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Abstract—Deep learning has been used in many
computer-vision-based industrial Internet of Things appli-
cations. However, deep neural networks are vulnerable to
adversarial examples that have been crafted specifically to
fool a system while being imperceptible to humans. In this
study, we propose a consensus defense (Cons-Def) method
to defend against adversarial attacks. Cons-Def implements
classification and detection based on the consensus of
the classifications of the augmented examples, which are
generated based on an individually implemented intensity
exchange on the red, green, and blue components of the
input image. We train a convolutional neural network using
augmented examples together with their original examples.
For the test image to be assigned to a specific class, the
class occurrence of the classifications on its augmented
images should be the maximum and reach a defined thresh-
old. Otherwise, it is detected as an adversarial example.
The comparison experiments are implemented on MNIST,
CIFAR-10, and ImageNet. The average defense success rate
(DSR) against white-box attacks on the test sets of the
three datasets is 80.3%. The average DSR against black-box
attacks on CIFAR-10 is 91.4%. The average classification
accuracies of Cons-Def on benign examples of the three
datasets are 98.0%, 78.3%, and 66.1%. The experimental
results show that Cons-Def shows a high classification
performance on benign examples and is robust against
white-box and black-box adversarial attacks.

Index Terms— Adversarial defense, consensus defense,
data augmentation, industrial Internet of Things.

|. INTRODUCTION

detection [3], and edge computing [4]. However, CNN models
are vulnerable to adversarial examples that are usually crafted
by injecting small perturbations into benign examples [1], [5].
Although small perturbations are imperceptible to humans,
they can fool CNN models and pose a serious threat to
critical security applications [5]. Recently, several studies have
focused on security topics in 10T [2], [6], and some studies
have crafted adversarial examples to attack lloT systems [7].
Adversarial defense is a crucial concern in CNN applications.

Several adversarial attack approaches have been designed
to fool CNN models in the field of image classification and
recognition. Adversarial attacks can be launched either in
the digital domain [8]-[14] or in the physical domain [15].
Digital attacks can be launched from four bases: (1) gradient-
based attacks, such as fast gradient sign method (FGSM) [8],
projected gradient descent (PGD) [9], and DeepFool [10];
(2) optimization search-based attacks, such as Carlini and
Wagner (C&W) attacks [11] and Jacobian-based saliency map
attacks (JSMASs) [12]; (3) network-based attacks [13]; and, (4)
randomness-based attacks [14]. Although digital attacks are
complicated, many of them involve gradients. C&W attack
employs gradients for optimization. The training of network-
based attacks usually depends on the backpropagation of the
gradient [13]. For randomness-based attacks, gradients can
also be employed to design adversarial attacks [14].

Since adversarial attacks typically craft adversarial exam-
ples based on gradients, we intend to design a gradient-
based defense method that efficiently utilizes attack results.

Convolutional neural networks (CNNs) have achieved stat€he gradients are embedded in the images. Since adversarial
of-the-art results in numerous computer vision tasks [1] aradtacks are inevitable, we do not aim to prevent them but
have been involved in many industrial Internet of Thingmduce them to produce contradictory results. Motivated by
(lloT) topics, such as mobile target tracking [2], intrusiomhis idea, the following three conditions should be addressed.
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First, we can expand an input image to multiple images with
varying gradients. Second, the varying gradients can induce
different classifications. Finally, if the second condition is
addressed, how do we use heterogeneous classifications on
augmented examples to defend against adversarial attacks?
Hence, we propose a consensus defense (Cons-Def) method
to address these three conditions in this study. Cons-Def
contains two modules: augmentation training and consensus
testing. First, we augment the training set to train a CNN
model in which every image generates multiple augmented
images based on intensity exchange. Subsequently, we imple-
ment consensus decision-making on a group of augmented test
examples to defend against adversarial attacks, that is, the test
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image is classified into a class supported by the classiitation a group of augmented examples to defend against ad-
of the supermajority if the number of supports is not lessithaersarial attacks. We expand the input image to augmented
a threshold. Otherwise, it is determined to be an advetsaiimages with varying gradients. Augmented perturbatiors ar
example. Fig. 1 illustrates the defense mechanism usedusually different from adversarial perturbations; theref

this study. Fig. 1(a) shows a benign example. Figs. 1(b) a@NN models cannot easily be fooled on all the augmented
1(c) show corresponding FGSM perturbation and adversargaiamples.

example, respectively. The red module in Fig. 1 shows the(2) We propose a strategy to implement adversarial clas-
test results for Cons-Def. The blue module shows FGSBffication and detection simultaneously. Classificatiord an
attacks on the augmented examples. To show the details, dlegection are two popular adversarial defense tasks. Based
perturbations in Fig. 1 are translated to be nonnegative aonl the literature, defense studies usually aim for adviadsar
then magnified by 10. The augmented perturbations in Figassification or detection. Herein, we implement advéabar
1(d) vary to FGSM perturbations in Fig. 1(e). Since FGSMlassification and detection simultaneously to improvedsé
perturbations are aggressive to the CNN model, augmenfsgtformance.

perturbations may be safe for the model. Otherwise, Figh. 1( The remainder of this paper is organized as follows. Related
and 1(e) should be similar to a certain extent. Although a maorks are presented in Section Il. In Section IlI, the prélim
licious attacker usually fools an artificial intelligencgstem naries and our proposed framework are introduced. Cons-Def
by submitting adversarial examples, Cons-Def always edparalgorithms are presented in Section IV. The comparison ex-
every received example to multiple augmented examples tp@timents are presented in Section V. Finally, the conchssi
have varying gradients, which favors immunization againgte presented in Section VI.

adversarial attacks.

