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Abstract. Failure Mode Reasoning (FMR) is a novel approach for an-
alyzing failure in a Safety Instrumented System (SIS). The method uses
an automatic analysis of an SIS program to calculate potential failures
in parts of the SIS. In this paper we use a case study from the power
industry to demonstrate how FMR can be utilized in conjunction with
other model-based safety analysis methods, such as HiP-HOPS and CFT,
in order to achieve a comprehensive safety analysis of SIS. In this case
study, FMR covers the analysis of SIS inputs while HiP-HOPS/CFT
models the faults of logic solver and final elements. The SIS program is
analyzed by FMR and the results are exported to HiP-HOPS/CFT via
automated interfaces. The final outcome is the collective list of SIS fail-
ure modes along with their reliability measures. We present and review
the results from both qualitative and quantitative perspectives.

Keywords: FMR · HiP-HOPS · CFT · FTA.

1 Introduction

In the process industry, Safety Instrumented Systems (SIS) are mechanisms that
protect major hazard facilities against process-related accidents [5]. Failure of
SISs can result in catastrophic consequences such as loss of life and environmental
damages. An SIS consists of hardware components and a software program.
Failure Mode Reasoning (FMR) was introduced for calculating failure modes of
SIS components based on an analysis of its program [8]. Through a backward
reasoning process on the SIS program, FMR calculates the SIS input failure
modes that can result in a given undesired state at its output. Once the failure
modes are identified, the probability of failure can be calculated too.

Hierarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS)
[11] and Component Fault Trees (CFT) [9] are two model-based dependability
analysis techniques that can analyze failure modes of a system based on the
failure behavior of its components. The failure models of components are com-
bined to synthesize a system-level fault tree, which is then solved to generate
qualitative and quantitative results.

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer Science. The final 
authenticated version is available online at: https://dx.doi.org/10.1007/978-3-030-58920-2_9
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FMR was created to address a shortcoming in safety analyses in the process
industry: the impact of SIS program. In this paper we demonstrate how other
methods can achieve comprehensive failure analyses by employing FMR for an
automatic analysis of the program. HiP-HOPS, for instance, offers automated
synthesis and analysis of fault trees and FMEAs and state sensitive analysis of
sequences, and it is also enriched with bio-inspired algorithms [12]. However, the
method still requires a first-pass manual annotation of failures, which is a chal-
lenging task when dealing with SIS programs. Likewise, CFT can benefit from
an automated analysis of SIS programs conducted by FMR. In two independent
experiments, we will integrate FMR with HiP-HOPS and CFT to analyze a case
study from the power industry. Through qualitative and quantitative results we
will show how such integrations can improve overall safety analysis.

The rest of this paper is organized as follows: Section 2 provides an intro-
duction to the underlying concepts of FMR and SIS failure analysis. Section 3
defines the case study and the method. Section 4 outlines the process of SIS input
analysis in FMR. Sections 5 and 6 demonstrate the results of integrating FMR
with HiP-HOPS and CFT. Section 7 discusses the challenges and achievements
of the project, and section 8 wraps up the paper with a concluding note.

2 SIS and FMR

A typical SIS consists of three main subsystems: sensors that measure the pro-
cess conditions (e.g. pressure and temperature), logic solver (e.g. a CPU) that
processes the program, and final elements (e.g. valves) that isolate the plant
from a hazard when needed. The safety function achieved by a combination of
sensors, logic solver and final elements to protect against a specific hazard is
referred to as Safety Instrumented Function (SIF) [5].

As a layer of protection, the reliability of a SIF is commonly measured by
its Probability of Failure on Demand (PFD): PFDSIF = PFDs + PFDls +
PFDfe; with PFDs, PFDls and PFDfe being the PFD of sensors, logic solver
and final elements respectively, and PFDSIF the aggregated PFD of SIF [5].
The PFD is calculated by using the failure rates of SIS components. A SIS
component may fail in one of the following forms: Dangerous Detected (DD),
Dangerous Undetected (DU), Safe Detected (SD) and Safe Undetected (SU) [5].
A dangerous failure is a failure that prevents SIF from responding to a demand
when a real hazard exists, and safe failure is the one that may result in a safety
action being initiated by the SIF when there is no real hazard (i.e. Spurious
Trip). The DU, DD, SU and SD elements are measured by failure rates λDU ,
λDD, λSU and λSD. For a single component, the relationship between λDU and
the average PFD is expressed by PFDavg = λDUτ/2, in which τ is the Mission
Time over which the average PFD is calculated. Other formulas are given by
various sources to relate failure rates to the PFD and Spurious Trip Rate (STR)
for general K-out-of-N (KooN) combinations [3,6,7,14].

