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Crop pests and predators exhibit inconsistent
responses to surrounding landscape composition
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E The idea that noncrop habitat enhances pest control and repre-  agroecology | biodiversity | biological control | ecosystem services | a8 §
= sents a win—win opportunity to conserve biodiversity and bolster  natural enemies 5 g
2 yields has emerged as an agroecological paradigm. However, while § “
g noncrop habitat in landscapes surrounding farms sometimes bene- Ecologists increasingly consider maintaining or restoring non- e
N fits pest predators, natural enemy responses remain heterogeneous crop habitat in the landscapes surrounding farm fields to be a
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across studies and effects on pests are inconclusive. The observed
heterogeneity in species responses to noncrop habitat may be bi-
ological in origin or could result from variation in how habitat and
biocontrol are measured. Here, we use a pest-control database
encompassing 132 studies and 6,759 sites worldwide to model nat-
ural enemy and pest abundances, predation rates, and crop damage
as a function of landscape composition. Our results showed that
although landscape composition explained significant variation
within studies, pest and enemy abundances, predation rates, crop
damage, and yields each exhibited different responses across stud-
ies, sometimes increasing and sometimes decreasing in landscapes
with more noncrop habitat but overall showing no consistent trend.
Thus, models that used landscape-composition variables to predict
pest-control dynamics demonstrated little potential to explain vari-
ation across studies, though prediction did improve when compar-
ing studies with similar crop and landscape features. Overall, our
work shows that surrounding noncrop habitat does not consistently
improve pest management, meaning habitat conservation may bol-
ster production in some systems and depress yields in others. Future
efforts to develop tools that inform farmers when habitat conser-
vation truly represents a win-win would benefit from increased
understanding of how landscape effects are modulated by local
farm management and the biology of pests and their enemies.
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Significance

Decades of research have fostered the now-prevalent as-
sumption that noncrop habitat facilitates better pest suppres-
sion by providing shelter and food resources to the predators
and parasitoids of crop pests. Based on our analysis of the
largest pest-control database of its kind, noncrop habitat sur-
rounding farm fields does affect multiple dimensions of pest
control, but the actual responses of pests and enemies are
highly variable across geographies and cropping systems. Be-
cause noncrop habitat often does not enhance biological con-
trol, more information about local farming contexts is needed
before habitat conservation can be recommended as a viable
pest-suppression strategy. Consequently, when pest control
does not benefit from noncrop vegetation, farms will need to
be carefully comanaged for competing conservation and
production objectives.

win-win for farmers and for conservation. Beyond well-documented
benefits for crop pollinators (1), surrounding noncrop habitat is
also generally thought to benefit predators and parasitoids and
thereby enhance biological control of crop pests. Indeed, both
qualitative (e.g., refs. 2 and 3) and quantitative (e.g., refs. 4 and 5)
syntheses have concluded that, on average, enemy abundance, di-
versity, and activity (pest consumption) increase in landscapes with
more noncrop habitat. The benefits of noncrop habitat are likely
multifaceted: Just as for pollinators (1), noncrop habitat can provide
enemies with supplemental food resources, nesting locations, and/or
overwintering sites (2, 4, 6). However, the assumption that more
noncrop habitat in farming landscapes universally increases bio-
control belies significant variation among studies in how enemies
respond to landscape composition (i.e., the relative proportions of
crop and noncrop land-use types in the landscapes surrounding farm
fields) (4, 7). Moreover, the effect of landscape composition on pests
themselves remains inconclusive, as many crop pests also benefit
from nearby noncrop habitat (4, 7). As a result, programs focused on
improving the conservation value of farming landscapes could, in
some cases, precipitate increased yield losses to crop pests (7).
The great variation among studies in pest and enemy responses,
coupled with a research bias for studies in temperate systems, has
also precluded our ability to use relationships derived in prior
quantitative syntheses to model pest control globally. As a result,
despite presumed significant contributions to agricultural pro-
duction—estimated at approximately US$4.5 billion/y in avoided
crop damage in the United States alone (8)—and repeated rec-
ognition in ecosystem-service frameworks (9, 10), natural bi-
ological control is rarely taken into account in landscape-level
planning and environmental decision making. Existing decision-
support tools and models focus on pest-control dynamics as a
function of on-farm activities (11, 12). The few landscape-level
models that do exist and could inform decision making require a
thorough understanding of the life histories of target pests and
their natural enemies (e.g., attack rates, growth rates, etc.) (13-
15). At present, such models can be applied only by experts in very
data-rich environments and may not be generally applicable.
Because there is no established standard for measuring either
pest control or landscape composition, it is possible that the
diverse responses of pests and enemies to surrounding landscape
composition result from researchers measuring pests, enemies,
their interactions, and the landscapes they inhabit in different
ways. Alternatively, the heterogeneity in species responses could
be real, resulting from shifting interactions between different
species of pests and enemies with varying traits in different
landscapes. Here we standardize, reanalyze, and quantitatively
synthesize published and unpublished studies to (i) assess the
role of surrounding noncrop habitat in providing pest-control
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services to farmers, and (ii) determine to what extent land-
scape information alone can be used to model and predict var-
iation in pest control across systems.