(b) FGSM
perturbation

(c) Adversarial Il. RELATED WORK

example

(a) Benign

Cons-Def
example

FGSM attack

—> Augmentaion

A. Adversarial Attacks

—> Classification deer

Many adversarial attack techniques have been developed to
fool CNNs for computer vision tasks. Generally, adverdaria
attacks can be categorized as white-box or black-box attack
[1], [5], [14]. In the white-box case, the attacker has com-
prehensive knowledge of the model and the training data. In
a black-box attack, the attacker does not have knowledge of
the model. Although attacks can be launched in the physical
domain [15], we focus on attacks launched in the digital
domain.

1) White-box Attacks: Several white-box attack methods
have been established. Since we focus on adversarial @égfens
the following widely used attacks are employed for testimg i
this study.

FGSM [8]: FGSM is a classical gradient-based attack. The
FGSM generates adversarial examples based on the gradient
of the loss function with respect to the input image. FGSM
inversely changes the intensities of the pixels in the input
age to achieve its purpose. Some pixels with low intenséties
perturbed with positive perturbations. Meanwhile, somesigi
with high intensities are perturbed by negative pertudvesti

C&W attack [11]: Instead of leveraging training loss,
Carlini and Wagner designed a loss function and optimized
it to craft adversarial examples. C&W attacks are widely
regarded as one of the strongest attacks and are usually
employed in the defense literature for comparison.

JSMA [12]: JSMA uses an adversarial saliency map to find
the input pixels with the greatest impact on the specific wutp

(e) FGSM
perturbations

e ok
(d) Augmented
perturbations

Fig. 1. Attack and defense examples. (a) Benign example. (b) FGSM
perturbation. (c) Adversarial example. (d) Augmented perturbations

corresponding to (b). (e) FGSM perturbations on the augmented benign
examples. The perturbations are translated to be nonnegative and
magnified by 10.

of the target model. It searches several critical pixel# eitge
weights using loop technology. JSMA is usually much slower
than the FGSM and C&W attacks.

PGD [9]: PGD iteratively applies FGSM multiple times

The main contributions of this study are summarized agith a small step size and can be considered an extension of

follows:

FGSM. PGD attacks are typically much stronger than FGSM

(1) We propose a consensus decision-making method bas#dcks.
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DeepFool [10]: DeepFool iterates a gradient-based incredversarial defense. PixelDefend first purifies input insage
ment to obtain adversarial examples. The adversarial eleamand then feeds them to the classifier for classification [22].
is linearly iterated by the initial input image. TVM is a compressed sensing approach that combines pixel

2) Black-box Attacks: Within the scope of adversarial at-dropout with variation minimization [23]. STL first project
tacks, black-box attacks are usually produced by transilégya input images into a quasi-natural image space and then feeds
between architectures. Adversarial examples generatemen the projections to the networks [24]. Some studies implemen
classifier can sometimes cause another classifier to prodadeadversarial defense based on the output, such as feature
misclassifications, even if the classifier has a differenhiar squeezing (Feat-Squ) [25]. Feat-Squ detects an advdrsaria
tecture or is trained on disjoint datasets [1], [5]. A bldmkx example by comparing its prediction on the original sample
attack produces adversarial examples on a known classifiem(th that of the sample after squeezing [25]. In our desie, t
source model) and transfers them to a target classifier,avhelassifications on the augmented adversarial images as#lyisu
the source attack does not know the information of the tardetterogeneous. We use the consensus of the classifications o
model. the augmented examples to implement adversarial defense.

4) Knowledge-based Defenses: Many studies have imple-
mented adversarial defense based on statistical knowledge
Defensive distillation extracts the knowledge of classatuil-

Since adversarial attacks are a serious threat to securitjes to reduce the success rate of adversarial sampléngyaft
critical applications, many studies have focused on advels [26]. Liu et al. proposed an enhanced spatial rich model to
defense. Most defenses are developed in four streams: ithplement adversarial detection, in which steganalysis wa
training-based defense [8], [16]-[18], (2) gradient-lshge- applied to estimate the probability of modifications caulsgd
fense [19], [20], (3) input and output-based defense [28}[ adversarial attacks [27].
and (4) knowledge-based defense [26], [27].

1) Training-based Defenses: Goodfellow et al. developed [1l. PRELIMINARIES AND FRAMEWORK OVERVIEW
adversarial training by injecting adversarial examplée the A Preliminaries
training set to enhance the robustness of the CNN model ) )

[8]. In [16], the authors proposed an adversarial logitipair Qenerally, CNN is successively made of several convo-
(ALP) method that encourages logits for pairs of examplddfional and pooling layers, followed by one or more fully

to be similar. Some studies used learning-based methodsC@hnected (FC) layers and an output layer. Fig. 2 shows a
generate adversarial examples and design defense meth&M¥\ architecture that is suitable for_classmcatlon_ta$|!($h|s

such as defense with conditional generative adversarial ngiudy, we denote the CNN-based image classification model
works (CGAN) [17]. By combining adversarial training in@S With parameters.

shallow layers and an attention weight-based model, Chen

B. Adversarial Defenses

i N
et al. proposed an adversarial defense method by refocus \ W
. . . Flatten * & o .,
on critical areas and strengthening object contours (RC, <ok
H - - M e
SOC) [1]. Zhu et al. proposed a dual-domain-based advatsaps == UMy 3 Output
defense (DD-AD) method based on a conditional variatio?'hv 28 Mot
autoencoder and Bayesian network [18]. In [5], the autha™" "™ Comvolutional layer 4 # 1yer
Convolutional layer with 16 filters Fully connected

proposed a deeply supervised discriminative learning (DSD with 8 filters layers
method to defend against adversarial attacks. In this stuely ) )
trained models based on augmented examples. Fig. 2. Overview of a CNN architecture.