Well established methods, such as Fault Tree Analysis (FTA) [17,2] already
exist in the industry for analyzing failure. FTA is a deductive method for failure
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analysis whereby a failure model, the fault tree, is analyzed to find the causes of
a given undesired event. A fault tree is a graphical representation of failure, and
it consists of events and logical gates that interconnect those events. The main
outcome of an FTA is a set of minimal cut sets (MCS). An MCS is the smallest
conjunction of a set of basic events that, together, can lead to the occurrence of
the top event. Logically, MCSs represent AND combinations of basic events, and
top event the OR combination of MCSs. Having the failure models and rates of
occurrence for basic events one can calculate MCSs and the top event [1,14,17].

With the growing complexity of industrial systems and availability of technol-
ogy, FTA research has shifted towards modularization of models and automation
of methods. HiP-HOPS and CFT are two examples of modular analysis of generic
systems [13,10], as opposed to FMR which specializes in SIS programs.

SIS programs are typically developed in graphical editors and in the form
of Function Block Diagrams (FBD) [4]. An FBD consists of standard Function
Blocks (FBs) and their interconnections – variables. Figure 1 includes a simpli-
fied picture of some FBs and their interconnections. As a more specific example,
y = (x1 + x2)/2 is an average value FB with output variable y and input vari-
ables x1 and x2, which can connect this FB to other FBs in the program. Each
FB, by itself, is fixed and known, but the function of the overall program de-
pends on the selection of its constituting FBs and the way these FBs interact.
Subsequently, the failure behavior of FBs can be defined independently, whereas
the failure behavior of the program is identified based on its application-specific
configuration. This is the underlying idea of FMR. In an automated process,
the SIS program is scanned from its output towards its inputs as local failure
behaviors are analyzed around each FB. The results of local analyses are then
combined and simplified into a “failure modes short list,” which is also used for
calculating SIS reliability measures [8].

FMR is based on a failure mode calculus. A failure mode is a manner in which
the reported value of a variable in an SIS program deviates from its intended
state; with the intended state being what the variable would read if SIS inputs
were not affected by faults. Assuming that the SIS program is systematically
correct, an undesired state at SIS output can only be caused by the propagation
of input deviations through the program. FMR calculates the failure modes
corresponding to such deviations by backward analysis of the program. The
basic failure modes in FMR are expressed by ḣ and l̇ for real-valued variables,
and ṫ and ḟ for Boolean variables. Here, ḣ is for false high, l̇ for false low, ṫ
for false True and ḟ for false False. As an example, for the average value FB,
(ŷ = ḣ)⇒ (x̂1 = ḣ ∨ x̂2 = ḣ) means if output y is reading too high either input
x1 or x2 must be too high. FMR combines such local reasoning statements,
eliminates the intermediate variables, and produces a final, minimal statement
comprising only SIS inputs and outputs.

FMR completes the SIS safety analysis by incorporating the functionally
most important part of the system – the program, and it does this by analyzing
the actual program rather than a synthesized model. The process is automated
and thus it saves time and effort, and offers accuracy and certainty.
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3 Definition of the case

Consider a gas-fired boiler with a high pressure drum for generating super-heat
steam. The level and pressure in the drum are measured by three level trans-
mitters and two pressure transmitters. Pressure measurement is used to modify
the level readings: drum pressure can vary between 1 and 100 bars, causing
wide-range changes to water density and thus to the level measurement. An SIS
program uses thermodynamic calculations to correct the level readings based on
pressure. Corrected level signals are compared to a preset threshold value, and
if 2 out of 3 channels read extreme low, a trip is initiated at the outputs of the
SIS logic solver to close the gas valves. Failing to shut the gas valves can result
in excessive drum pressure, boiler tube rupture and eventually boiler explosion.

