1	New Early Oligocene Zircon U-Pb Dates for the 'Miocene' Wenshan Basin,
2	Yunnan, China: Biodiversity and Paleoenvironment
3	Yimin Tian ¹ , Robert A. Spicer ^{2,3} , Jian Huang ² , Zhekun Zhou ^{2,4} , Tao Su ² , Mike
4	Widdowson ⁵ , Linbo Jia ⁶ , Shihu Li ^{7,8} , Wenjian Wu ¹ , Li Xue ¹ , Penghui Luo ¹ , Shitao
5	Zhang ^{1*}
6	¹ Faculty of Land Resource Engineering, Kunming University of Science and Technology,
7	Kunming, 650093, China;
8	² CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical
9	Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China;
10	³ School of Environmental, Earth and Ecosystem Sciences, The Open University, Walton Hall,
11	Milton Keynes, MK7 6AA, U.K;
12	⁴ Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
13	⁵ Geology: School of Environmental Sciences, University of Hull, Hull HU6 7RX, U.K;
14	⁶ CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute
15	of Botany, Chinese Academy of Sciences, Kunming 650204, China;
16	⁷ State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics,
17	Chinese Academy of Science, Beijing 100029, China;
18	⁸ Lancaster Environment Centre, Lancaster University, LA1 4YQ, Lancaster, U.K.
19	*Corresponding author: Shitao Zhang (taogezhang@hotmail.com)
20	
21	Abstract: The sedimentary basins of Yunnan, Southwest China, record detailed
22	histories of Cenozoic paleoenvironmental change. They track regional tectonic and
23	palaeobiological evolution, both of which are critically important for the development

24	of modern floral diversity in southwestern China and throughout Asia more generally.
25	However, to be useful, the sedimentary archives within the basins have to be placed
26	within a well-constrained timeframe independent of biostratigraphy. Using high
27	resolution U-Pb dating, we redefine the age of fossil-bearing strata in the Wenshan
28	Basin. Regarded as Miocene for the last half century, these basin sediments
29	encompass 30±2 and 32±1 Ma early Oligocene tuffaceous horizons thus indicating a
30	significantly greater antiquity than previously recognized. Together with other
31	regional age revisions, our result points to widespread Yunnan basin and orographic
32	development, as largely having taken place by the end Paleogene. This age revision
33	provides an important new perspective on the preserved biotas and their evolution in
34	Yunnan, and especially our understanding of the origin of Asian biodiversity which,
35	regionally, had a near-modern composition by the early Oligocene. Crucially, this
36	revised age evidences late Eocene-early Oligocene regional tectonism, pointing to the
37	rise of eastern Tibet and the Hengduan mountains before the growth of the Himalaya,
38	and that Asia's high plant diversity has a Paleogene origin.
39	Keywords: U-Pb dating, Biodiversity hot spot, Paleoenvironment, Sedimentary basin,
40	SW China

42 **1 Introduction**

The orographic development of the Himalaya and Yunnan acted as a cradle for
modern Asian biodiversity, and greatly influenced the evolution of modern Asian
climate including monsoon dynamics (e.g., Boos et al., 2010; Molnar et al., 2010;

46	Spicer et al., 2017, 2020a). However, understanding the links between topography,
47	climate and biodiversity is entirely dependent on accurately dated regional geology.
48	The India-Eurasia collision early in the Paleogene (see references in An et al., 2021),
49	represents perhaps the most dramatic tectonic event of the Cenozoic, and one that has
50	had far-reaching consequences for the entire planet (e.g., Molnar and Tapponnier,
51	1975; Yin and Harrison, 2000): Following this, the orography of Yunnan underwent
52	significant change because the arrival of India led to predominantly northward
53	compression and the eastward and southward extrusion of parts of the Qiangtang
54	Terrane (Tapponnier et al., 1982; Li et al., 2020a), which today forms large parts of
55	eastern Tibet and the Hengduan Mountains in Yunnan. The accompanying
56	deformation throughout Yunnan created more than 150 Cenozoic sedimentary basins
57	(Huang et al., 2016b), but because many, including the Jinggu and Wenshan basins
58	lack good radiometric age constraints, the timing and processes underlying Yunnan's
59	tectonic evolution and associated paleoenvironmental changes have hitherto remained
60	poorly understood.
61	Until recently many of the basins hosting mainly lacustrine-marsh facies were
62	considered to be of Miocene age (YBGMR, 1990), but excavations during
63	infrastructure development and coal mine operations have revealed hitherto hidden
64	details. In the past few years, the geochronology of supposedly Neogene sediments
65	within several basins (e.g., Jianchuan, Lühe and Markam Basins), has been revised
66	using radiometric dating, and all have been shown to be Paleogene (Ma, 2013;
67	Gourbet et al., 2017; Linnemann et al., 2017; Su et al., 2019; Li et al., 2020b; Zheng

et al., 2020), thus raising questions regarding the antiquity of other similar basinsthroughout the region.

70	The Eocene-Oligocene (E-O) transition represents one of the most important
71	global climate and biosphere changes in the past 66 million years since it marks a step
72	change in the transition from a 'hothouse' to an 'ice house' world; the deep-sea record,
73	carbon and oxygen isotope perturbations reflect numerous Earth system responses
74	worldwide since the Oligocene (e.g., Zachos et al., 2001). Yunnan is an area hosting
75	one of the most important modern global biodiversity 'hotspots' (Myers et al., 2000),
76	and has been the focus of much geological, ecological and phylogenetic research,
77	therefore, with recent age revisions its sedimentary record can offer new insights into
78	low latitude environmental changes across this globally important interval.
79	Here we focus on a classic 'Miocene', predominantly lacustrine, basin in SE
80	Yunnan containing abundant fossils (including leaves, fruits, pollen, fishes, and
81	molluscs), and revise the age of its deposits using (U-Pb) zircon dating. These ages
82	help constrain a more robust timing for the tectonic development of SE Yunnan,
83	especially its paleoenvironmental history encompassing palaeoclimate,
84	palaeogeography, palaeobiology and, ultimately, what it can then reveal about the
85	history of Asian biodiversity development.

86 2 Geological Setting

87 2.1 Geological background

88	The development of the Dushitou Village section in northwestern Wenshan
89	Basin (23°24'36"-23°25'21" N, 104°12'39"-104°13'44" E, 1272-1430 m), southeastern
90	Yunnan, southwest China, was controlled by movement on the Wenshan-Malipo fault
91	- part of the South China fold system (Figs. 1, 2 and 3). Early research named the
92	extensive basin infill sediments the Huazhige Formation, and these were then
93	regarded as being Neogene in age (YBGMR, 1990). Subsequently an early-middle
94	Miocene age was assigned because of a seemingly conformable contact between the
95	Huazhige Formation and the underlying Yanshan Formation, dated as late Oligocene
96	(YBGMR, 1990). Towards the end of the last century, a regional geological survey
97	concluded that these two formations were in fact unconformable and, based on
98	lithostratigraphic and biostratigraphic characteristics as well as regional correlation,
99	that the Huazhige Formation may be age-equivalent to the middle-upper Miocene
100	Xiaolongtan Formation (YBGMR, 1990). Subsequently, palaeomagnetic analysis
101	offered an age range of 15.2~16.5 Ma for a section near Dushitou Village, but the
102	sampled outcrop was not sufficiently extensive (\sim 270 m), and thus only covered
103	about one third of the Huazhige Formation thickness (Lebreton-Anberrée et al.,
104	2016); further, it lacked radiometric tie points and index fossils and thus lacked the
105	robust dating constraints required for more sophisticated interpretation.