2) Gradient-based Defenses: Since many adversarial at-
tacks are launched based on gradients, several methodtdde[
against adversarial attacks based on gradients. Daboaki e
proposed a joint gradient phase and magnitude regularizati argmax L (F(X + 4,0), F(x,0)),s.t.]|d|| <e, (1)
(GPMR) method to explore practical defense [19]. However, 4
GPMR appears to be sensitive to the attack parameters. Anigiered is the perturbation of the input image %,> 0 is a
et al. summarized defense based on obfuscated gradigyign small constant; is a proper loss function, anle || is
into three types: shattered gradients, stochastic grediand a norm operator. An attacker explores the adversarial sampl
exploding and vanishing gradients [20]. Defenses relying &** = x + ¢ locally around x but can change the prediction
obfuscated gradients focus on gradient masking, whichesausf the classifier as much as possible.
attackers have no useful gradients [20]. Cons-Def launchesvlany defensive techniques against adversarial attacks hav
adversarial defense using augmented images with varyingen proposed recently [8], [16]-[27]. Based on the evalnat
gradients. Heterogeneous gradients are useful for Cofis-Dametrics, they can be divided into two categories: one is

3) Input and Output-based Defenses: Contrary to injecting classification-based defense, which aims to correctlysifias
adversarial perturbation for adversarial training, savstudies adversarial examples. The other is a detection-based skefen
apply image transformation, such as JPEG compression [2thjat aims to distinguish clean and adversarial examples.
PixelDefend [22], total variance minimization (TVM) [23], Classification and detection defense are usually evaluated
and the sparse transformation layer (STL) method [24], on adversarial examples. The classification accuracy (CA)

Adversarial attacks are typically generated by optimaati
g], as shown in (1).
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and detection rate (DR) for the classification and detecticet is composed of all augmented examples together with the
defenses are shown in (2) and (3), respectively. original training examples. Fig. 3(a7) shows the trainedieto

_ using a CNN with a structure similar to that shown in Fig. 2.
nadv(lp = lT)

CA= N , 2 In the test module (Fig. 3(b)), the input (Fig. 3(b1)) is first
adv padded and cropped (Fig. 3(b2)). The cropped image is then
DR — Nadv(d = 1) augmented using the aforementioned augmentation scheme

Nodw (3) (Fig. 3(b3)). Next, classifications (Fig. 3(b4)) are impkmed

on thes® augmented examples using the trained model (Fig.
a7)). We then build a histogram of the predicted labelg.(Fi
(b5)). Finally, defense results are obtained, as showrign F

whereN,q, is the number of adversarial examplesg, (I, =
l7) is the number of adversarial examples correctly classifie

and +(d = 1) is the number of adversarial example ; X . 2
correncﬁly (detectec)j P (b6). If the vertical coordinate of the histogram peak i$ no
' ss than a given threshdld, the input image is classified into

Since an input example may also be a benign exampllg, o
the defense accuracy on benign examples is also evaluateHﬁ'fﬁCIaSS at the peak. Otherwise, it is detected as an adatrsa

the literature. Some adversarial detection methods inmmm'npm‘
evaluations using true-positive rate and false-positiaee r
(FPR). Generally, FPR is reported on benign examples. T|

accuracy on benign examples denotediasis shown in (4). %

(a) Training

- ——
]
|

acc = 7%6"](\[;;6": lT), (4)
whereN,.,, is the number of benign examples, angd,, (I, =

9 (7) CNN
Ir) is the number of benign examples correctly classified. | ;) mpu } I ) model

Training

I

Block split
and exchange

B. Framework Overview (2) Component %) Augmented (& i I

mage (3) Intensity exchange component images (6) Training examples

I
(4) Predicted labels

7] Peak T, e 21 ‘

The main task of our proposed Cons-Def method is | _ —
implement classification and detection based on the consen m—l § ﬁ
(1) Input i .

(b) Testing
Classification

of the classifications on the augmented examples. As showr

Fig. 3, the outline of our proposed Cons-Def method compris ‘_. ~

two modules. The first is augmentation training, and seco m

is consensus testing.
Let S = {Xo,X1, - ,Xny—1} be a set composed oV Fig.3. Framework of our proposed Cons-Def method. (a) and (b) are

training images, and its label set be= {yo, Y1, ,yN_l}_ training and testing modules, respectively.

Take an RGB image x as an example, 180 xx(1), and %x?

be the red (R), green (G), and blue (B) component images of

X, respectively. The input image & S (Fig. 3(al)) is first IV. DEFENSE ALGORITHMS

separated into three component images (Fig. 3(a2)). Foy eve |n this section, we present the details of the implememntatio
component image, we arrange its intensities from low to higlf the proposed method. First, the algorithms used foritrgin

and generate an intensity list. We then split every list &fto and testing are presented. We then analyze the computationa
blocks, wherek = k1,k1 +1,--- k1 + s — 1, and obtains Comp|exity of our method.

intensity exchange lists, as shown by the intensity exchang

module in Fig. 3(a3). Taking the split= k; as an example, ) .