As shown in Figure 1, level transmitters L1-L3 and pressure transmitters
P1-P2 are read in through analog input (AIs). The output of SIS program is
connected to gas valves via output modules (DOs) and interposing relays. The
gas skid consists of a main isolation valve (MGIV) and two sets of double-block-
and-vent valves for the main burner (MBV1, MBV2, MVV) and ignition burner
(IBV1, IBV2, IVV). During normal plant operation, MGIV and the block valves
are open and the vent valves are closed. If a hazardous situation is detected,
block valves should close and vent valves should open. MGIV is not considered
a safety actuator and only closes during scheduled plant outages.

Fig. 1: SIS configuration

The boiler is in its safe state (off) if both the main burner and ignition
burners are shut. The following key failure states are defined:

– The SIS is in a DU failure state if the level measurement fails to detect low
drum level, or if the logic solver is not capable of responding to a detected
low level, or if either the main burner valves (MBV1, MBV2) or ignition
burner valves (IBV1, IBV2) are incapable of blocking the supply gas.
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– The SIS will spuriously trip the boiler if MGIV, MBV1, MBV2, IBV1 or
IBV2 closes when no real hazard exists. This may be due to a random failure
of one of these valves or the failure of one of their upstream interposing relays,
DO modules, CPU, AI modules or sensors.

To avoid the risk of extreme low drum level, the SIS program is designed
to initiate a trip if any 2 out of 3 combination between low level and/or sensor
fault is detected. Deviation between level signals alerts the operator but does
not initiate a trip. Furthermore, pressure sensor P1 has priority over P2: if P1
is not detected faulty, the output of the 1oo2 block equals P1.

Our objective in this case study is to analyze the SIF both qualitatively
and quantitatively. We would like to determine the minimum combinations of
component failures that can lead to SIS DU or ST failure. We would also like
to calculate the likelihood of individual combinations and the aggregated PFD
and STR. In the next three sections we will explain how we molded the SIS in
FMR, HiP-HOPS and CFT. Independent from our case study models, we also
created a reference fault tree in Isograph’s FaultTree+ tool (www.isograph.com),
of which no picture is shown here. The model was created to help us compare
and evaluate the results of our analysis against one same, independent reference.

4 Modeling SIS inputs in FMR

This case study is based on a medium-scale power plant project where an SIS
program performed 34 SIFs and included almost 100 hardwired inputs, 25 hard-
wired outputs and 250 software signals exchanged with an operator interface.
The program comprised over 2170 function blocks with thousands of intercon-
nections. A by-hand analysis of such programs would certainly be a challenge.
Yet, in a typical large-scale power generation unit these figures may be five times
greater, making a manual analysis almost impossible.

The input to the FMR tool is an offline copy of the entire SIS program. The
analyst does not even need to know what the SIS program consists of. They only
need to nominate a single variable in the program and the undesired state of that
variable. The tool starts at the nominated point, traces the program backwards,
and calculates the corresponding SIS input failure modes.

4.1 Qualitative analysis

We are interested in both DU and ST failure modes at the SIF output; i.e. at
the final output of the Trip Interlock block in Figure 1. The SIS is configured
in a de-energize to trip setup. That is, a False signal at the SIS output triggers
a safety action and trips the plant. Thus, DU failure occurs when a real hazard
exists but the SIS output is left True. Assuming that the SIS program is correct,
a DU failure can only be due to the failure of SIS inputs in detecting the hazard.
ST failure, on the other hand, occurs when the SIS output is set to False due
to safe failure of SIS inputs. In the FMR terminology, we are interested in SIF
output being ṫ (for DU) and ḟ (for ST).
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A copy of the SIS program was imported to FMR, and the tag number and
failure states of the SIF output were nominated. The tool analyzed the program
and generated FM (failure mode) short lists shown in Tables 1 and 2.