106	We recently discovered two volcanic ash layers in the Dushitou Village section
107	in sediments assigned to the Huazhige Formation (YBGMR, 1990). These are located
108	600 m apart laterally, and are stratigraphically separated by 49.6 m (Fig. 4).
109	Henceforth these are referred to as 'Ash 1' (23°14'54" N, 104°12'36" E, 1292 m) and
110	'Ash 2' (23°24'95" N, 104°12'12" E, 1301 m). Note that Ash 1 occurs at a higher
111	stratigraphical level than Ash 2. The Dushitou Village section spans the whole
112	Huazhige Formation, is capped by Quaternary sediments, and overlies the Yanshan
113	Formation. The section comprises greyish, beige, light fawn mudstones and muddy
114	siltstones together with greyish-yellow sandstones, and contains abundant, well-
115	preserved plant fossils in key horizons (Fig. 4). It was initially interpreted to be
116	composed of sediments deposited in a lacustrine-paludal environment, but is now
117	known to expose dominantly lacustrine-fluvial facies with limnic ostracods.
118	Accordingly, our work concentrates on the age of the Wenshan flora based on U-
119	Pb dating of zircons within volcanic ashes preserved as part of the lacustrine
120	succession.

121 **2.2 Plant Fossils of the Wenshan Basin.**

122 The Wenshan Basin has long been known to contain a fossil biota that is both

123 abundant and taxonomically diverse. Numerous freshwater fish fossils (e.g.,

- 124 Cyprinidae), and insect fossils, (e.g., Diptera and Hymenoptera), are accompanied by
- 125 32 pollen types, including those of Fagaceae and Juglandaceae, and more than 60
- 126 species of plant megafossils (e.g., Meng et al., 2014; Li et al., 2015; Huang et al.,

136	3 Sampling, methods and results
135	2016).
134	flora has been regarded as Miocene in age (YBGMR, 1990; Lebreton-Anberrée et al.,
133	today (Table 1), and partly as a consequence of this apparently modern aspect the
132	Many of the taxa, at least at genus level are similar to those found in the region
131	fossils making up the highly diverse palaeoflora is ongoing.
130	families 92+ genera 200+ species) (Fig. 7 and Table. 1). Identification of the plant
129	species), gymnosperms (2 families 5 genera 11 species) and angiosperms (50+
128	according to a preliminary census, the flora includes ferns (1 family 1genus 1
127	2016a, 2017, 2018). Recent new collections have expanded this diversity, and

137 The volcanic ash samples were collected from the northern Wenshan Basin, a 138 site that has yielded plant fossils from several horizons referred to collectively as the 139 'Wenshan flora' (Fig. 4). The volcanic ash beds are intercalated with the fossiliferous 140 layers, such that the age of the ashes can be used to radiometrically date the Wenshan

141 flora.

142 **3.1 Field characteristics of ash layers**

143 Ash 1 occurs as intermittent lenses, typically 2-10 cm thick, and more than 20 m

144 in lateral extent; it consists of two distinct layers of brown coarse volcaniclastics (<

145 ~10cm apart), and set within light grey massive, to weakly laminated clays/silts.

146 Inspection of these lenses reveal evidence of sedimentary structures (i.e. no cross-

147 bedding), but they do display graded bedding, typically becoming somewhat coarser

148	toward the center of the lens (Fig. 5a, b), while other lenses exhibit marked upward
149	fining (Fig. 5b). Individual grains are extremely angular and heterolithic, but the
150	horizons themselves also encompass small amounts of clay and silt.
151	'Ash 2' is similarly brown in color, typically 3-4 cm thick, but differs from the
152	lower example in that it is more laterally continuous, and its constituent volcanogenic
153	grains more euhedral. Inspection reveals an internal structure: Its basal layer (~1.5
154	cm), comprises volcanic ash grains, and the lower contact with the underlying light
155	grey clay displays small 'loading structures' likely resulting from 'dumping' onto a
156	soft, semi-liquid lacustrine substrate. The light clay immediately beneath this lower
157	contact is stained brown – probably an eluviation phenomenon by iron-bearing
158	groundwater. The upper layer of 'Ash 2' (0.6 cm), is a finer. darker brown clay-like
159	material with well-defined upper and lower contacts (Fig. 5e, f).
160	3.2 Thin section and zircon morphologic analysis
161	Whole rock thin sections were examined using a Leica DM2700 P petrographic
162	microscope at the Laboratory of Geological Environment, Kunming University of
163	Science and Technology, and imaged with Leica Application Suite (LAS) software.
164	Samples were composed of minerals and lithic fragments typical of sedimented
165	volcaniclastic rocks (Fig. 5). The mineral fragments were mainly composed of quartz
166	for both 'Ash 1' and 'Ash 2', with admixes of K-feldspar (i.e., sanidine - low
167	birefringence crystals lacking lamellar twinning), and plagioclase for 'Ash 1', and
168	sanidine and primary 'igneous' biotite for 'Ash 2'. Quartz crystals were mostly

irregular and angular, some cuspate , and some had obvious internal fracturing. Kfeldspar and plagioclase grains were typically platy or tabular, sub-angular, and nonturbid.

172 **3.3 Zircon separation**

173	Samples were crushed and disaggregated, then crushed using a jaw-crusher
174	followed by a double roll crusher; this crushate was then washed by table
175	concentrator. Samples visually identified to contain a significant high heavy mineral
176	content were further crushed to release individual grain sizes, and then zircon grains
177	were separated using magnetic, electromagnetic techniques, and heavy liquid
178	separation. The resulting sample aliquots were further sorted by hand using an optical
179	petrographic microscope. Zircon grains were then hand-picked and set in an epoxy
180	mount, which was then polished to expose the interiors of the crystals ready for
181	imaging by optical and cathodoluminescence (CL) techniques. These mounts were
182	subsequently re-polished to EBSD (Electron Back - Scattered Diffraction) standard
183	using colloidal silica, and carbon coated. A Tescan MIRA 3 field emission scanning
184	electron microscope (SEM; 7 KV voltage, 17 mm working distance) at Beijing
185	Zhongke Kuangyan Test Technology Co., Ltd, was used to collect detailed CL images
186	of individual zircon grains (Fig. 6).
187	Inspection reveals that zircon grains of 'Ash 1' are dominated by mostly
188	colorless, short prismatic forms (Fig. 6) with lengths ranging from 70 μ m to 250 μ m;
189	length: width (L: W) ratios are 1:1 to 2:1. A small population are light brown, have a

190	pyramid shape, and are broken or cracked on the surface, indicating mechanical
191	abrasion; others are rounded to elliptical thus indicative of transportation. The zircon
192	images revealed a fine oscillatory zoning typical of magmatic zircon (Fig. 6), which
193	reflect changing conditions in the magma chamber. In some instances 'inherited'
194	cores suggest more complex magmatic histories, and for these types of grains, laser
195	spots were positioned on the zoned part, rather than the core, thus representing the
196	most recent magmatic growth.
197	The zircon grains of 'Ash 2' are colorless, transparent and prismatic; the lengths
198	range from 80 μ m to 250 μ m with length: width (L: W) ratios of 2:1 to 4:1. The
199	majority of these grains are obviously euhedral with clear oscillatory zoning and,
200	accordingly, are considered wholly indicative of primary magmatic growth. this few
201	revealing 'inherited' cores were excluded from further analysis (Fig. 6).
202	No metamorphic features were identified in any zircon grains, and these minerals
203	are thus interpreted to be of primary magmatic origin.
204	3.4 U-Pb ages of the Wenshan Basin
205	Analysis was carried out using on an Agilent 7500a ICPMS using LA-ICP-MS at
206	the State Key Laboratory of Continental Dynamics in Northwest University, Xi'an,
207	China. The laser spot size was 43 μm (10 Hz) on single ablation sites, and data
208	acquisition employed peak jumping with standing times of 15 ms for ²⁰⁴ Pb, ²⁰⁶ Pb,
209	²⁰⁷ Pb, ²⁰⁸ Pb, and 10 ms for Th and U: The resulting data was processed by means of
210	ICPMSDataCal (ver 11.8) software, and Isoplot 3.0 graphics suite (Liu et al., 2010).