let the block length of the split b. Thei-th intensity in the - Augmentation Training

first block is exchanged with theth intensity in the second Adversarial attacks usually craft perturbations basedran g
block, i = 1,2,--- ,1;. The intensities in the third block aredients. The main purpose of data augmentation is to produce
exchanged with those in the fourth block in a similar mannerew images such that their gradients are opposite to each
An intensity exchange list is obtained after 24t blocks are other. To address this, we use intensity exchange techyolog
processed. We scan the original component image to genetataugment the training set.

an augmented component image using the obtained list. [fWithout loss of generality, letS = {x; =

the intensity of a pixel in the original component image isxz(.o),xz(.l),xf))},i = 0,1,---,N — 1, where >§]) is

the j-th element in the original intensity list, the intensity othe j-th component image of the-th input x. Let

the corresponding pixel in the augmented component ima;ggé)(u,v) € Ly = {0,1,---,L — 1} be the intensity

is valued at thej-th element in the obtained exchange listof a pixel at coordinatequ,v), u = 0,1,--- , H — 1,
After all exchange lists are obtained, we genesad@gmented v = 0,1,---,W — 1, and H and W are the height and
component images for every component image (Fig. 3(a4)idth of the input, respectively. Furthermore, B be the

The augmented components in Fig.3(a4) are fully connectggensity list of )gj), ie.,

through the R, G, and B channels to produéeaugmented ‘ o N

RGB images (Fig. 3(a5)). As shown in Fig. 3(a6), our training TD = (59 4{i) ... 40 (5)

? Pq,j—l )

(3) Augmented | 0123456789 Label| [n__<T Il

peak

(2) Padding and cropping |

examples (5) Histogram of labels * (6) Defense results
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wheret{? < {1 < ... <UD

. 19 is a pixel intensity in Algorithm 1 Data augmentation method based on intensity
exchange.

Pij
X =01, ,py—1,j=0,1,2.

The augmentation method on the training set is shown iHPUt:
Algorithm 1, whereS4 is the augmented image set ald k1
is the corresponding label sefs" N xH*xWx3 and zs°N are
integer spaces in the size 6fN x H x W x 3 and sN,
respectively; % is composed of the augmented images of x
h(zx) is a binary operator om, h(x) = 1if z is true; otherwise,
h(z) = 0; f(e) is the augmentation module on a component®
image, as shown in Algorithm 2, arjd] is the least integer *
function.

In Algorithm 1, the augmentation process is mainly com-©:
posed of three modules. First, three intensity Ii5&, 7'V, 7:
and TZ.(Q) are obtained. Specifically, we draw all intensities in
L, in descending order. For every intensitye Lg, we scan :
the component imagel(.Q to check whether there is a pixel 9
whose intensity equals to. If the condition is supported,

c is appended to thd“i(”. Otherwise, we check the next
intensity in theL,. Second, we implement Algorithm 2 to
augment every component image istaugmented component
images. Finally, the augmented component images are fully
connected to generaté augmented images, which composels'
the augmentation of;x 4 16

For a given block parametér, let the augmentation ofﬁ? _

be fi(j). The main task of the augmentation is to build a onel—zj

to-one transformation oﬂﬁi(j). Algorithm 2 shows the details 20;

XA
2: for

17:

Training image sef and corresponding label sit,
S

Output: The augmented imgge s8t and label set’y ,
1: Initialization: Sy =0 € Z5 NxXHXWx3 'y, — e Z5 N,

—0e Zs3><H><W><3
1=0:N—-1do
Data extraction: x= (x\”,x\V x) € 5,5, € Y
for j=0,1,2do
Initialization: 7\”) = ¢
forc=0:L—-1do
H—-1W-1 .
it S 3 h(xY (u,v) = ¢) > 1 then
uj_vl?j)“_:OTi(j) U {c}
end if
end for
end for
for j =0,1,2 do
fort=0:s—1do
ny = 2k1+t, lt = [pij/nt]
th) = f(xlgj)vTi(J)v Hv W; N, lt)
end for
end for
forr=0:s5s—1do
forg=0:s—1do
forb=0:s5s—1do

of the generat.ion offi(j),. wherel = [p;;/2¥] is the block ;. Xa(rs? + gs +b) = (xf"),xi}g),xf“)
length, andp;; is shown in (5). 22: end for

In Algorithm 2, we scan ¥’ to generatef!?). For the 3. end for
current coordinate$u, v), we first search a'/) € 7) such 24  end for
that £ = x (u,v). Then, with the help of indicatom, 251  Sa(is®: (i +1)s%,:,5,1) = Xa
the intensity of the corresponding pixel jil’) is assigned the 26:  Ya(is® : (i +1)s°) =y;
intensity '’ using (6). 27: end for

t%7), m € [2nl, (2n + 1)])

Algorithm 2 Procedure for generating augmented component

o) =3t me(@n+ L2+ 1)) ()
439 m > 2k image.
wheren =0,1,---,2F1 1. Input:

After the training set is augmented using Algorithms 1 and list

A component image Ef{) together with its intensity
TZ.(]); the image height{ and widthWW; block param-

2, we combine the original and augmented examples to train €tersk and!

the CNN model, as shown in (7).