First, we compiled an extensive pest-control database composed
of 18,094 total observations of pest and enemy abundance, enemy
activity (predation rates), crop damage, and yields across
6,759 sites in 31 countries (Fig. 1). We then used a model-
averaging approach to explore to what extent surrounding for-
est, grassland, scrubland, annual crops, and perennial crops (i.e.,
landscape composition), at multiple spatial scales, could explain
spatial patterns in the pest-control variables recorded in each
study. From prior observations (4, 7), we predicted that landscapes
with more noncrop habitat would generally increase enemy
abundance and activity (pest predation) but that pest abundance,
damage, and crop yield would exhibit significant variation in how
they respond to noncrop habitat across studies. Nevertheless, we
predicted that landscape models would be able to explain varia-
tion in independent datasets, provided that the independent
dataset and the dataset from which the landscape model was
constructed shared geographic, crop, and/or landscape features.

Results

Pest-Control Models. We constructed separate models (n = 359)
that explored how surrounding landscape composition affected
each unique pest-control variable reported in each study (here-
after referred to as unique “pest-control responses”). We report
a summary of the 359 pest-control responses, focal crops, target
pests, and sample sizes (Dataset S1) and include the entire bi-
ological control database (Dataset S2). Pest-control responses
were made up of censuses of dominant pests, all pests, and
dominant enemies (n = 76, 27, and 78 responses, respectively),
exclosure and sentinel pest experiments that measured enemy
activity (n = 23 and 68, respectively), crop-damage surveys that
measured pest activity (n = 34), and crop-yield data (n = 53).
Though 31 countries were represented, there was a strong tem-
perate bias, with 39% of the 132 studies from Europe, 23% from
North America, 14% from Central and South America, 12%
from Asia, 8% from Australia and New Zealand, and 4% from
Africa. Similarly, though the database encompassed many dis-
tinct crops (n = 41 crops, 38 species), the vast majority of sites
were in annual (90%) versus perennial (10%) agriculture.

Overall, we found that there was significant variation among
studies in the effects of different landscape variables on pest-
control responses. Contrary to our first prediction, we observed
no consistent effects of “natural” landscape variables (forest,
grassland, scrubland; aggregate natural habitat category) or
“agricultural” landscape variables (perennial crops, annual
crops; aggregate crop category) on enemy and pest abundance
and activity. That is, % tests indicated that surrounding noncrop
habitat and cropland affected pest-control variables positively
and negatively in a roughly equivalent number of models (all P >
0.05; Fig. 2). Effects of natural landscape variables were often
even inconsistent within studies. For example, in the majority of
enemy-abundance models, enemies responded positively to one
natural land-use type (e.g., forest) but negatively to another (e.g.,
grassland). Restricting our focus to only the most predictive
land-use variable present in each model did not change these
conclusions. We still found that most pest-control variables
responded positively and negatively to landscape variables in a
roughly equivalent number of models (SI Appendix, Fig. S1; all
P > 0.05). An exception was crop yields, which tended to decline
with surrounding natural land uses more often than not (x> = 9.8,
P < 0.01). Similarly, no single spatial scale tended to be most
predictive, though more pest-abundance and enemy-activity
(cage experiments) responses were best predicted by models
that placed greater weight on areas closer to sampling sites (S/
Appendix, Fig. S2).
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Fig. 1. Map of study locations. We collected pest-control data from 132 studies

across 6,759 sites and 31 countries. Pest-control data included abundances of

dominant pests, all pests, and natural enemies (black dots; 181 responses), pest and predator activity data from crop-damage surveys, sentinel pest exper-
iments, and exclosure experiments (cyan dots; 125 responses), and yield data (red dots; 53 responses).