211	Zircon reference material 91500 was used as the external standard for calculating ages
212	(Wiedenbeck et al., 2004), whilst NIST SRM 610 (external standard) and ²⁹ Si
213	(internal standard) were used to calibrate elemental content. Relative dating
214	deviations for single spot analysis and weighted average age are respectively less than
215	2.2% and 0.6%.
216	Ash 1: Thorium (Th) content of fifty zircons in 'Ash1' samples ranged from 16.9
217	to 2209.0 ppm, with an average of 457.9 ppm: Uranium (U) content ranged from 34.6
218	to 2269.0 ppm, with an average of 474.9 ppm (Table S1). Accordingly, the ratio of Th
219	to U is between 0.59 and 5.48, with all ratios exceeding 0.5; a value characteristic of
220	magmatic zircon (Hoskin, 2000).
221	A total of fifty 206 Pb/ 238 U dates were obtained ranging in age from 28±1 Ma to
222	2543±28 Ma. Several age populations are present, but effectively form two distinct
223	groups. Group (1): Those of Triassic to Paleoproterozoic age, where the zircon grains
224	were either comparatively rounded or exhibited overgrowths, and are thus typical of
225	'inherited' and detrital zircon populations (Table S1), and Group (2), which represents
226	a younger age group that returned a tight cluster of entirely Cenozoic ages (Table. S1;
227	Fig. 6). Of these, 13 samples yielded a youngest mean age of 30±2 Ma with a MSWD
228	value of 3.9, and a probability value of 0.000 (Fig. 6). However, CL images revealed
229	the color of seven of these zircons as being somewhat lighter, and the associated
230	concordant ratios of these young Cenozoic samples were lower than 90%, thus
231	indicating U-poor and Pb-poor compositions (Fig. 6). Therefore, to further refine the

232	returned age data, these seven were next excluded yielding a final mean age of 30 ± 2
233	Ma from the remaining 6 samples.
234	Ash 2: Thorium (Th) content of thirty-nine analysed zircons in from 252.7 to
235	2528.6 ppm, with an average value of 703.2 Uranium (U) content ranged from 367.7
236	to 1450.4 ppm, with a mean of 740.1. The U/Th ratio for these is $0.49 \sim 1.74$ with a
237	0.90 mean value; again, typical of magmatic zircon. A total of ²⁰⁶ Pb/ ²³⁸ U dates were
238	then obtained ranging from 31±1 Ma to 217±5 Ma, including seven samples from late
239	Triassic to early Paleocene, and 32 with exclusively late Paleogene ages (Table S1).
240	After deselecting those with low concordant (<90%) results from the late Paleogene
241	group, we obtained a final mean age of 32 ± 1 Ma (Fig. 6).
242	Based on their characteristics we interpret 'Ash 1' and 'Ash 2' as representing
243	primary air-fall deposition into the Wenshan palaeo-lake. However, 'Ash 1' is
244	laterally discontinuous and although it shows graded bedding consistent with that
245	produced as eruptions progress, and contains typical parallel bedding such as
246	produced by still water deposition; accordingly, it contains some admixed lake
247	sediments. We discount significant secondary reworking after deposition, but some
248	local slumping/seismic disturbance may have taken place post-deposition while the
249	sediments were still unconsolidated, and this may have given rise to the lenticular
250	nature of the beds. The internal composition of 'Ash 1' and the broad age range of the
251	zircons suggests significant mixing from several sources (Fig. 6). Significantly, 'Ash
252	2' is much finer grained and more continuous laterally. It also displays no clearly
253	visible sedimentary structures or mixing with the lake clays such as would occur

254	during reworking within the lake system, or influx from surrounding country rocks
255	during flood event.

- 256 Despite their smaller size, the angularity of the grains and overall compositional
- and tighter age distribution of the zircons in Ash 2 suggests no significant
- 258 sedimentary reworking/fluvial transport prior to final deposition. Therefore, its lateral
- continuity, structure and composition indicate that it is a primary ash, meaning the age
- 260 of the youngest zircon populations from concordant grains (higher than 90%)
- 261 represent the age of the entombing lake sediments (Fig. 5 and Table S1).
- In effect, both Ash 1 and 2 reveal youngest 'magmatic' ages of between $\sim 32 30$
- 263 Ma, thus placing these two explosive magmatic events firmly within the Rupelian
- stage of the Oligocene, and providing key absolute dating horizons within the
- 265 Huazhige Formation.

266 4 Discussion

- 267 **4.1 Sedimentary environment**
- 268 Lacustrine sedimentary successions are useful for reconstructing

269 environmental/vegetation/landscape change in continental interiors because of their

- 270 broad geographical coverage, sediment accumulation, and potential for high-
- 271 resolution stratigraphy (e.g., some varved sediments record seasonal change) (Wang
- and Li, 1991).
- 273 Lithological and sedimentary features allow us to divide the Huazhige Formation
- into two sedimentary successions, and we respectively name them here as HZG-1 and

275	HZG-2, where HZG-1 underlies HZG-2. Each of these can then be further separated
276	into two or three subsidiary successions as detailed henceforth (Fig. 4).
277	HZG-1 (93.5 m in thickness) is in unconformable contact with the underlying
278	Yanshan Formation, and divided into three subsidiary successions named here as
279	HZG-1-a (12.6 m thick), HZG-1-b (8.4 m thick), HZG-1-c (72.5 m thick).
280	HZG-1-a consists of a thick layer of light gray and off-white siltstone, silty
281	mudstone and mudstone. The weathering surface and interlayers are greyish-yellow
282	due to penetration by iron-bearing groundwater. Horizontal bedding is well developed
283	and there are many laminae formed by differences in particle size and organic matter
284	content, indicative of typical quiet-water lacustrine deposition with minimal flow and
285	seasonal turnover. Numerous well-preserved fossils occur in this succession,
286	including fish and plants. Some representative taxa include Bauhinia sp.,
287	Burretiodendron spp., Cephalotaxus maguanensis, Exbucklandia acutifolia (Huang et
288	al., 2017), Fagaceae spp., Lauraceae spp., Liquidambar maomingensis, Mahonia
289	mioasiatica (Huang et al., 2016a), Mallotus sp., Rosa fortuita, Semecarpaphyllum sp.,
290	Sequoia maguanensis and Zelkova ningmingensis. The source vegetation type is
291	interpreted to have been subtropical evergreen broad-leaved forest, with some tropical
292	components and taxa representative of vegetation typically growing on limestone
293	(karst vegetation).
294	HZG-1-b includes one river sediment facies, and is composed of riverbed and
295	floodplain sediments. Channel deposits are represented by a gray sandy conglomerate

and pebbled sandstone at the bottom of the succession. Grain diameters range from 2-