St =854U8
Yr=YaUY

2: for
3:

: (1)

Output: The augmented component imag@)
1: Initialization: £ = 0 € Z#*W

u=0:H—-1do
forv=0:W —1do

) (i) (9) (i7) _ (9

where St is the set of training images for Cons-Def, avid g: ?eﬂ?rih Q%thheenTi S0 thatty” = X" (u, v)
is the label i . : H P
is the label set corresponding & 6 Let fi(J)(%v) — % using (6)

) 7 else
B. Consensus Testing 8: Let fﬁj) (u,v) = ﬁ%j)

Our defense scheme leverages the consensus on the pee- end if

dictions of augmented examples. The test image x (Figo: end for
3(b1)) may be a benign or adversarial example. Letbxe 11: end for

the padding and cropping image of x (Fig. 3(b2))é and the
augmented images of,xbe x4 2 {x¥ x ... x{

(Fig. 3(b3)). We implement classifications oy »xusing the

model obtained in Fig. 3(a7). Let the predicted labels qn xbe = {0, 91,

,s5_1} (Fig. 3(b4)). Furthermore, let
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be the set of unique elements B, i.e., to conduct the experiments. The experiments are implerdente
- L . based on the CleverHans package [28] using TensorFlow-gpu-
Y = {%0, 91, - 7yq}7 8) 1.12.0.
andn; be the number of occurrences@fin Y4 (Fig. 3(b5)),
€., o A. Setup
fy = Z h(Fi = k), 9) Datasets: In this study, experiments are conducted on
k=0 MNIST [29], CIFAR-10 [30], and ImageNet [31]. MNIST

consists of 70 k gray images of handwritten digits in classes
0 9. The MNIST images, including 60 k training images
d 10 k testing images, aB8 x 28 pixels. The CIFAR-10

whereg; € Ya. 0
Based on (8) and (9), the inference scheme is implementae

in (10): dataset consists of 6032 x 32 pixel RGB images, including
argmax(n;), max(n;) > Te 50 k images for training and 10 k images for testing. Since
Jx = i , (10) ImageNetis a large-scale dataset, many studies haveestkect
-1, max(n;) < Te subset for defense tests [23]-[25]. In this study, expemisien

ImageNet are conducted on ImageNet-10, which is extracted
afrqom the first ten classes in the dataset, e.g., tench, goldfis
ngreat white shark, and tiger shark. ImageNet-10 consisi8of
k training images and 500 test images.

Networks: To implement the experiments on the datasets,
we adopt six models with different convolutional structire
The architecture on MNIST, denoted as CNN-M, is mainly
structured in three convolutional layers. This is identita
the basic model in the CleverHans package. For the CIFAR-
10 dataset, we train three models: CNN-DT used in defen-
sive distillation [26], ResNet-50 [32], and VGG-16 used in
PixelDefend [22]. The CNN-DT network is structured into
4 convolutional layers, 2 pooling layers, and 2 FC layers.

or convenience, we denote CNN-DT as 4C+2P+2FC and
use similar notations in the following sections. For ImageN
10, three models are employed in the experiments: ResNet-50
[32], ResNet-101 [32], and Inception-v3 used in RCA-SOC
C. Complexity Analysis [1]. The training parameters are summarized in Table |, eher
We analyze the algorithm complexity to show the timResNet-SO, ResNet-101, and Inception-v3 are abbreviated t
efficiency. Since Cons-Def trains models offline, the ruetimﬁesso’. Res101, and Incepts3, and Adadglta and moment_um are

- ' bbreviated as Adad and Mome, respectively. The experanent

of the test is analyzed. As shown in Algorithm 3, the te%n CNN-M and CNN-DT are both implemented in a batch size

algorithm mainly contains two modules: Input augmentatiofy ; 5g using an adaptive moment estimation (Adam) optimizer
and model classification. In the augmentation stage, thr\?l

intensity list first obtained dth i fth a learning rate of 0.001. For ResNet-50, ResNet-101,
:.”te”S' y ISts are Itrsd c;d;l[r;z ’gnb © opﬂera I0NS OMEVE, 4 VGG-16, the Adadelta optimizer with an initial learning
ISt are approximate - oubsequently, every com- ..o ot 0.1 is used for training. For ResNet-50 and VGG-

ponent image Is expanded toaugmented images, and thel6 on CIFAR-10, the height and width of the images fed
operations of every augmentation implemented in Algorith% the two modeI,s are resized 188 x 128 and 160 x 160

2 are apfrtqmmated o H L ' Tthzoper?tlapls{?vcsﬂy ed 'g Input pixels, respectively. The batch sizes are set to 128 and@0. F
augmentation are approximateds+1) - >Ince Lons- mageNet-10, the input sizes of ResNet-50 and VGG-16 are

Def implements classifications on all augmented images, Gth resized t@24 x 224. The batch sizes of the two models

O%zrrztgns t?:; tr:]emg:rssg?ccfr'gnst:tfnapoar?;(éri?;ec#fgt.o%re set to 80 and 48. The Inception-v3 model is trained with
w IS u putations SSINCalon 1 atch size of 64 and an input size2®9 x 299. The model

on one image. Overall, the operations of Cons-Def can be, _. : L :
. trained using a momentum optimizer with a dropout rate of
approximated a8(s + 1)W HL + s3C. g b P

0.5. The momentum s setto 0.9. The learning rate is irdeali
at 0.045 and decayed every two epochs at an exponential rate
V. EXPERIMENTS of 0.94.

In this section, experiments are implemented to demomstrat Attack methods: To demonstrate the defense ability, both
the defense performance of the proposed Cons-Def methathite-box and black-box attacks are employed in the exper-
We first train models using augmented datasets and thenimpieents. For white-box attacks, untargeted attacks, inotud
ment classification and adversarial detection on corredipgn FGSM (.,-norm) [8], C&W (l>-norm) [11], JISMA [12], PGD
test sets. We use a computer with an i5-7500 3.4 GHz CP{,.-norm) [9], and DeepFool [10], are implemented on the
32 GiB system memory, and a GeForce GTX 1080Ti GPMNIST, CIFAR-10, and ImageNet-10 datasets. For black-box

wheregy is the inferred classificatiory,. is a given threshold,
and gy = —1 shows that the test image x is inferred as
adversarial example. In detail, the test procedure is shiaw
Algorithm 3.