Model Performance. Despite observed heterogeneity, we did find
that landscape composition explained variation in pest-control
responses within studies (average R* 0.14 to 0.20; Fig. 3 and SI
Appendix, Table S1). The average correlation across individual
studies between observed data and model predictions was sig-
nificantly larger than 0, and ranged from 0.37 (all enemies) to
0.45 (sentinel pest experiments). With respect to individual
datasets, correlations between model predictions and observed
data were significant and positive ~50% of the time (SI Appen-
dix, Table S1). Interestingly, model performance varied across
biogeographic realms (SI Appendix, Fig. S3). Models tended to
explain more variation in pest variables (pest abundance and
damage) when studies were located in the Palearctic (42% of
responses; Xz = 5.6, P = 0.02) and, to a lesser extent, in the
Nearctic (28% of responses; ¥~ = 3.0, P = 0.08) compared with
other areas. While landscape relationships with natural enemy
variables (enemy abundance and activity) did not vary geo-

graphically (all P > 0.05), more variation in yield data was
explained in the Nearctic than in other areas (x> = 4.4, P = 0.04).

To actually assess our models’ predictive power, we examined
how well observations in each dataset correlated with predictions
generated from the full suite of models from the other (in-
dependent) datasets. As hypothesized, field observations did not
correlate with average predictions across all independent models
(Fig. 4 and SI Appendix, Table S2). That is, correlations between
average model predictions and field observations were not sta-
tistically distinguishable from 0, which was not surprising given
such high observed variation among studies in the directionality
of landscape-composition responses.

Using Model Subsets to Improve Predictive Power. To improve
predictive power, we used a full-factorial sensitivity analysis
(Methods) to explore multiple scenarios of filtering and applying
subsets of models to field observations, rather than using the
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Landscape effects on pest-control variables. After selecting the most predictive model for each pest-control response (N = 367) and redefining land-

cover variables as natural (forest, grassland, and scrubland; green bars) versus crop (annual and perennial; orange bars), we tallied the number of pest-control
responses for which models had either positive (solid), negative (diagonal hashed), or mixed (horizontal) estimates of the effect of each landscape predictor.
Panels represent the seven pest-control variables, including abundance (A) and activity (B and C) of natural enemies; abundance (D and E) and activity (F) of
pests; and crop yields (G). x° tests indicated that pest-control response variables showed heterogeneous patterns of association with the extent of surrounding
natural habitat and cropland—with roughly equivalent numbers of pest-control responses having models with positive and negative effects (all P > 0.05).
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Fig. 3.

Explanatory power of landscape pest-control models. After selecting the most predictive spatial scale (Methods), model predictions were correlated

with observed data. Gray dots are both Pearson correlations between model predictions and observed data and R? values (square of Pearson’s r). Filled circles
and empty circles indicate significant (P < 0.05) and nonsignificant correlations, respectively. Black dots indicate the mean correlation across all datasets
between observed and predicted values. Black lines correspond to 95% confidence intervals.