1 L1: healthy & higher L3: healthy & higher

2 L1: healthy & higher L2: healthy & higher

3 L2: healthy & higher L3: healthy & higher

4 L1: healthy L2: healthy P1: healthy & higher

5 L1: healthy L3: healthy P1: healthy & higher

6 L2: healthy L3: healthy P1: healthy & higher

7 L1: healthy L2: healthy P2: healthy & higher P1: faulty

8 L1: healthy L3: healthy P2: healthy & higher P1: faulty

9 L2: healthy L3: healthy P2: healthy & higher P1: faulty

Table 1: FM short list for SIF output DU failure

1 L1: healthy & lower L2: healthy & lower

2 L2: healthy & lower L3: healthy & lower

3 L1: healthy & lower L3: healthy & lower

4 L1: faulty L2: healthy & lower

5 L1: faulty L3: healthy & lower

6 L1: healthy & lower L2: faulty

7 L2: faulty L3: healthy & lower

8 L1: faulty L2: faulty

9 L2: healthy & lower L3: faulty

10 L1: healthy & lower L3: faulty

11 L1: faulty L3: faulty

12 L2: faulty L3: faulty

13 L1: healthy L2: faulty P1: healthy & lower

14 L1: healthy L3: faulty P1: healthy & lower

15 L1: faulty L2: healthy P1: healthy & lower

16 L2: healthy L3: faulty P1: healthy & lower

17 L1: healthy L2: healthy P1: healthy & lower

18 L1: faulty L3: healthy P1: healthy & lower

19 L2: faulty L3: healthy P1: healthy & lower

20 L1: healthy L3: healthy P1: healthy & lower

21 L2: healthy L3: healthy P1: healthy & lower

22 L1: healthy L2: faulty P2: healthy & lower P1: faulty

23 L1: healthy L3: faulty P2: healthy & lower P1: faulty

24 L1: faulty L2: healthy P2: healthy & lower P1: faulty

25 L2: healthy L3: faulty P2: healthy & lower P1: faulty

26 L1: healthy L2: healthy P2: healthy & lower P1: faulty

27 L1: faulty L3: healthy P2: healthy & lower P1: faulty

28 L2: faulty L3: healthy P2: healthy & lower P1: faulty

29 L1: healthy L3: healthy P2: healthy & lower P1: faulty

30 L2: healthy L3: healthy P2: healthy & lower P1: faulty

Table 2: FM short list for SIF output ST

Each row in Tables 1 and 2 represents an AND combination of input FMs that
can result in the given output FM. A quick comparison with the description of
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the SIS program we described in Section 3 shows that FMR has identified failure
modes as expected. In analyses where unexpected FMs are detected, engineers
can use the information to correct or modify the program.

4.2 Quantitative analysis

In the second stage, FMR performs a quantitative analysis to determine the prob-
ability of occurrence of failure. The FMR tool uses its internal project database
to store failure data. In this database, each FM is described by a failure type
and a likelihood value. The failure type can be “Fixed” probability, failure-repair
“Rate” or “Dormant”. The likelihood value indicates the probability of failure
(i.e. unavailability) or the frequency of occurrence (in a time interval).

A Fixed probability model is used when the occurrence of a basic event is
expressed independently from time and the repair process. The unavailability
(q) of a component with fixed probability value of p will be: q = p.

The Rate model is suitable for repairable elements. These are the compo-
nents for which the occurrence of a fault is detected and for which repair and
restoration procedures are in place. The only time that the component is un-
available will be the time that it is under repair. The time interval is known as
MTTR (Mean Time To Restoration) and the unavailability of such components
will be [14]:

q(t) = λ(1− e−(λ+µ)t)/(λ+ µ) (1)

with λ being the failure rate and µ = 1/MTTR the repair rate. These rates are
often expressed per hour. For a steady-state estimation of Eq. 1, t is assigned
the constant value of Risk Assessment Time, often equal to Mission Time.

A Dormant model is used when a basic event represents the undetected fault
of a component that undergoes periodic proof testing. Here we use [14]:

q = 1− (1− e−λτ )/(λτ) (2)

The failure rates and models used in this project are listed below:

– A sensor being healthy & higher (or healthy & lower): λDU = λSU =
50 FIT 4, τ = 2 years, and the event is modeled as Dormant. Reading
high (or low) values without having an indication of fault is an undetected
fault. This is why the Dormant model is selected for this type of failure.
Depending on the direction of fault, the failure mode can be considered dan-
gerous or safe. In this case study higher readings lead to DU failures and
lower readings lead to ST; due to the intended functionality of the SIF.

– A sensor having a detected fault: λDD = λSD = 250 FIT , MTTR =
8 hours, and the event is modeled as failure-repair Rate.