Algorithm 3 Consensus testing on an unknown example.
Input: Test image x and thresholf.
Output: Classification labefjx
1: Generate X using steps 4-24 in Algorithm 1
2: Classify examples in x to produce?A using the trained
model
3: ObtainY usingY
4. Count the occurrences of the predicted labels using (9
5. Produce classification using (10)
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TABLE |
TRAINING PARAMETERS OF THE MODELS ON MNIST, CIFAR-10, AND
IMAGENET-10.

Dataset MNIST] CIFAR-10 ImageNet-10

Network CNN-M|CNN-DT Res50 VGG16Res50 Resl101 Incept3 ?
Input size 282 3272 1282 1607 [2247 2247 2997 §
Optimizer Adam [Adam Adad Adad |Adad Adad Mome é

o oot [ooor 01 1 lor o1 % MISHHEGTRA SR N
Learning rate 0.001 |0.001 01 0.1 01 0.1 0.045 . Modc]i‘c]ean s \L
Batch size 128 |128 128 90 80 48 64 °“OM0dclM.Adv tost

40 45 50 55 60 e 70 75 8 8 90 9 100
Epoch

attacks. the transferability of adversarial examplestechbn Fig. 4. Ablation experiments of the parameter s on the CIFAR-10 test
P . set. The black and red results show test accuracies using Model27
CIFAR-10 is studied.

) and Modelga, respectively. The results marked with asterisks and
Metrics: Because a robust defense method should shewall circles show accuracies on benign and adversarial examples,

high accuracy on benign and adversarial examples;thand respectively.

acc shown in (2) and (4) are both reported in our comparison

experiments. Moreover, our proposed method could classi : . .
P . brop . e%versanal examples (D$Rto chooseT,. DSR is defined
adversarial examples and detect adversarial attacks, &nd.w

use the defense success rate (DSR) to evaluate the deféh %2)'
ability against adversarial attacks, as shown in (11). DSR' — Noen(lp = 1) + Nado(lp = 1) + Nago(d = 1)7
DR - advlly = 17) + aau(d = 1) 1) | Noar + Noen (12)
Nadv where the notations are shown in (2)-(4).
where Nugy, naau(l, = Ir), andnag,(d = 1) are given in (2) For parametefl,, we fix parametes at 4, and sele_ct nine
and (3), respectively. levels 32,36, -- ,64 for the experiments. Table Il lists the

ablation experiments on the threshdld The DSR results in

Table Il are reported on the CIFAR-10 test set usldgdelgs.

The perturbation parameters of the FGSM and PGD are both
Our proposed method includes three main parameters. de¢ to 0.03, i.e.er = ep = 0.03. The number of iterations

intensity list on the component image is first divided intdor PGD is set to 10 with a step size of/4. The number

28 k =k, ki+1, -,k +s—1, splits to augment examples.of iteration steps for C&W is set tb000 with a learning rate

The method then uses the threshdldto implement classi- of 0.01. The constant parameterfor the C&W attack is set

fication and discrimination in the test stage (Fig. 3). Qiear to 10. The parameter of the maximum distortion percentage

k1, s, and T, are the three parameters of our method. Fdor JSMA is set asy = 0.1. The number of maximum

convenience, we fik; = 3 and use the one-factor-at-a-timeterations for DeepFool is set #pr = 50, where DeepFool

B. Parameter Tuning

method to tune the parameterand 7. on CIFAR-10. is abbreviated as DFool in Table II.
For s, 3 and 4 are two selected levels for experiments. For
s = 3, the intensity list is divided int@?, 24, and2® splits, i.e., TABLE II
k = 3,4, 5. Every componentimage produces three augmented DSRT OF THE THRESHOLD Te ON CIFAR-10 (%).
component images based én The augmented components
are fully colnnected t.o.produc.el 27 augmented RGB imagc%. FGSM C&W JSMA PGD DEool JR——
Together with the original training examples, all augmédnte "® er =0.03 c¢=10 y=0.1 ep =0.03 itpr = 50 g
RGB images are employed to train a model. For brevity32 758 839 725 69.2 84.6 772
denote the resulting model a9 odel,7;. As a contrast fo.2 842 iz 6o.7 84.9 78
we denote iftung: | @l ogelar. AS 40 76.9 846 753  70.2 85.1 78.4
experimentM odelgy is trained with levek = 4. Fig. 4 shows 44 77.4 84.8 75.7 70.6 85.2 78.7
the ablation experiments on the parameteiThe black and 48 779 849 769 711 85.3 79.2
dli in Fig. 4 show the classification accuracies on thé 154 gac 1890 . 1 799
red fines in Fig. 4 Sh : & 787 844 789 724 84.8 79.8
CIFAR-10 test set using/odela; and Modelgy, respectively. 60 79.0 83.8 798 73.3 84.1 80.0
Both benign and adversarial examples are used for testingf 781 815 784 737 81.9 78.7

The results on the benign and adversarial examples are shown
as the “clean test” and “Adv test”, respectively, in Fig. heT
adversarial examples are crafted by FGSM with a perturbatiB
of 0.03 on the test examples of CIFAR-10. As shown in Figd.
4, the M odelg4 leverages the stability of accuracy. Therefore,
s =4 is employed in the proposed method. . .
Generally, the defense accuracies on benign and advérsdria Defense against White-box Attacks

examples should be as high as possible. To balance thé&or MNIST, we train the models on a network with the
performance on benign examples, we use DSR on benign atidicture of 3C+1FC. The clean model is trained using 60

As summarized in Table IIJ. = 60 achieves the highest
SR’ of 80.0%. In this study7. = 60 is chosen to defend
gainst adversarial attacks driodelg,.