average predictions generated from all landscape models (SI
Appendix, Table S3). While this approach suggested several
model-selection methods that improved predictive power, corre-
lations between model predictions and field observations
remained low. For example, correlations between field observa-
tions and average model predictions tended to be higher when we
only used models constructed from studies that focused on the
same crop as the field observations. Prediction was also enhanced
when we only included models that shared the same land-cover
variables as those present around the field observations or, even
more stringently, when land-cover variable values associated with
the field observations were within the range of values present
in the model data (i.e., the landscape-composition gradients
matched). By strategically selecting models from studies that
better matched the field observations, we could increase correla-
tions between average model predictions and observed pest-
abundance, enemy-abundance, and enemy-activity data such that
correlations were, on average, positive across all field observations
(Fig. 4, Bottom and SI Appendix, Table S2). Critically, however,
model predictions rarely explained significant variation among
individual pest-control responses: In ~12 and ~5% of responses,
correlations between field observations and model predictions
were significantly positive and negative, respectively.
Explorations of other strategies for improving predictive
power yielded mixed results (SI Appendix, Table S3). Only using
models from studies in the same biogeographic realm as the field
observations marginally improved predictive power for pest-
damage responses but reduced predictive power for all other
pest-control variables. When models and field observations
shared the same biome, predictive power significantly increased
for some variables (e.g., enemy activity measured in cage ex-
periments) but decreased for others (e.g., enemy activity mea-
sured in sentinel experiments, crop yield). Similarly, predictive
power sometimes increased (e.g., all pests, crop yield) and
sometimes decreased (e.g., dominant pests, all enemies, sentinel
experiments, cage experiments) when we only used models from
studies that were located within 500 km of field observations.

Discussion

Despite heterogeneity in environmental conditions, farm man-
agement, and species assemblages, we found that every di-
mension of pest control, from enemy abundance to crop yields,
tended to show some associations with the surrounding landscape
composition. Our work thus confirms prior observations that
habitat composition of the broader farmscape can modulate on-
farm pest control (2-4). Interestingly, explanatory power varied
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geographically. For example, models from Nearctic and Palearctic
realms generally explained more variation in pest abundance and
activity than models from other areas. This difference may result
from latitudinal variation in data quality. Fewer regional land-use
maps exist in data-poor tropical areas, and informal inspection of
the global land-use map suggested that land-cover classifications
were often inaccurate in tropical landscapes.
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Fig. 4. Testing landscape models. (Top) Correlating average predictions
across all possible landscape models (Methods) against independent field ob-
servations resulted in low predictive power. Each gray circle is the observed
correlation for one dataset (set of field observations); filled circles are signifi-
cant correlations (P < 0.05). Black circles are average correlations across all
tested datasets; lines are confidence intervals. (Bottom) More selective appli-
cation of models to independent field observations caused correlations to be
on average positive for all pest-control variables except pest damage and crop
yields (asterisks indicate P < 0.05). Specifically, this panel demonstrates that
predictive power was higher when a more selective subset of models was
applied to the independent field observations, subject to several of the fol-
lowing constraints: (i) Field observations and the data from which models were
constructed (model data) shared the same crop; (ii) the same land-cover vari-
ables were present in model data and field observations; (iii) landscape values
in field observations were within the range of landscape values in the model
data; and (iv) models explained significant variation in their own data (r >
0.25). Dominant pests, pest damage, and crop yields were subject to con-
straints (/) and (ii); all pests to (i), (i), and (iii); sentinel experiments to (i), (ii),
and (iv); and all enemies and cage experiments to (i), (i), (i), and (iv).
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Though landscape-composition variables often explained vari-
ation in pest-control responses within studies, we observed sub-
stantial variation among studies in how pests, enemies, predation
rates, crop damage, and yields responded to different landscape
variables. Specifically, we did not observe a consistent increase or
decrease in response to surrounding noncrop habitat in any vari-
able. Although increased biological control can cause pests to
decline in landscapes with more noncrop habitat, pests too can
benefit from noncrop habitat (7). This variability also pertained to
enemies, despite meta-analyses showing that enemy abundance (2,
4) and activity (5) increase in landscapes with more noncrop
habitat. Key to this finding is acknowledging that meta-analyses
take the effect sizes reported by individual studies (often including
interactions with other variables and other idiosyncrasies in anal-
ysis), not in the standardized, uniform way presented here that
isolates the effect of noncrop habitat. These results contrast prior
pollinator studies, which tend to report more consistently positive
effects of noncrop habitat (1, 16). One explanation for this dif-
ference may be that the greater diversity of organisms involved in
pest control (e.g., birds, bats, spiders, beetles, flies, etc.) may un-
derlie their more diverse landscape responses. Even more im-
portantly, complex, tritrophic interactions between enemies, pests,
and crops may make for more context-specific dynamics than in
comparatively simpler pollinator-plant systems.