297	30 cm and decrease in size gradually from bottom to top. Well-rounded gravel clasts
298	occur near the bottom and are imbricated indicating the direction of water flow. The
299	top part grades to a light grey and off-white mudstone, siltstone and silty mudstone
300	with more or less horizontal bedding. Numerous fossil fragments occur, such as those
301	of bivalves, ostracods and gastropods, indicating a return to low energy conditions.
302	We regard the lower half of the fluvial succession as representing riverbed deposits
303	and the upper half as representing floodplain deposition. The HZG-1-b succession is
304	representative of one short lived fluvial episode, before the basin returned to hosting a
305	large lake.
306	HZG-1-c is a succession composed of a thick layer of gray and off-white
307	siltstone, silty mudstone and mudstone with horizontal and undulose bedding, hosting
308	abundant fossil fragments, such as bivalves, ostracods, gastropods and numerous plant
309	fossil fragments. Just above the midpoint of this succession many Cyprinidae fossils
310	occur together with abundant plant fossils including leaves, fruits and flowers. This
311	horizon has sourced most species of the Wenshan flora. We have recovered more than
312	5000 plant fossil specimens from this layer. The upper part of this succession hosts
313	volcanic 'Ash 2', and some tawny and brown limonite beds, Fe nodules with a
314	concentric circular structure and pseudomorphous limonite (limonite with pyrite
315	crystals), which we interpret as being produced by a short-term oxidation event during
316	a low water stage.
317	The HZG-2 succession begins with the appearance of a sandy conglomerate and

318 pebble sandstone, indicative of another fluvial rejuvenation event, resting on the

319	underlying HZG-1 (Fig. 4). This succession is divided into two secondary successions
320	named as HZG-2-a (25.8 m thick) and HZG-2-b (41.6 m thick).
321	HZG-2-a is highly similar to HZG-1-b. However, there are three fluvial sediment
322	packages within HZG-2-a and not just one as with HZG-1-b.
323	HZG-2-b is similar to HZG-1-c, and represents typical lacustrine sedimentation.
324	A particularly significant component of this succession is the presence of 'Ash 1', and
325	it also preserves numerous plant fossil taxa such as Acer liquidambarfolium, Ailanthus
326	confucii, Bauhinia wenshanensis (Meng et al., 2014), Calocedrus shengxianensis,
327	Carpinus sp., Cornus sp., Fagaceae spp., Lauraceae spp., Mallotus sp., Palaeocarya
328	hirta, Platycarya sp., Zelkova ningmingensis. Compared with those of HZG-1-a, the
329	plant composition was more similar to modern Wenshan, and suggests the climate
330	was cooler than HZG-1-a, but still warm and humid.
331	Combining these successions, we find that at the start of deposition the early
332	Oligocene Wenshan Basin hosted a lake, which transformed to a fluvial system as the
333	water level fell, and then returned to a lake. When the basin restarted filling at the
334	beginning of HZG-2-a, it experienced some significant environmental fluctuations
335	because lacustrine deposition was punctuated by three fluvial events, and at times the
336	lake depth became very shallow. Finally, the record of sedimentation ceased at the top
337	of the preserved section. These quite marked changes in the depositional environment
338	are not matched by obvious changes in the vegetation

339 4.2 Implications for modern Asian biodiversity

340 4.2.1 The Wenshan Flora - one of the most diverse Paleogene floras known341 worldwide

342	Today, southwestern China is a major global biodiversity hotspot (Myers et al.,
343	2000), and Cenozoic floras from this area have been studied extensively for the past
344	seventy years in an effort to understand when and how such high biodiversity
345	evolved. The fossil floras studied include the Shuanghe and Lühe floras of late
346	Eocene to early Oligocene age, the Shuitangba, Mangdan, Xianfeng, Sanzhangtian,
347	Shengli floras currently assigned to the mid-late Miocene, and the Tengchong,
348	Yongping and Lanping floras of Pliocene age (for references see Huang et al., 2016b).
349	Encompassed within these fossil floras are more than 53 families, 98 genera and 212
350	species, excluding the ongoing systematic study of the Wenshan flora which is
351	emerging as one of the most diverse palaeofloras in south and central China, and is
352	globally exceptional.
353	Not only is the fossil flora of the Wenshan Basin extremely rich (more than 200
354	species), most of the taxa can be assigned to modern genera (Table 1) despite the
355	early Oligocene age. On a global scale, only a few floras display comparable diversity
356	to that of Wenshan. These are the middle Eocene Green River flora (Brown, 1962) of
357	western North America, the Middle Eocene Messel flora (Collinson, 1988) of
358	Germany, and the Miocene Shanwang flora (Hu and Chaney, 1940), China. The
359	abundant fossils within the different horizons of the Huazhige Formation, are well-
360	preserved, and often possessing cuticle, which affords secure identification. Of note is

362	subtropical climates, as well as in specialized limestone karst environments. Most
363	abundant are typical subtropical forest elements such as Fagaceae, Lauraceae and
364	Hamamelidaceae, which dominate in terms of the number of species, and Fagaceae as
365	the most abundant family. Some tropical components such as Burretiodendron, Iodes
366	and Caryodaphnopsis also occur. By comparison with the subtropical evergreen
367	broad-leaf forest of modern Wenshan, the vegetation represented by the fossils seems
368	to be in transition from tropical to subtropical and so, considering global warmth in
369	the late Paleogene, was slightly warmer than today. This transitional status is also
370	consistent with some degree of cooling from the Eocene to the early Oligocene.
371	Moreover, numerous taxa typical of modern vegetation growing on limestone (karst
372	vegetation) are present, such as Bauhinia (Meng et al., 2014), Burretiodendron,
373	Berhamniphyllum (Zhou et al., 2020), Ficus (Huang et al., 2018), Ulmus, Rosa,
374	Zelkova and Carpinus. Overall, it is clear that early Oligocene plant diversity at the
375	generic level in southwestern China was not inferior to that of today.
376	Both the Wenshan flora and that of modern Yunnan exhibit exceptionally high
377	diversity. Moreover, the compositions of early Oligocene floras of Yunnan,
378	exemplified by the Lühe flora (Linnemann et al., 2017) in central Yunnan and the
379	Wenshan flora in SE Yunnan, are remarkably similar to that of modern Yunnan. With
380	local Miocene floras (Huang et al., 2016b) also displaying high levels of similarity to
381	this early Oligocene flora it appears that floristic composition in this region has
382	persisted for at least 32 million years. This complicates the use of plant
383	biostratigraphy, whether palynological or megafossil-based, when trying to date

384	Cenozoic strata in the region. Recent radiometric dating in the Jianchuan Basin, the
385	Lühe Basin and the Markam Basin (Ma, 2013; Gourbet et al., 2017; Linnemann et al.,
386	2017; Su et al., 2019; Li et al., 2020b; Zheng et al., 2020), have consistently re-
387	assigned the ages of fossil-bearing sediments from the originally stated middle-late
388	Miocene to a late Eocene-early Oligocene age. This suggests strongly that modern-
389	type vegetation was widespread in the region before the Neogene and, most
390	significantly, indicates a Paleogene origin of Asian biodiversity.
391	4.2.2 The onset of modern floral diversity in Southern China
392	The modern East Asian flora may be divided into a Sino-Japanese Floral Region
393	and a Sino-Himalayan Floral Region (Wu et al., 2006). The Red River-Ailao Shan
394	fault zone forms a natural boundary between these two floral regions within Yunnan
395	because its distinctive tectonics has given rise to a special physical geography,
396	pronounced climatic differences on eastern and western slopes, and a floristic
397	boundary called the Takana Line (Wu et al., 2006). To the west of this line the unique
398	and extreme tectonic history of Tibet and the Himalaya has influenced both climate
399	(Boos and Zhiming, 2010; Molnar et al., 2010) and biotic evolution (Favre et al.,
400	2015; Spicer et al., 2017; 2020a). During the Neogene, the establishment of high
401	elevations across what is now the Tibetan plateau (reviewed in Spicer et al., 2020a),
402	and development of high elevations in the Himalaya (Ding et al., 2017), coupled with
403	global cooling, produced a distinctive Sino-Himalayan flora. Some elements of the
404	Sino-Himalayan flora seem to have migrated across to join the Sino-Japanese flora,

which is largely conservative (Wu et al., 2006) possibly due to less dramatic tectonicsand a stable latitudinal position.