– A sensor being healthy: q = 0.999, modeled as a Fixed probability value. It
is assumed that a transmitter is healthy for 99.9% of time.

4 1 FIT = 1 in 109 hours
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Basic events with fixed probability values cannot be expressed in frequency
form. For the Rate and Dormant models, the frequency of a basic event will be:

w = λ(1− q) (3)

Collective calculation of probability in FMR is similar to quantitative anal-
ysis of MCSs and top events in FTA. An MCS consists of one or several basic
events, similar to one row in Tables 1 and 2. With QMCS and WMCS being the
unavailability and frequency of an MCS with n basic events:

QMCS =

n∏
i=1

qi and WMCS =

n∑
i=1

wi

n∏
j=1
j 6=i

qj (4)

The top event of a fault tree is an OR combination of its MCSs. The unavail-
ability and frequency of the top event are approximated by:5

QTE = (

c∏
i=1

qi)(1−
m∏
k=1

(1−Qk)) and WTE =

m∑
i=1

Wi

m∏
j=1
j 6=i

(1−Qj) (5)

Here, qi is the unavailability of a basic event that is common between all
MCSs, c the number of common basic events, Qk the unavailability of the kth
MCS excluding the common basic events, Qj the unavailability of the jth MCS,
Wi the frequency of the ith MCS, and m the number of constituting MCSs.

Using Eqs. 4 and 5, FMR generated the following results for our case study.
The results were verified by replicating the models in FaultTree+, which showed
no differences.

– Aggregated unavailability for DU mode: QDU = 1.31E − 03, consisting of:
• FMs in rows 1-3 of Table 1, each with QFM = 1.92E − 07.
• FMs in rows 4-6 of Table 1, each with QFM = 4.37E − 04.
• FMs in rows 7-9 of Table 1, each with QFM = 8.75E − 10.

– Aggregated frequency for ST mode: WST = 1.33E − 03 p.h., with WFM =
50 FIT for rows 17, 20 and 21 of Table 2, and WFM = 0.0 for other rows.

5 Integration with HiP-HOPS

There are three phases to the analysis process in HiP-HOPS: modeling, syn-
thesis, and analysis [13]. In the manual modeling phase, a topological model of
the system is created that details the components of the system and indicates
how the components are connected together to allow the flow of data. Compo-
nents can be grouped together hierarchically in sub-systems to help manage the
complexity and allowing for refinement of the model as the design progresses.

5 Eq. 4 is commonly referred to as Esary-Proschan method and is used by FTA tools
such as FaultTree+, Arbor and Item. See [1] for derivation of underlying concepts.
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The components of the model are then augmented with local failure behavior
that defines how each component’s output can deviate from its normal expected
behavior. The failure logic further documents how these output deviations can
be caused by the combination of internal failure modes of the component and/or
the propagation of deviations of the inputs of the component.

The second HiP-HOPS phase is the automatic synthesis of an interconnected
set of fault trees that are produced by traversing the model of the system from
its outputs to its inputs. It is during this phase that the failure logic defined in
the modeling phase is combined by following the connections between the ports
of the components and matching previously unrealized input deviations with
output deviations of the same class that trigger them. This results in a model of
the propagation of failure throughout the system.

The final stage is the analysis of the interconnected fault trees generated
during synthesis. This begins with a qualitative pass that contracts the fault
trees and removes the redundant logic resulting in the MCSs. The MCSs are then
used together with the failure models of the components to run the quantitative
pass and produce system unavailability and failure frequency measures.

We created a HiP-HOPS model in its user interface in the MATLAB envi-
ronment. The interfacing between FMR and this model was done through an
XML file exchange. The model was structured in two levels of hierarchy: system
level (Figure 2a), and component level (Figure 2b for the final elements). The
DU and ST failures of SIS are the result of failures in SIS Inputs, SIS CPU or
SIS FinalElements. The component failure modes of the latter two blocks are
manually implemented in MATLAB whereas the failure modes of the SIS Inputs
block are generated in FMR and automatically exported to a suitable data for-
mat in HiP-HOPS.