Sources of Variation. Ultimately, such context dependence in pest
and enemy responses to landscape composition made it difficult
to generalize effects of land use-change decisions on pest con-
trol. While we did identify some strategies that could marginally
increase predictive power (e.g., by only applying models to
datasets focused on the same crop), models were still only able to
predict very limited amounts of variation in pest-control vari-
ables when applied to independent datasets. Surprisingly, pre-
dictive power did not even increase when we only used models
that were built from studies near to (<500 km), in the same bi-
ome as, or in the same biogeographic realm as field observations.
Below, we detail five possible explanations for the remarkable
variation that we observed in landscape responses; the first two
focus on potential problems with underlying datasets, and the
latter three focus on unaccounted-for sources of variation that
could be addressed in future analyses.

First, discordance between our findings and the broader pest-
control literature (4) may reflect underlying publication biases.
Prior reported trends may lack reproducibility because authors
are incentivized to continue interrogating their data and con-
ducting new experiments until they find significant results (17).
We do not find this explanation particularly likely, however,
because prior meta-analyses do report significant cross-study
variation in pest responses (4).

Second, our broad quantitative synthesis may have missed key
temporal dynamics that may influence landscape effects but are
rarely measured in pest-control studies. Specifically, if predator
and pest abundances fluctuate and respond to each other in an
oscillatory system (18), then snapshot estimates of species
abundances or interactions may not reflect the longer-term im-
pact of surrounding landscape composition. For example, one
study found that, near natural habitats, syrphid fly larvae sup-
press week-to-week population growth of aphids, contributing to
lower densities at harvest, but aggregating data into annual av-
erage abundances masked landscape effects (19).

Third, pests and enemies may respond more strongly to as-
pects of the surrounding landscape that we did not measure, such
as landscape configuration (i.e., the spatial arrangement of sur-
rounding land-use types) or diversity (i.e., the number of sur-
rounding land-use types present) (7, 20, 21). Still, our approach
of analyzing the proportional area of different land-use types
represents the most common landscape metric used in pest-
control studies (4, 20).
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Fourth, discordance with prior findings may be attributable to
additional sources of variability tested in the original studies but
not addressed by this analysis. Indeed, landscape composition by
itself explained on average only 14 to 20% of the variation in
pest-control variables, leaving substantial variation unaccounted-
for after correlating model predictions with field observations.
Landscape-composition effects could easily be present but masked
by variation in local farm-management factors or local climate
variables that published studies usually treat as covariates. Indeed,
crop diversification, insectary plantings, and insecticide treatments
all influence pest control and, in some cases, can modify landscape
effects (22-24).

Finally, different pest and enemy species often respond dif-
ferently to landscape variables (7). Because most of the variables
we modeled were not species-specific (e.g., abundance of all
possible pests), differences in the species that were modeled
versus the species present in the tested datasets likely lessened
the accuracy of our predictions. Indeed, while many natural
enemies need noncrop habitats to complete their life cycles (6),
some enemies are more dependent on cropland than they are on
noncrop vegetation (7). Moreover, if pests increase in simple
landscapes, then enemies may increase too, as they start to ex-
ploit this burgeoning resource.

A Path Forward. If we hope to move toward more sustainable land
and pest management, decision makers need to be informed
about tradeoffs among multiple ecosystem services of their land-
use decisions. For example, a variety of stakeholders interested
in agricultural development are concerned with the conse-
quences of habitat loss that accompany land-use change, in-
cluding governments (25, 26), multilateral development banks
(27), and corporations (28). These actors have typically been
focusing on impacts of agriculture on biodiversity, carbon stor-
age, and water, but agricultural expansion or intensification also
has massive implications for ecosystem services to agriculture,
like pest suppression (29, 30).

High cross-system variability impeded this initial attempt to
develop simple landscape models that could deliver accurate pest-
control predictions, but has also opened the door to new avenues
of exploration. We suggest three promising paths forward that
leverage our newly created, open-access pest-control database.