407	The Wenshan early Oligocene flora is markedly different to the age-equivalent
408	Lühe flora. Some of this disparity may be due to a difference in paleoelevation, but
409	this is likely to be less than 1.8 km, the elevation of Lühe today, because although the
410	palaeoelevation of the Lühe Basin is poorly constrained at the moment (Hoke, 2018),
411	it is unlikely to have been significantly higher than its present elevation. Compared to
412	Lühe flora, the Wenshan flora exhibits both tropical and typical limestone-loving
413	taxa, such as Liquidambar, Burretiodendron, Ficus (Huang et al., 2018), and
414	Berchemiphyllum (Zhou et al., 2020), and lacks those typical of cooler climates like
415	Picea and Tsuga. The modern vegetation surrounding the Wenshan and Lühe fossil
416	sites also show this difference. Given the age of Lühe flora it may represent an early
417	phase of the Sino-Himalayan Flora that did not fully develop until the uplift of the
418	Himalaya in the Miocene (Ding et al., 2017) and late Cenozoic cooling (e.g., Zachos
419	et al., 2001).
420	What also attracts our attention is that Coriaria japonica, living in the Wenshan

421 karst region during the Oligocene, is replaced by the forest-living species *C*.

422 *nepalensis* in modern times. At the same time, *Pinus massoniana* and *Exbucklandia*

423 *tonkinensis* are replaced separately by P. *yunnanensis* and E. *populnea*. Clearly some

424 evolutionary change has taken place, but at the sub-generic level, and Wenshan Flora

425 was already displaying features seen in the modern Sino-Japanese Flora by the early

426 Oligocene (e.g., Huang et al., 2017).

427	Several Oligocene floras have been found and reported in southern China, such
428	as in the various basins of Maoming, Guangdong, Ningming and Nanning, Guangxi,
429	and Changchang, Hainan, Hoane Bo, Vietnam (e.g., Yao et al., 2009; Herman et al.,
430	2017; Jin et al., 2017), all of which display similar floral composition and vegetation
431	types as those of today. The ages of these South China and North Vietnam floras are
432	mainly constrained by animal fossils, plant fossils (especially pollen fossils) and
433	stratigraphic correlation, but absolute age determinations are lacking. The new precise
434	age constraints on the Wenshan flora offers more secure evidence regarding the time
435	of origin of the modern Sino-Japanese Flora, which appears to have been before the
436	early Oligocene, most likely in the later Eocene.

437 **4.3 Implications for the Tectonic Evolution of SE Tibet and Yunnan**

438	During the early Paleogene, the collision of India with the Eurasian plate closed
439	the Neotethys ocean seaway (An et al., 2021), and marine conditions regressed from
440	southern Tibet and southwest Yunnan (Zhang et al., 2010). Inheriting a complex
441	topography from earlier terrain collisions (Spicer et al., 2020b), the area of Tibet
442	absorbed more than 90% of the relative plate motion between India and Eurasia
443	(Wang et al., 2001) in the form of significant deformation and extrusion, primarily of
444	the Qiangtang Terrane eastwards (Kapp et al., 2007).
445	Several Cenozoic intermontane basins formed in Yunnan and Vietnam in the late
446	Eocene and early Oligocene and sediments from these basins reflect the
447	paleoenvironmental changes over time. Our new date constraints for the Wenshan

448	Basin sediment fill is remarkably similar to those of recently re-dated sediments
449	within the Jianchuan (e.g., Ma, 2013; Gourbet et al., 2017; Zheng et al., 2020), Lühe
450	(Linnemann et al., 2017; Li et al, 2020) and Markam (Su et al., 2019) basins, thus
451	pointing to widespread tectonic deformation of eastern Tibet, Yunnan and northern
452	Vietnam, and simultaneous basin formation in the late Eocene and early Oligocene.
453	Based on drainage capture events of the Red River, especially the loss of
454	drainage from the Yangtze Craton indicating Eocene gradient changes, Clift et al.
455	(2006, 2020) suggested uplift across eastern Tibet and Yunnan likely took place
456	before or during the Oligocene. The modern Red River, follows the Red River Fault
457	Zone (Li et al., 2020a, 2020b), and seems to have become established in its near
458	modern form almost immediately after the major Ailao Shan-Red River shear zone
459	started moving ~ 35 Ma (e.g., Schärer et al., 1994).
460	This concurrent basin formation, as well as major surface uplift in the eastern
461	Tibet area that began in the latest Eocene (Zheng et al., 2020), implies a common
462	cause: The most obvious overall driving mechanism for landscape evolution in
463	Yunnan is an Eocene south-north compression across Tibet and east and
464	southeastwards extrusion of the Qiangtang terrane. We envisage propagation of
465	deformation progressing from eastern Tibet into Yunnan triggering movement along
466	major faults such as the Ailao Shan-Red River system. This is consistent with a
467	detailed palaeomagnetic study of the Gonjo Basin within the eastern Qiangtang
468	Terrane (Li et al., 2020b), which suggests a major deformation and 30° clockwise
469	rotation of eastern Tibet between 52 and 48 Ma coincidental with more widespread

470	deformation across Tibet and a slowdown of India's northward motion (Li et al.,
471	2020a). Recent work indicates uplift of the Gonjo Basin (~ 100 km northwest of
472	Markam) began in the early Eocene, rising from ~ 700 m to 3800 m, and that it had
473	reached its modern elevation by the middle Eocene (Xiong et al., 2020). The nearby
474	Markam Basin achieved its modern elevation in the earliest Oligocene, and soon after
475	deformation progressed across Yunnan (Su et al., 2019). Recent dating and structural
476	analysis of the Lühe Basin suggests that it was created by the onset of movement
477	along the transpressional Chuxiong Fault at \sim 35 Ma, also concurrent with the start of
478	movement on the Red River -Ailao Shan fault system (Li et al., 2020b).
479	To summarise, this tectonism drove the orographic evolution of the eastern and
480	southeastern margins of Tibet, including NW Yunnan (Li et al., 2020a) and western
481	Sichuan, and must have impacted the topography of SE Yunnan. The evolution of
482	drainages reveals a strong, concomitant tectonic uplift in southern Tibet, including
483	parts of the Gangdese, western Sichuan and eastern Yunnan during the late Eocene
484	and early Oligocene (Clift et al., 2006; Yan et al., 2012).

485 **5 Conclusions**

The revised early Oligocene age for the Wenshan Basin sediments has profound implications for regional tectonics and biodiversity evolution. It now appears that Wenshan basin formation and subsequent sediment infill took place simultaneously with other basins development in eastern Tibet and elsewhere in Yunnan, and at the same time as major drainage reorganization. This strongly suggests a common driver in the Eocene and early Oligocene, and we would expect other basins in Yunnan, even

492	extending into Vietnam, to have formed near simultaneously; this then raises doubts
493	regarding the accepted, predominantly Miocene ages of many other regional basin fill
494	and entombed palaeobiotas. It follows that additional absolute dating of the different
495	numerous Cenozoic basins throughout the region is now required if we are to more
496	fully understand the evolution of the region's topography, climate and biodiversity.
497	As with the Lühe, Markam and Jianchuan basins the modernity of the biota in
498	the Wenshan Basin is clear, but has here been shown to be of early Oligocene age
499	instead of Miocene. It is therefore now indisputable that the origin of one of the
500	world's great biodiversity hotspots dates back to the Paleogene, and in southwestern
501	China is not connected to Neogene tectonics. This contrasts with a Miocene age for
502	diversification of Chinese plant lineages as inferred from molecular phylogenetic
503	studies (Renner, 2016), and invariably linked to supposed 'uplift of Tibet' at that time
504	(e.g., Lu et al., 2018). Such a straightforward concept now seems unlikely, and that
505	the evolution of Tibetan topography was actually more protracted and complex
506	(Spicer et al., 2020 a and b). If this Miocene diversification is real, drivers other than
507	simple surface uplift are required as an explanation.