(a) system level

(b) final elements

Fig. 2: HiP-HOPS models in MATLAB
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In Figure 2a, the SIS CPU block consists of two failure components: the CPU
module, and the communication link between CPU and input/output modules.
A DU (or ST) failure of either of these two components can result in the fail-
ure of SIS CPU block and thus the overall failure of SIS. The SIS FinalElement
block models the failure of DO modules, interposing relays and the valves. As
shown in detail in Figure 2b, DO1 is shared between IBV1 and MBV1, and DO2
between IBV2 and MBV2. The main gas isolation valve (MGIV) is separately
connected to DO3. The failure combinations for final elements are defined as fol-
lows: Out1.DU=(In1.DU AND In3.DU) OR (In2.DU AND In4.DU) and Out1.ST=(In1.ST

OR In.2-ST OR In3.ST OR In4.ST OR In5.ST). The analysis in HiP-HOPS produced
the MCSs for all SIS subsystems. The CPU and final elements (FE) parts are
shown in Tables 3 and 4. The MCSs of inputs were the same as Tables 1 and 2.

No. Min Cut Set Frequency

1 CPU.CPUST 5.00E-09

2 Comm.CommST 1.00E-09

3 ACTB1.ACTBST 8.00E-07

4 ACTB2.ACTBST 8.00E-07

5 ACTI1.ACTIST 8.00E-07

6 ACTI2.ACTIST 8.00E-07

7 DO1.DOST 1.00E-09

8 DO2.DOST 1.00E-09

9 DO3.DOST 1.00E-09

10 IR1.IRST 4.00E-08

11 IR2.IRST 4.00E-08

12 IR3.IRST 4.00E-08

13 IR4.IRST 4.00E-08

14 IR5.IRST 4.00E-08

15 MGIV.ACTMST 1.20E-06

Table 3: CPU and FE
MCSs for SIF ST

No. Min Cut Set Unavailability

1 CPU.CPUDU 1.90E-04

2 Comm.CommDU 1.00E-05

3 ACTB1.ACTBDU ACTB2.ACTBDU 1.70E-04

4 ACTB1.ACTBDU DO2.DODU 1.14E-07

5 ACTB1.ACTBDU IR4.IRDU 6.86E-06

6 ACTB2.ACTBDU DO1.DODU 1.14E-07

7 ACTB2.ACTBDU IR2.IRDU 6.86E-06

8 ACTI1.ACTIDU ACTI2.ACTIDU 1.70E-04

9 ACTI1.ACTIDU DO2.DODU 1.14E-07

10 ACTI1.ACTIDU IR3.IRDU 6.86E-06

11 ACTI2.ACTIDU DO1.DODU 1.14E-07

12 ACTI2.ACTIDU IR1.IRDU 6.86E-06

13 DO1.DODU DO2.DODU 7.69E-11

14 DO1.DODU IR3.IRDU 4.61E-09

15 DO1.DODU IR4.IRDU 4.61E-09

16 DO2.DODU IR1.IRDU 4.61E-09

17 DO2.DODU IR2.IRDU 4.61E-09

18 IR1.IRDU IR3.IRDU 2.77E-07

19 IR2.IRDU IR4.IRDU 2.77E-07

Table 4: CPU and FE MCSs for SIF DU

The SIS inputs failure data were transferred automatically from FMR whereas
the failure data for CPU and final elements were manually annotated in HiP-
HOPS. We used the manufacturer’s data as shown in Table 5.

Component Dormant (DU, SU), p.h. Rate (DD, SD), p.h. Fixed (PFDavg)

SIS CPU 5.00E-9 1.90E-4

SIS Comm 1.00E-9 1.00E-5

Digital Output Module 1.00E-9 1.00E-9

Interposing Relay 6.00E-8 4.00E-8

Igniter/Burner Block Valve 1.50E-6 8.00E-7

Main Gas Valve 1.20E-6

Table 5: SIS component failure data
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With the same MTTR=8 hours and Risk Assessment Time and Proof Test
Interval of 2 years, the overall model, including the imported FMR part, was
analyzed in HiP-HOPS and the following results were obtained for the overall
SIF: QDU = 1.88E − 03 and WST = 4.75E − 06. The results generated by
HiP-HOPS matched up the ones of our reference model in FaultTree+.

6 Integration with CFT

A CFT is a Boolean model associated to system development elements such
as components [9]. It has the same expressive power as classic fault trees and,
likewise, it is used to model failure behavior of safety-critical systems.