First, future efforts could increase model complexity, in-
corporating landscape configuration and diversity predictors as
well as indicators of local farming practices. A key consideration
will be choosing variables for which sufficient data exist to model
pest control in data-poor environments. Fortunately, some
global, wall-to-wall datasets that could be used to characterize
local farming practices already exist and others are being de-
veloped. For example, the International Institute for Applied
Systems Analysis has created a global crop field size dataset (31),
and EarthStat maintains a global crop-composition dataset (32)
that can be used to construct crop-diversity indices.

Second, models could be made more dynamic to account for
temporal changes in predator and pest relationships. Many studies
in our database resurveyed pests, enemies, and their interactions
multiple times and averaged them throughout the growing season.
Indeed, few published studies have reported relationships between
landscapes and insects at multiple time intervals, despite evidence
that these relationships can change both between years and during
the growing season (33). As noted above, aggregate measures of
pest or enemy abundance may mask important effects on pest
growth or densities at harvest (19).

Third, including trait data as species-level covariates in pest-
control models could help identify groups of species that react
similarly to landscape variables. Traits have been used to explain
variation in tropical bird community responses to land-use in-
tensification worldwide (34), and similar approaches may help
make sense of the context dependence of these results based on
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life history, mobility, habitat preference, and other characteris-
tics (35). For example, specialist pests that depend on crop re-
sources are likely to exhibit more negative associations with
surrounding noncrop vegetation than generalist pests (36). Such
trait-driven models may be especially important when using fu-
ture predictive models to identify tradeoffs, for example, ex-
ploring when surrounding noncrop habitat would depress one
pest’s abundance but likely benefit another. An alternative ap-
proach to increasing predictive power would be redefining land-
use types into more functionally relevant classifications that are
tailored to specific pests and/or enemies (37). For example, with
sufficient natural history information, landscapes could theo-
retically be classified into species-specific foraging, nesting,
roosting, and unused sites.

Conclusions

By compiling and systematically analyzing the largest pest-
control database of its kind to date, we have demonstrated
that landscape composition alone can explain variation in the
abundance and activity of natural enemies and crop pests. Crit-
ically, however, we found remarkable variability in how pests and
enemies respond to different landscape metrics, preventing the
prediction of pest-control responses by simple empirical models
constructed from independent datasets. Ultimately, these results
suggest that natural habitat conservation cannot be considered a
panacea. While habitat conservation is known to enhance pest
control in many cropping systems globally (4), there are also
areas where conservation may bolster biodiversity—even of
natural enemies—but still reduce crop production by simulta-
neously enhancing pests. Our study thus highlights the need to
examine multiple services (e.g., pest control, pollination, soil
conservation) and disservices when designing or assessing poli-
cies such as Europe’s agrienvironment schemes, which in-
centivize habitat creation in farmland (38).

Looking forward, generalizable decision-support tools for pest
control are needed to help farmers understand when habitat
conservation represents a true win-win and when conservation
activities will need to be carefully comanaged to reduce the risk
of damaging pest outbreaks. Future efforts to develop such
models could recognize and account for system-specific vari-
ability by incorporating local management factors, temporal
variation, and life-history variation among species into predictive
models. To this end, we envision the supporting pest-control data
that we have assembled to be a living database. Through ongoing
efforts to address species traits, compile data on local manage-
ment practices, and develop infrastructure to continue adding
new studies that focus on different crops and geographies, the
reach of our approach will continue extending to novel contexts,
increasing predictive power and offering remarkable opportuni-
ties to answer critical questions about the ecology of pest control.

Methods

Database Compilation. We formed a working group of 19 pest-control experts
and practitioners to compile a database of spatial pest-control observations.
First, we developed a list of potential data contributors, leveraging past
syntheses (2-5), literature searches, and our professional networks. Potential
contributors were contacted and asked to complete a data-entry form.
Studies were included if pest-control observations were obtained across at
least five distinct sampling locations (mean 50 sites), all within crop fields
and across a gradient of surrounding landscape composition. Authors were
required to report the following information for each sampling site: spatial
coordinates, crop type, farm name, and study year. For predator, parasitoid,
and pest-abundance data, we also requested information on species tax-
onomy, sampling dates, sampling methods (pan trap, pitfall trap, sweep net,
etc.), and the number and duration of censuses. We also required each au-
thor to identify each animal as a dominant (economically important) pest,
secondary pest, predator, or parasitoid.