- 508 Acknowledgments:
- 509 RAS was supported by the National Natural Science Foundation of China–Natural
- 510 Environment Research Council of the United Kingdom joint research program
- 511 (41661134049 and NE/P013805/1), Second Tibetan Plateau Scientific Expedition and
- 512 Research (2019QZKK0705), the National Natural Science Foundation of China joint
- 513 research program of Yunnan (grant No. U1502231), NSFC-NERC (Natural

514	Environment Research Council of the UK) joint research program (No. 41661134049
515	and No. NE/P013805/1), and a XTBG International Fellowship for Visiting Scientists.
516	Support also came from the National Natural Science Foundation of China (No.
517	31800183), Chinese Academy of Sciences 135 Program (No. 2017XTBG-T03), and
518	CAS 'Light of West China' Program. We would like to thank Prof. Yuan, H. L. and
519	Bao, Z. A. from State Key Laboratory of Continental Dynamics in Northwest
520	University for dating experiment, Prof. Deng, C. L. from Institute of Geology and
521	Geophysics of CAS and Prof. Tian Y. T. from Sun Yat-Sen University for reviewing
522	and nice suggestions. Datasets for this research are included in this paper (Table 1)
523	are available in Nutstore (https://www.jianguoyun.com/p/DUI6ngYQ_7K1CBjP_44D
524	(Password: pcEKxu)) and its supplementary information file (Table S1) are also
525	available in Nutstore (https://www.jianguoyun.com/p/DUFj3W0Q_7K1CBj0iIoD
526	(Password: 4xcmU3)). These data can be permanently seen by all Nutstore users.
527	References:
528	An, W., Hu, X., Garzanti, E., 2021. Wang, JG., Liu, Q New Precise dating of the
529	India-Asia collision in the Tibetan Himalaya at 61 Ma. Geophys. Res. Lett., 48,
530	e2020GL090641.

- Boos, W.R., Kuang, Z.M., 2010. Dominant control of the South Asian monsoon by
 orographic insulation versus plateau heating. Nature, 7278, 463, 218-222.
- 533 Brown, R.W., 1962. Paleocene flora of the Rocky Mountains and Great Plains. United

534 States Geological Survey Professional Paper, Washington. 1-106.

535	Clift, P.D., Blusztajn, J., Nguyen, A.D., 2006. Large-scale drainage capture and	
536	surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments	
537	of the Hanoi Basin, Vietnam. Geophys. Res. Lett., 33, L19403.	
538	Clift, P.D., Carter, A., Wysocka, A., Hoang, V.L., Zheng, H., and Neubeck, N., 2020,	
539	A Late Eocene- Oligocene through-flowing river between the Upper Yangtze	
540	and South China Sea. Geochem. Geophy. Geosy., 21, e2020GC009046	
541	Collinson, M.E., 1988. The special significance of the middle Eocene fruit and seed	
542	flora from Messel, West Germany. Cour Forsch-Inst Senckenberg. 107, 187-197.	
543	Ding, L., Spicer, R.A., Yang, J., Xu, Q., Cai, F., Li, S., Lai, Q., Wang, H., Spicer,	
544	T.E.V., Yue, Y., Shukla, A., Srivastava, G., Khan., M.A., Bera, S., Mehrotra, R.,	
545	2017. Quantifying the rise of the Himalaya orogen and implications for the South	
546	Asian monsoon. Geology, 45, 215-218.	
547	Favre, A., Packert, M., Pauls, S.U., Jahnig, S.C., Uhl, D., Michalak, I.N.A., Riehl, M.,	
548	2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of	
549	Tibetan biotas. Biol, Rev., 1, 90, 236-253.	
550	Gilley, L.D., Harrison, T.M., Leloup, P.H., Ryerson, F.J., Lovera, O.M., Wang, J.H.,	
551	2003. Direct dating of left-lateral deformation along the Red River shear zone,	
552	China and Vietnam. J. Geophys. Res Sol. Earth., 108, B2, 2127.	
553	Gourbet, L., Leloup, P.H., Paquette, J.L., Sorrel, P., Maheo, G., Wang, G.C., Xu,	
554	Y.D., Cao, K., Antoine, P.O., Eymard, I., 2017. Reappraisal of the Jianchuan	
555	Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau	
556	evolution. Tectonophysics, 700-701, 162-179.	

- 557 Herman, A.B., Spicer, R.A., Aleksandrova, G.N., Yang, J., Jin, J.H., 2017. Eocene-
- 558 early Oligocene climate and vegetation change in southern China: Evidence from
- the Maoming Basin. Palaeogeogr., Palaeocl., Palaeoecol., 479, 126-137. Hoke,
- 560 G.D., 2018. Geochronology transforms our view of how Tibet's southeast
- 561 margin evolved. Geology, 46, 1, 95-96.
- 562 Hoskin, P.P., 2000. Patterns of chaos: fractal statistics and the oscillatory chemistry of
- 563 zircon. Geochim. Cosmochim. AC, 64, 1905-1923.
- 564 Hu, H.H., Chaney R.W., 1940. A Miocene flora from Shantung Province, China.
- 565 Carnegie Institution of Washington Publication. 507, 1-147.
- 566 Huang, J., Su, T., Jia, L.B., Spicer, T., Zhou, Z.K., 2018. A fossil fig from the
- 567 Miocene of southwestern China: Indication of persistent deep time karst
- 568 vegetation. Rev. Palaeobot. Palyno., 258, 133-145.
- 569 Huang, J., Shi, G.L., Su, T., Zhou Z.K., 2017. Miocene Exbucklandia
- 570 (Hamamelidaceae) from Yunnan, China and its biogeographic and
- 571 palaeoecologic implications. Rev. Palaeobot. Palyno., 244: 96-106.
- 572 Huang, J., Su, T., Lebereton-Anberree, J., Zhang, S.T., Zhou, Z.K., 2016a. The oldest
- 573 Mahonia (Berberidaceae) fossil from East Asia and its biogeographic
- 574 implications. J. Plant Res., 129, 2, 209-223.
- 575 Huang, Y., Jia, L., Wang, Q., Mosbrugger, V., Utescher, T., Su, T., Zhou, Z.K.,
- 576 2016b. Cenozoic plant diversity of Yunnan: A review. Plant Diversity, 38, 6,
- 577 271-282.