In CFTs, every component is represented by a CFT element. Each element
has its own in-ports and out-ports that are used to express propagation of failure
modes through the tree. Similar to classic fault trees, the internal failure behavior
that influences the output failure modes is modeled by Boolean gates.

The main difference between the two methods is that unlike classic fault trees,
CFTs can have multiple top events (e.g. both the DU and ST modes) within the
same model. Thus, the tree structure in CFT is extended towards a Directed
Acyclic Graph. This eliminates the need for artificial splitting of common cause
failure into multiple repeated events, and makes it possible to have more than
one path to start from the same basic event or sub-tree.

A small example of a CFT was presented in [10] (see Figure 3). The exam-
ple shows an exemplary controller system Ctrl, including two redundant CPU s
(i.e. two instances of the same component type) and one common power supply
Sply, which would be a repeated event in traditional fault tree. The controller
is unavailable if both CPUs are in the “failed” state. The inner fault tree of the
CPU is modeled as a type. Since the CPUs are identical, they only have to be
modeled once and then instantiated twice in the main model. The failure of a
CPU can be caused by some inner basic event E1, or by an external failure which
is connected via the in-port. As both causes result in a CPU failure, they are
joined via an OR gate. The power supply module is modeled as another type.
In this example the power supply is in its “failed” state if both basic failures E1
and E2 occur. Hence, instead of a single large fault tree, the CFT model consists
of small, reusable and easy-to-review components.

:CPU

&

CPU1:CPU CPU2:CPU

≥1

Pin1

Pout1 

Controller 

failed

:Sply :Ctrl

&

E2E1

Pout1

P=0.2P=0.1

E1

P=0.3

Pout1

Sply:Sply

Fig. 3: Example of a simple CFT
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Similar to the HiP-HOPS experiment, we implemented an automatic data
link between FMR and CFT. The list of MCSs, including the model types and
failure rates of basic events were exported in CSV format to the CFT tool,
where a new add-on script would read the data and compose a CFT element
for SIS Inputs. The rest of the modeling, i.e. for CPU and final elements, was
implemented manually in the CFT tool. Figure 4 shows the CFT model for ST
failure. The highlighted box represents the SIS Inputs, to which the FMs are
imported from FMR. A similar model was developed for analyzing DU failure.

Fig. 4: CFT model for ST failure

CFT analysis produced the same list of MCSs as in HiP-HOPS and Fault-
Tree+. Using the model types and failure rates of basic events shown in Table
6, the tool generated the following quantitative results:

– Average failure probability in DU mode QDU = 1.0E − 3
– Mean failure rate in ST mode WST = 4.61E-6 p.h.

It is apparent that the CFT results differ from what we saw in the previous sec-
tion. The main reason is that the approximation methods used for calculating the
impact of common basic events are different in different tools. The quantitative
results presented in the previous two sections used Eqs. 4 and 5, whereas CFT is
based on the Siemens’ internal tool ZUSIM, which uses the approach described
in [16,15]. By changing the settings of approximation method, in FaultTree+ for
instance, we could observe narrower gaps between the results.



Failure Mode Reasoning in Model Based Safety Analysis 13

Basic Event DU ST

SIS CPU Probability = 1.9E-4 λ = 5.0E-9

SIS Comm Probability = 1.0E-5 λ = 1.0E-9

Digital Output Module λ = 1.0E-9 λ = 1.0E-9

Interposing Relay λ = 6.0E-8 λ = 4.0E-8

Igniter/Burner Block Valve λ = 1.5E-6 λ = 8.0E-7

Main Gas Valve λ = 1.2E-6

Input ”healthy” Probability = 0.999 Probability = 0.999

Input ”faulty” Probability = 2.0E-6 Probability = 2.0E-6

Input ”healthy & higher/lower” Probability = 4.379E-4 Probability = 4.379E-4

Table 6: Types and rates used for CFT modeling

7 Discussion

All SIS components are important, but no SIS analysis can be complete with-
out including the behavior of its data-processing, decision-making program. The
problem is that such analyses can be painstaking and time-consuming in complex
systems, and when done by hand the results will still be susceptible to human
error. Consequently, current SIS analyses often lack this critical part, and use
simplifications and assumptions instead, which can lead to unreliable results.
FMR solves this problem by automating the process and by studying the exact
program that the SIS would execute. However, FMR’s visibility is understand-
ably limited to what influences the program. Hence, an integration with other
generic FTA tools can provide a complete coverage. As such, each tool would still
do what they are good at while the integration achieves an inclusive outcome.