Pest activity was measured as the fraction or amount of each crop con-
sumed, infested, or damaged. Predator activity was measured through three
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types of field observations. First, some researchers reported data from ex-
periments in which pests were collected, placed in chambers, and monitored
to quantify the fraction of emerging parasitoids. Second, in sentinel pest
experiments, researchers placed pests in crop fields and returned later to
measure the fraction that had been parasitized or consumed (e.g., ref. 39).
Third, researchers used field exclosures to exclude natural enemies and
quantify differences in pest abundances and/or crop damage between
plants with and without natural enemies (e.g., ref. 5). Activity data were
accompanied by information on the date, duration, type, and number of in-
field experiments. Crop yield data were also collected if available. Data on
total crop quantity or quality were supplemented with information re-
garding crop species, measure type (fruit weight, biomass/area, etc.), and
crop quality (marketable versus total yield). Before analysis, all pest-control
data were standardized to increase comparability across diverse data types
(see SI Appendix for more details).

Landscape Composition. To quantify surrounding landscape composition, we
used a hierarchical approach to acquire land-cover maps that encompassed all
areas within 2 km of each study site (S/ Appendix). Specifically, we asked au-
thors to submit high-resolution land-use maps of their study regions when
available; otherwise, we used either regional maps or, as a last resort, a 30-m
global land-cover product (40). Land-cover maps were classified into seven
categories: (/) forest and tree plantations, (i/) grassland, (iii) scrubland, (iv)
annual cropland, (v) perennial cropland, (vi) urban areas, and (vii) other. We
then used a distance-weighting function (with multiple spatial scales) to
quantify landscape composition around each study site and value each land-
scape sector as a function of distance to the study site (15, 39) (S/ Appendix).

Model Averaging. We modeled pest-control data as a function of landscape-
composition variables, creating separate models for each pest-control response
(i.e., each unique pest-control variable measured in each study). Because land-
scape variables were often highly collinear within studies, we first iteratively
excluded individual landscape variables until variance inflation factors (VIFs)
were less than 2.5, dropping the landscape variable with the highest VIF first (41).
Subsequent reanalysis that included all variables, regardless of collinearity, did
not indicate any systemically higher predictive power. We then used a model-
averaging procedure in which the full suite of all possible landscape models
(i.e., every combination of landscape predictors) was used to quantify effects of
each landscape-composition variable on the pest-control responses (MuMin
package in R). Specifically, nonshrinkage variance estimates were obtained for
each fixed effect, where only models that included a given fixed effect con-
tributed to its ultimate predicted value. For each pest-control response variable,
all landscape variables associated with one spatial scale were included as fixed
effects. Different spatial scales were analyzed separately. Along with landscape
variables, we also included sampling method, study year, and crop type as fixed
effects. For datasets in which crop yields were measured at multiple times
throughout the growing season, we also included “elapsed time since plant-
ing” as an additional fixed effect. In all cases, “farm identity” was included as a
random effect when multiple sampling sites were situated on the same farm.

Pest-control variables were often log-, square root-, or fourth root-
transformed to abide by model assumptions (normality and homoscedas-
ticity). Transformations did not resolve normality and heteroscedasticity
concerns in 47 and 63 of 367 analyses, respectively. Subsequent sensitivity
analyses indicated that excluding those models did not affect any of our
conclusions or systematically improve our ability to predict variation in pest-
control responses in independent datasets (see below). Therefore, these
models were retained.

To determine whether pest-control variables exhibited consistent re-
sponses to landscape composition, we first reclassified landscape variables
into natural habitat variables (forest, grassland, or scrubland) and crop
variables (annual or perennial crops). Then, because three models (one for
each spatial scale) were constructed for each dataset, in this and every
subsequent analysis we restricted our focus to the one spatial scale in which
landscape predictors explained the most variation. Next, we tallied the
number of models in which natural habitat variables or crop variables were
predicted to have consistently positive, consistently negative, or mixed effects
on each pest-control variable. For example, if pest abundance increased with
surrounding forest cover but decreased with grassland cover, then we cat-
egorized pest abundance as exhibiting mixed responses to surrounding
natural habitat. In another analysis, we isolated the land-use variable with
the highest-ranked importance for each model. We then tallied the number
of models for which important natural habitat variables or crop variables
increased or decreased pest-control metrics. In both cases, we used y? tests to
assess whether each pest-control variable increased or decreased in response
to surrounding natural habitat or cropland.