- 578 Jin, J.H., Herman, A.B., Spicer, R.A., Kodrul, T.M., 2017. Palaeoclimate background
- 579 of the diverse Eocene floras of South China. Sci. Bull., 62, 1501-1503.
- 580 Kapp, P., DeCelles, P.G., Gehrels, G.E., Heizler, M., Ding, L., 2007. Geological
- 581records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of
- 582 central Tibet. Geol. Soc. Am. Bull., 119, 7-8, 917-933.
- 583 Lebreton-Anberrée, J., Li, S., Li, S.F., Spicer, R.A., Zhang, S.T., Su, T., Deng, C.L.,
- 584 Zhou, Z.K., 2016. Lake geochemistry reveals marked environmental change in
- 585 Southwest China during the Mid Miocene Climatic Optimum. Sci. Bull., 61,11,
- 586 **897-910**.
- 587 Li, S.F., Mao, L.M., Spicer, R.A., Lebreton-Anberrée, J., Su, T., Sun, M., Zhou, Z.K.,
- 588 2015. Late Miocene vegetation dynamics under monsoonal climate in
- 589 southwestern China. Palaeogeogr, Palaeocl., Palaeoecol., 425, 14-40.
- 590 Li, S.H., Su, T., Spicer, R.A., Xu, C.L., Sherlock, S., Halton, A., Hoke, G.D., Tian,
- 591 Y.M., Zhang, S.T., Zhou, Z.K., Deng, C.L., Zhu, R.X., 2020a. Oligocene
- deformation of the Chuandian Terrane in the SE margin of the Tibetan Plateau
- related to the extrusion of the Indochina. Tectonics, 39, e2019TC005974.
- Li, S.H., van Hinsbergen, D.J.J., Najman, Y., Jing, L.Z., Deng, C., Zhu, R., 2020b.
- 595 Does pulsed Tibetan deformation correlate with Indian plate motion changes?
 596 Earth Planet. Sc. Lett., 536, 116-144.
- 597 Liu, Y.S., Hu, Z.C., Zong, K.Q., Gao, C.G., Gao, S., Xu, J., Chen, H.H., 2010.
- 598 Reappraisement and refinement of zircon U-Pb isotope and trace element
- analyses by LA-ICP-MS. Chinese Sci. Bull., 55, 15, 1535-1546.

- 600 Linnemann, U., Su, T., Kunzmann, L., Spicer, R.A., Ding, W.N., Spicer, T.E.V.,
- 601 Zieger, J., Hofmann, M., Moraweck, K., Gärtner, A., Gerdes, A., Marko, L.,
- 602 Zhang, S.T., Li, S.F., Tang, H., Huang, J., Mulch, A., Mosbrugge, V., Zhou,
- 603 Z.K., 2017. New U-Pb dates show a Paleogene origin for the modern Asian
- 604 biodiversity hot spots. Geology, 46, 1, 3-6.
- 605 Lu, L.M., Mao, L.F., Yang, T., Ye. J.F., Liu, B., Li, H.L., Sun, M., Miller, J.T.,
- 606 Mathews, S., Hu, H.H., Niu, Y.T., Peng, D.X., Chen, Y.H., Smith, S.A., Chen,
- 607 M., Xiang, K.L., Le, C.T., Dang, V.C., Lu, A.M., Soltis, P.S., Soltis, D.E., Li,
- 508 J.H., Chen, Z.D., 2018. Evolutionary history of the angiosperm flora of China.
- 609 Nature, 554, 7691, 234-238.
- 610 Ma, H.J., 2013. Cenozoic Stratigraphy and Paleoenvironmental Changes in the
- 611 Hengduan Mountains Region, Southwest China. Kunming University of Science
- 612 and Technology., Kunming, China.
- 613 Meng, H.H., Jacques, F.M.B., Su, T., Huang, Y.J., Zhang, S.T., Ma, H.J., Zhou, Z.K.,
- 614 2014. New Biogeographic insight into Bauhinias.l. (Leguminosae): integration
- from fossil records and molecular analyses. BMC Evol. Biol., 14, 181.
- 616 Molnar, P., Boos, W.R., Battisti, D.S., 2010. Orographic controls on climate and
- 617 paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau.
- 618 Annu. Rev. Earth Planet. Sc. Lett., 38, 77-102.
- 619 Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a
- 620 Continental Collision: Features of recent continental tectonics in Asia can be
- 621 interpreted as results of the India-Eurasia collision. Science, 189, 4201, 419-426.

- 622 Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent. J., 2000.
- 623 Biodiversity hotspots for conservation priorities. Nature, 403, 6772, 853-858.
- 624 Ren, J. S., Wang, Z. X., Chen, B, W., Jiang, C. F., Niu, B. G., Li, J. T., Xie, G. L., He,
- 625 Z. J., Liu, Z. G., 1997. A new generation tectonic map of China. Geol. Bull.
- 626 China, 16, 3, 225-248.
- 627 Renner, S.S., 2016. Available data point to a 4-km-high Tibetan Plateau by 40 Ma,
- but 100 molecular-clock papers have linked supposed recent uplift to young node
 ages. J. Biogeogr., 43, 8, 1479-1487.
- 630 Schärer, U., Zhang, L. S., Tapponnier, P., 1994. Duration of strike-slip movements in
- 631 large shear zone: the Red River belt, China. Earth Planet. Sc. Lett., 126, 379-397
- 632 Spicer, R.A., Farnsworth, A., Su, T., 2020a. Cenozoic Topography, Monsoons and
- 633 Biodiversity Conservation within the Tibetan Region: An Evolving Story. Plant
- 634 Diversity, 4, 229-254, <u>https://doi.org/10.1016/j.pld.2020.06.011</u>.
- 635 Spicer, R.A., Su, T., Valdes, P.J., Farnsworth, A., Wu, F.-X., Shi, G., Spicer, T.E.V.,
- 636 Zhou, Z.-K., 2020b. Why the 'uplift of the Tibetan Plateau' is a myth. Natl. Sci.
- 637 Rev., 8, nwaa91.
- 638 Spicer, R.A., Yang, J., Herman, A., Kodrul, T., Aleksandrova, G., Maslova, N.,
- 639 Spicer, T., Ding, L., Xu, Q., Shukla, A., Srivastava, G., Mehrotra, R., Liu, X.Y.,
- 640 Jin, J.H., 2017. Paleogene monsoons across India and South China: Drivers of
- biotic change. Gondwana Res., 49, 350-363.
- 642 Su, T., Spicer, R.A., Li, S.H., Xu, H., Huang, J., Sherlock, S., Huang, Y.J., Li, S.F.,
- 643 Wang, L., Jia, L.B., Deng, W., Liu, J., Deng, C., Zhang, S.T., Valdes, P.J., Zhou,

- 644 Z.K., 2019. Uplift, climate and biotic changes at the Eocene-Oligocene transition
- 645 in south-eastern Tibet. Natl. Sci. Rev., 6, 3, 495-504.
- 646 Tapponnier, P., Peltzer, G., Dain, A.Y.L., Armijo, R., Cobbold, P., 1982. Propagating
- 647 extrusion tectonics in Asia: New insights from simple experiments with
- 648 plasticine. Geology, 10, 12, 611-616.
- 649 Wang, S.M., Li, J.R., 1991. Lacustrine sediments- an indicator of historical climatic
- 650 variations—The case of Qinghai Lake and Daihai Lake. Chinese Sci. Bull., 36,
- 651 16, 1364-1368.
- 652 Wang, Q., Zhang, P.Z., Freymueller, J.T., Bilham, R., Larson, K.M., Lai, X.A., You,
- K.Z., Yang, Z.J., Chen, Q.Z., 2001. Present-day crustal deformation in China
 constrained by global positioning system measurements. Science, 294, 5542,
 574-577.
- 656 Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse,
- 657 M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.-P.,
- 658 Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara,
- 659 M., Piccoli., P.M., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skår, Ø., Spicuzza,
- 660 M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q. and Zheng, Y.-
- F. 2004. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal.
 Res., 28, 9-39.
- 663 Wu, Z.Y., Zhou, Z.K., Sun, H., Li, D.Z., Peng, H., 2006. The areal-types of seed
- 664 plants and their origin and differentiation. Yunnan Publishing Group Corporation
- 665 Yunnan Science & Technology Press. Kunming, China. 12-145