We demonstrated through a case study how such integration can be imple-
mented in practice. We chose HiP-HOPS and CFT as two different examples,
both with proven records in other applications, and both from industries other
than process. The fact is that FMR can integrate with any FTA-based method
that allows standard file formats, e.g. XML and CSV, for data exchange.

The underlying question in FMR is: given a resultant deviation at the output
and given the actual system program, what are the possible causing deviations
at the input. This is obviously different to FTA, where we “know” the failure
behavior of a system and we build a model (fault tree) to summarize our under-
standings. FMR is rather a failure identification method, one that can be used
in failure modeling applications. Nonetheless, FMR shares a key aspect with
FTA-based modeling methods such as HiP-HOPS and CFT: a component-based
approach in failure analysis. Compared to conventional FTA, component-based
methods provide better visibility to failure behavior of systems. Traditional fault
trees become visually hard to navigate as the model size grows. Hierarchical,
topographic models, such as the one in Figure 2, offer an easier and more trans-
parent understanding of the relationship between subsystems and components
at various levels, which enhances the qualitative analysis of safety systems.
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Furthermore, a safety analysis can be improved by selecting the “right”
method of calculation. There are different approximation methods, referred to
by different names, including Rare Event (RE), Inclusion-Exclusion (IE), Esary-
Proschan (EP) and Cross-Product, depending on which the results may vary.
This may in turn lead to requiring structural changes in the SIS design, if the
reliability targets are not met [5]. See Table 7 as an example from FaultTree+;
the results would change if we chose a different method in our case study.

Calculation Default Esary-Proschan Rare Event

DU unavailability 1.00E-3 1.88E-3 1.88E-3

ST frequency 4.75E-6 4.75E-6 4.76E-6

Table 7: FaultTree+ calculations for different approximation methods

Among various approximation methods, we use the EP [1] method for FMR,
as it is more conservative than the IE formula itself but less of the one of RE
[17]. The same selection was set in HiP-HOPS and FaultTree+ so that we could
compare the results. A different calculation method as described in [16] is used
to analyze CFTs. Here, we set the selection in FaultTree+ to its default upper
bound approximation so we could verify the CFT results.

Modeling of CPU and final elements (FE) in HiP-HOPS and CFT was done
manually. However, the effort required for modeling these parts is not comparable
to analyzing the program, which was done automatically. Our case study SIS
implemented 34 SIFs. Considering an average of 30 MCSs for each SIF (our
case study SIF had 45), the analyst would need to identify 1020 MCSs for SIS
inputs. The number of MCSs in CPU and FE parts combined was only 34, which
is almost 3% of the overall. This is because the CPU and FE parts are common
between all those 34 SIFs, and thus they are modeled once; but the inputs to
each SIF need a separate model on its own. Besides, the level of complexity in
CPU and FE failures is considerably lower than those in a program.

8 Conclusion

We demonstrated two practical examples of integrating FMR with model-based
methods HiP-HOPS and CFT. The purpose of this study was to experience
comprehensive safety analyses, that included the impact of an SIS program in
precise detail. In this project, FMR was used to analyze the SIS input subsystem
while the random failure of logic solver and final elements were modeled in
the other tools. Add-on codes were developed in each individual tool to enable
automated data interfacing while the analysis methods in each tool remained
unchanged. In parallel, we created a separate model in FaultTree+, to compare
and verify the results of our own models with one same reference.

The main achievement of this study was showing how SIS programs can be
included in safety analyses and how integrating between FMR and other FTA-
based tools can help overcome modeling challenges associated with programs.
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Benefits of the integration include enhanced model accuracy, expanded model-
ing coverage, reduced modeling effort and improved analysis performance. The
success of this project provided a platform for improved safety analyses in the
process industry. Future research work will include expanding the interfacing
features of the FMR tool, extending FMR to analyzing failure modes of sys-
tem parameters, and adapting the method for modeling generic systems. In the
meantime, we are in the process of publishing a formal proof for the theoretical
foundations of FMR to better support its use in safety-related analyses.
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