Karp et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1800042115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1800042115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1800042115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1800042115

L T

/

=y

1\

Analysis of Model Fit. We calculated Pearson correlation coefficients and R?
values between model predictions and observed data to assess model fit, as
these metrics are directly comparable across models. We then used t tests to
determine whether the average Pearson correlation coefficient (across all
datasets) differed from 0. We also tested whether models explained more
variation in pest-control responses in certain regions. To do so, we implemented
linear mixed models that predicted correlation coefficients from a variable
identifying the biogeographic realm of the study. We used likelihood ratio tests
to compare models with and without the biogeographic realm predictor.

Prediction Analysis. To quantify our models’ predictive power, we correlated
the observed pest-control variable values in each of the 367 pest-control
responses (“field observations,” hereafter) with the average of all predic-
tions generated across our many landscape models, using the following
procedure. First, we selected which landscape models to use. Models built
from datasets ("model data,” hereafter) that shared >25% of their study
sites with the field observations were excluded so that models and field
observations could be considered totally independent. We also excluded
models when model data had more finely resolved land-cover classes than
independent field observations. Models constructed from one pest-control
variable could be applied to observations of a different pest-control vari-
able, provided that they were either both enemy variables or pest variables.
Yield models were always applied to only yield data.

Once a set of candidate models was obtained for each set of independent
field observations, we used the model-averaged estimates of the effects of each
landscape variable to predict pest-control variable values. Predictions from each
model were scaled by subtracting the mean value and dividing by the SD, and
then averaged across all models. Finally, we calculated the Pearson correlation
between the field observations and the multimodel-averaged predictions.
Again, we used t tests to determine whether the average Pearson correlation
coefficient (across all tested datasets) differed from 0.

We also conducted a sensitivity analysis to determine if there were
strategies for filtering and applying subsets of models to independent field
observations so as to increase predictive power. We repeated the above
model-testing procedure but after choosing to only include models derived
from studies that (/) focused on the same crop as the independent field
observations, (i) were in a same biome (42), (iii) were in the same bio-
geographic realm, (iv) were located <500 km away from the field observa-

tions, and (v) had the same landscape variable values as the values present
in the field observations. Specifically, we tried only including models con-
structed from studies in regions with the same land-use classes as the field
observations and, even more stringently, experimented with only in-
cluding models when landscape variable values associated with field ob-
servations were within the range of the variable values in the model data
(i.e., the landscape gradients matched). The sensitivity analysis was con-
ducted in a full-factorial manner, whereby every combination of the five
inclusion procedures was analyzed independently. Finally, independent
from the full-factorial sensitivity analysis, we also experimented with ex-
cluding models that did not explain any variation in their own datasets
(Pearson’s r between model predictions and observations was <0.25). For
each scenario and for each tested dataset, we calculated the Pearson cor-
relation coefficients between model predictions and testing data.

We then used linear mixed models to evaluate whether each model re-
striction procedure improved or diminished overall predictive power across the
independent field observations. Specifically, for each class of pest-control
variable, mixed models were used to relate the Pearson correlation coeffi-
cients (response) to a series of fixed effects that indicated whether each ex-
clusion procedure outlined above had taken place (e.g., exclude models that
were focused on a different crop, in a different biome, etc.). Because the same
field observation datasets appeared in each exclusion scenario, “field obser-
vation dataset name” was included as a random effect. We also included a
random effect of “unique scenario combination” to identify all of the studies
that were subject to the same set of exclusion procedures (e.g., exclude models
that were focused on a different crop but allow models to be in different
biogeographic realms and biomes). Then, we used likelihood ratio tests to
compare the full mixed model with models in which we iteratively removed
each fixed effect (indicator variables of each exclusion procedure).
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