- 666 Wu, Z.Y., Zhu, Y., Jiang, H., 1987. Vegetation of Yunnan. Science Press. Beijing,
- 667 China. 81-714
- 668 Yan, Y., Carter, A., Huang, C.Y., Chan, L.S., Hu, X.Q., Lan, Q., 2012. Constraints on
- 669 Cenozoic regional drainage evolution of SW China from the provenance of the
- 570 Jianchuan Basin. Geochem. Geophy. Geosy., 13, 3, Q03001.
- 671 Yao, Y.F., Bera, S., Ferguson, D.K., Mosbrugger, V., Paudayal, K.N., Jin, J.H., Li,
- 672 C.S., 2009. Reconstruction of paleovegetation and paleoclimate in the Early and
- Middle Eocene, Hainan Island, China. Climatic Change, 92, 1, 169-189.
- 674 Yunnan Bureau of Geology and Mineral Resources (YBGMR), 1990. Regional
- 675 Geology of Yunnan Province. Beijing.
- 676 Yin, A., Harrison, T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen.
- 677 Annu. Rev. Earth Pl. Sc., 28, 1, 211-280.
- 678 Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and
- aberrations in global climate 65 Ma to present. Science, 292, 5517, 686-693.
- 680 Zhang, K.X., Wang, G.C., Luo, M.S., Ji, J., Xu, Y.D., Chen, R.M., Chen, F.N., Song,
- 681 B.W., Liang, Y.P., Zhang, J.Y., Yang, Y.F., 2010. Evolution of Tectonic
- 682 Lithofacies Paleogeography of Cenozoic of Qinghai-Tibet Plateau and Its
- Response to Uplift of the Plateau. Earth Sci.: J. China U. Geosci., 35, 5, 697-712.
- Keng H., Clift, P.D., He, M., Bian, Z., Liu, G., Liu, X., Xia, L., Yang, Q., Jourdan,
- 685 F., 2020. Formation of the First Bend in late Eocene gave birth to the Modern
- 686 Yangtze River. Geology, 49, 35-39

- 687 Zhou, Z.K., Wang, T.X., Huang, J., Liu, J., Deng, W., Li, S., Deng, C., Su, T., 2020.
- 688 Fossil leaves of Berhamniphyllum (Rhamnaceae) from Markam, Tibet and their
- 689 biogeographic implications. Sci. China Earth Sci., 63, 224-234.

690 Figures and Tables:

691

692 Fig. 1. Geotectonic map of southern China and adjacent regions showing typical Oligocene

basins with plant fossils in South China and Vietnam (Geotectonic source from Ren et al.,

694 1997).

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 2. Location map of late Eocene-early Oligocene sedimentary basins, geological units and
main rivers of Yunnan Province and adjacent region (Geological units from Yunnan Bureau
of Geological Survey, 2014) (Topographic map from Shuttle Radar Topography Mission of
United States Geological Survey https://earthexplorer.usgs.gov/). Abbreviations: F1 = Nu
River Fault; F2 = Kejie Fault; F3 = Lancang River Fault; F4 = Jinsha River Fault; F5 =
Amojiang Fault; F6 = Ailao Shan Fault; F7 = Red River Fault; F8 = Yuanmou-Lvzhi River
Fault; F9 = Xiaojinhe Fault; F10 = Wenshan-Malipo Fault; F11 = Xiaojiang Fault A =

- 704 Gangdese-Himalayan orogen zone; **B** = Sibamasu and the Qamdo Block; **C** = Qiangtang-
- 705 Salween River-Lancang River- Jinsha River orogen zone; **D** = the upper Yangtze ancient
- 706 continent.

708

- 709 Fig.3. Geological map of the Wenshan Basin area and sampling position of the volcanic ashes
- 710 (source from YBGMR, 1990)

713 Fig. 4. Graphical summary of the sampling succession on the north of Wenshan basin. All the

- 714 zircon grains were collected from 'Ash 1' and 'Ash 2', and paleomagnetic data (According to
- 715 Lebreton-Anberrée et al., 2016) overlies the volcanic ash beds. Abbreviations: Fm. HZG =
- 716 Huazhige Formation; Fm. YS = Yanshan Formation

Fig. 5. Field photos of outcrop with the volcanic ashes and microphotographs of minerals
with volcanic features. a, b, c, d. 'Ash 1'; e, f, g, h. 'Ash 2'; c, d, g, h. microphotographs of

- ashes; g. cross polarized light; b. an increase in grain sizes towards the middle of the ash
- 122 lens and fining thereafter. Note angularity and large size of the grains (~ 3 mm diameter) in
- 723 the center of the lens. Abbreviations: Qz = quartz; Kfs = K-feldspar; Pl = plagioclase; Sa =
- 724 sanidine; \mathbf{Bt} = biotite. Scale bars of \mathbf{b} = 1 cm.

728 206 Pb/ 238 U ages from the Wenshan volcanic ashes.

729

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/

731 Fig. 7. Representative taxa from Wenshan flora. a. Goniophlebium macrosorum C.L.Xu et

732 Z.K. Zhou; b. Pinus massoniana Lambert.; c. Sequoia maguanensis J.W. Zhang et Z.K. Zhou;

- 733 d. Calocedrus shengxianensis (He, Sun et Liu) J.W. Zhang et Z.K. Zhou; e. Cinnamomum cf.
- 734 burmannii (C. G. et Th. Nees) Bl.; f. Exbucklandia acutifolia J. Huang et Z. K. Zhou; g.
- 735 Quercus sp.; h. Berryophyllum yunnanense (Colani) Z.K. Zhou; i. Bauhinia wenshanensis
- H.H. Meng et Z.K.Zhou; j. Carpinus sp.; k. Rosa fortuita T. Su et Z.K. Zhou; l. Zelkova sp.;
- 737 **m.** *Ficus microtrivia* J. Huang et Z.K. Zhou; **n.** *Mahonia mioasiatica* J. Huang et Z.K. Zhou;
- 738 **o.** *Palaeocarya hispida* H.H. Meng & Z.K. Zhou; **p.** *Berhamniphyllum miofloribundum* (Hu
- et Chaney) J. Huang, T. Su et Z.K. Zhou; q. *Ulmus prelanceaefolia* Q.Y. Zhang et Y.W.
- 740 Xing; r. Burretiodendron parvifructum J. Lebreton Anberrée et Z.K. Zhou; s. Ailanthus
- 741 *confucii* Unger. Scale bar = 1 cm

- 742 **Table 1.** Composition of the Wenshan palaeolora with compared with the modern flora of the
- 743 region.

Wensha	Present or absent in modern	
Family	Genus	Yunnan
Polypodiaceae	Goniophlebium	Present
Pinaceae	Pinus	Present
Cupressaceae	Sequoia	Absent
Cupressaceae	Calocedrus	Present
Lauraceae	Cinnamomum	Present
Berberidaceae	Mahonia	Present
Hamamelidaceae	Exbucklandia	Present
Fabaceae	Bauhinia	Present
Fagaceae	Quercus	Present
Juglandaceae	Palaeocarya	Present
Betulaceae	Carpinus	Present
Rosaceae	Rosa	Present
Rhamnaceae	Berchemiphyllum	Present
Ulmaceae	Ulmus	Present
Ulmaceae	Zelkova	Present
Moraceae	Ficus	Present
Malvaceae	Burretiodendron	Present
Simaroubaceae	Ailanthus	Present