8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX 2017

k training images. As the examples of MNIST are grayscate> = 0.03. The attack parameters for C&W, JSMA, and
images, the gray intensity list is divided into 2, 4, 8, 16¢d anDeepFool are the same as those listed in Table II. Since JISMA
32 splits for intensity exchange. The volume of the MNISTequires more memory than what is available to run, we could
dataset is augmented 5-fold for the experiments. The augmanrot test it on the ResNet, VGG-16, and Inception-v3 networks
ed model is trained on 360 k examples after augmentation. The

clean and augmented models are both trained for 50 epochs TABLE IV

with the corresponding parameters listed in Table |. We mepdEFENSE ACCURACY AGAINST WHITE-BOX ATTACKS ON THE CIFAR-10

the robustness of the model using a standard perturbation fo TEST SET (%).

FGSM and PGD [5], i.e.er andep are both set to 0.3 on

Method Metrics Network FGSM C&W JSMA PGD DFool

the MNIST test set. The attack parameters for C&W, JSMAgZhaNN

. ) CA  4C+2P+2FC 19.1 58 3.3 00 88
and DeepFool are the same as those listed in Table II. Clean-Res50 CA  Res50 10.0 0.0 29 6.1
Table 1l presents the comparison experiments again%eé‘nggle[Zl] EAA ng21§+1FCl$§66 0.0 6.6 %257
-comp . - .
FGSM, C&W, JSMA, PGD,. aqd DeepFool attacks on _thepixelDefend [22] CA  VGG16 620 79.0 - - 760
MNIST test set. The accuracies in the “clean” row are obthineabpr, o 5 [33] CA  3Res20 462 256 37.0 304 -
on the test set using the clean model without any defense strgPMR [19] ~ CA 8C+3P+2FC 56.0 329 481 358 -
. . . CGAN [17] CA  ResNet 828 79.8 821 - 842
egy. Since our method can simultaneously classify and tetggsp, 5] CA Res110 67.7 373 - 279 .
adversarial examples, both CA and DSR are summarized RCA-SOC [1] CA  VGG16 45.6 50.2 - 25.0
Table Ill, where Res20 is the abbreviation for ResNet-2G Thgons'ge;'g’\”\éo CcAA 4§+25'3+2FC 55‘;-82 %61-% 356 ?,i?, g‘zl-é
. . ons-ber-res es! . . - . .
defe_nse threshold. is set to 5. The test experiments on JSMAC ns.Def-vggl6 CA  VGG16 197 542 - 10.8 46.0
are implemented on the first 1000 images of the test set. Cons-Def-CNN DSR  4C+2P+2FC 845 947 858 73.3 95.3
Cons-Def-Res50 DSR  Res50 88.5 959 84.6 96.1
Cons-Def-Vgglé6 DSR  VGG16 545 91.8 - 23.8 93.1

TABLE IlI
DEFENSE ACCURACY AGAINST WHITE-BOX ATTACKS ON THE MNIST

TEST SET (%). From Table IV, our method shows high performance in

adversarial defense. The results in the first three lines in

'\Cﬂli?: d '\éitr'cs ?gﬂ% ;ng E%W J157NéA PzGlD DZFfO' Table IV indicate that clean models without a defense siyate
Feat-Squ [25] CA  4C+2P+2FC 61.0 350 56.0 - - are heavily attacked. Compared to clean models, Cons-Def
ADPs 0.5 []33] CA  3Res20 528 238 950 410 - achieves high performance on CA and DSR. This result
GPMR [19] CA  8C+3P+2FC 58.7 285 950 514 - Aaf i : ; .

DSDL [5] CA  6C+3FC 311 291 - 19.9 - suggests that Cons-Def is effective against adversataatie.
RCA-SOC [1] CA 5C+5P+1FC 67.3 - 716 - 443 Our experiments on the CNN-DT, ResNet-50, and VGG-16
DD-AD [18] CA  2C+2FC 834 978 - networks show that the same attack with the same parameters
Cons-Def CA  3C+1FC 897 23 537 391 21 : : o :
Cons-Def DSR  3C+1FC 983 993 916 916 gog could drive different networks to produce significantlyfelrt

ent accuracies. The results in Table IV are obtained using
three types of structures. The results of Cons-Def-CNN are

Cons-Def is robust to adversarial attacks. Although treompared with those of basic convolutional networks, i.e.,
comparison results in Table Ill result in different netwsrk JPEG compression (JPEG-comp) [21] and GPMR [19]. The
most of their structures are similar, except for the adaptiaverage CA of GPMR against the four attacks is 43.2%, which
diversity-promoting regularizer (ADf).5) network, which is is smaller than the 52.5% for the Cons-Def-CNN. Furthermore
an ensemble suite consisting of three ResNet-20 netwobecause Cons-Def-CNN could detect adversarial examplies, t
s. Although Cons-Def shows classification disability againCAs of JPEG-comp and GPMR are smaller than the DSRs
C&W and DeepFool attacks, the DSRs against both attacks afeCons-Def-CNN. We compare the Cons-Def-Res50 with
greater than 95%. Furthermore, Cons-Def achieves the $tigh&DP, ( 5 [33], CGAN [17], and DSDL [5]. The average CAs
defense rate against FGSM, C&W, PGD, and DeepFoof ADP; 5 and DSDL are 34.8% and 44.1%, respectively.
Although Cons-Def did not obtain the best result on JSM/AGince the average CA of Cons-Def-Res50 is 68.4%, it seems
it showed overall superiority on MNIST. that Cons-Def-Res50 is more robust than ARR and DSDL.

