading to an itch-specific sensory
pathway,173 through intracellular microRNA let-7b. This,
in turn, induces a rapid inward current in neurons,
coexpressing TLR7 and TRPA1 to generate pain.174 175

Extracellular ATP is a crucial damage-associated molecu-
lar pattern molecule ligand which is released during
damage and injury. In nociceptive neurons, P2X3 recep-
tors are key to ATP recognition and pain production.176

Purinergic receptor P2Y2 is also responsive to ATP, and
is capable of TRPV1 sensitisation and activation in the
absence of TRPV1 stimuli,177 a similar sensation previ-
ously ascribed to TRPV4 through HRV-induced mucus
overproduction. Cytokines, namely IL-1β and TNF-α,
produced as a result of infection cause TRP channel
sensitisation and activation through membrane phos-
phorylation.178 179 The resultant effect means that TRP
channels respond to innocuous stimuli as noxious
stimuli causing allodynia and, perhaps, allotussia.
There is a surprising degree of overlap in the physio-

logical location and functionality of thermo-TRP chan-
nels and P2X receptors. TRPA1 is reported to possess
mechanotransductive properties likely attributable to
their distinct characteristic ankyrin repeats180 in the
inner ear to permit hearing,181 although this is disputed
by other groups.182 However, despite this, an interesting
notable finding was the identification of P2X receptors,
also within the inner ear, and that their initial action
potential firing is necessary for the maturation of
hearing.183 Likewise in the bladder, TRPV1, TRPV2,

TRPV4, TRPA1 and TRPM8 all have mechanosensory
roles184 to interpret stretch and pain perception,185

whilest P2X2 and P2X3 play a major role in distension
sensation to excite a micturition reflex.186 Most relevant
to cough is their influence on pain. TRPA1 and TRPV1
are well characterised to elicit pain signals in response
to noxious stimuli187 188 P2X2, P2X3, P2X4 and P2X7
having all been identified to play some form of role in
various types of pain.189–192 Most importantly in neuro-
pathic pain where some pharmacological agents which
have shown promising results in clinical trials.193

Relevant to these observations is that P2X2 and P2X3
receptors expressed on afferent neurons are home to
the classic pain sensation channel TRPV1.194

The role of TRP channels in HRV-induced cough has
recently been explained in a first-of-its-kind study by
Abdullah et al.195 A novel infection site of HRV was iden-
tified in neuronal cell lines with concomitant upregula-
tion of expressed TRP channels TRPA1, TRPV1 and
TRPM8 found on airway sensory nerves. HRV infection
accounts for up to 50% of exacerbations in asth-
matics,196 and both asthmatic197 and chronic cough suf-
ferers198 199 have higher levels of TRP channels
expressed in their airways. This finding adds to the
mounting evidence that TRP channels play a major role
in cough during HRV infections, but requires further
investigation to definitively confirm this.

SUMMARY
A postviral cough is generally unresponsive to conven-
tional pharmacological intervention, but has shown
limited responsiveness to the anticholinergic drug, tio-
tropium,200 which leaves a major hole in our therapeutic
armamentarium. Currently, treatment merely consists of
dampening the inflammatory response with the use of
antiinflammatories (such as naproxen),201 and cough
suppressants (codeine-containing products and dextro-
methorphan),15 in the hope of reducing the frequency,
severity and transmission of cough. Opiates, although
commonly prescribed, are not generally recommended
for viral cough due to their poor efficacy and significant
adverse effect profile.15

The multiple mechanisms described above provide a
confusing and inter-related ‘soup’ of potential thera-
peutic targets, dissecting which, are the key players
involved in this common affliction that will be challen-
ging. We suggest that modulation of the afferent neur-
onal hypersensitivity will provide the most fruitful target
in what is essentially a benign and self-limiting disease.
Other strategies, such as systemic immune modulation,
run the risk of generating unforeseen off-target effects.
The rewards for understanding the mechanism of
viral-induced cough will have enormous impact on
human morbidity.
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