For CIFAR-10, the clean and augmented models of thdthough the CAs of CGAN are greater than those of Cons-

CNN-DT are trained for 100 epochs. The clean models 8fef-Res50, the DSRs of Cons-Def-Res50 are all greater than
ResNet-50 and VGG-16 are trained for 1000 k and 500tke CAs of CGAN. For VGG-16, the CAs of Cons-Def-
iterations, respectively. The augmented models of ReSRetVggl6 are inferior to those of PixelDefend [22] and RCA-
and VGG-16 are trained for 2500 K iterations. For ImageNeSOC [1]. The DSR of Cons-Def-Vggl6 against PGD is low.
10, the clean models of ResNet-50 and ResNet-101 are traimtmvever, Cons-Def-Vggl6 shows its superiority against C&W
for 200 k iterations. The augmented models of ResNet-50 aadd DeepFool attacks. Overall, Cons-Def shows its supsrior
ResNet-101 on ImageNet-10 are trained for 1700 k iteratioregyainst adversarial attacks on the CIFAR-10 test set.
The clean and augmented models of Inception-v3 are trainedrhe results in Table V indicate that Cons-Def is advanta-
for 100 epochs. The other training parameters are the sameayasus for adversarial defense on the test set of ImageNet-10
those in Table |. Tables IV and V list the comparison resutts dAs listed in Table V, the defense performance on the ResNet-
CIFAR-10 and ImageNet-10, respectively. The perturbatiod0 network is close to that of ResNet-101. For ResNet-50, we
for the FGSM and PGD are both set to 0.03 [5], i&, = compare Cons-Def-Res50 with TVM [23], image quilting [23],
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TABLE V classifications of CNN-DT attacked by ResNet-50 and VGG-
DEFENSE ACCURACY AGAINST WHITE-BOX ATTACKS ON THE 16 are 63.3% and 43.1%, and the losses are 22.8% and 43.1%,
IMAGENET-10 TEST SET (%). respectively. The average losses of ResNet-50 attacked by

CNN-DT and VGG-16 are 14.8% and 31.1%, respectively. The

Method Metrics Network FGSM C&W PGD DFool

Clean-V3 CA Incept3  23.2 0.0 13.2 12.6 average losses of VGG-16 attacked by CNN-DT and ResNet50
Clean-Res50 CA Ress0 234 0.0 16.8 168 are 13.7% and 10.6%, respectively. The results show that the
Clean-Res101 CA Resl01 23.6 0.0 166 16.6 i ; ;
TVM [23] cA Ress0 314 484 - 447 structure of the source network has significant variancé wit
Image quiling [23] CA Res50 39.6 305 - 345  respectto the power of black-box attacks. The average CAs of
ALP [16] CA Incept3 - - 279 - the models attacked by CNN-DT, ResNet-50, and VGG-16 are
STL [24] CA Res50 69.3 67.7 - 68.5 0 0 0 i

RCA-SOC [1] N Incepta 290 - ) 716 70.4 %, 75.5 A) and 51.6%, respectwely. The strongestkattac
Cons-Def-V3 CA Incept3 36.4 586 272 57.6 1IN ourtest suite are crafted using the VGG-16. The average

Cons-Def-Res50  CA Res50 412 658 386 64.0 CA and DSR of black-box attacks in Table VI are 65.8%
Cons-Def-Res101 ~ CA ~ ReslOl 436 644 386 626 444 91 49, respectively. The DSRs in Table VI indicate that
Cons-Def-V3 DSR  Incept3 640 826 51.0 856 - ; )

Cons-Def-Res50 DSR  Res50 688 842 630 854 Cons-Defcan classify or detect adversarial examples agfa hi

Cons-Def-Res101 DSR  Resl01 694 844 66.2 854 rate. Overall, Cons-Def is robust against black-box atamk

CIFAR-10.

and STL [24]. Cons-Def-Res50 shows its superiority to TVNE. Accuracy on Benign Examples
and image quilting in terms of CA and DSR. The DSRs of |, this section, we show the resulting accuracies on benign

Cons-Def-Res50 are all greater than the CAs of TVM, imagg 5 mples in Table VIl using (4). The accuracies in the “clean

quilting, and STL except for the case of STL on FGSM. Fqt,, are obtained on the clean model without any defense
Inception-v3, the DSRs of Cons-Def-V3 are all higher thagyateqy. The models in the “augmented” row are trained on
the CAs of ALP [16] and RCA-SOC [1]. our augmented training sets, and the accuracies in the @w ar

Overall, the average CA and DSR of Cons-Def on the thrggsieq with original test examples without augmentatidme T
datasets are 48.3% and 80.3%, respectively. Although CoBgz racies in the row of Cons-Def in Table VII result from

Def is not sufficiently strong for classification, it is robuspe augmented models and our defense scheme.
to DSR. Comparison experiments on MNIST, CIFAR-10, and
ImageNet-10 suggest that Cons-Def shows superiority again

. TABLE VII
white-box attacks.

ACCURACY OF THE MODEL ON BENIGN EXAMPLES (%).

; _ Dataset | MNIST CIFAR-10 ImageNet-10
D. Defense against Black-box Attacks Model — [CNN-M|CNN-DT Res50 VGGIincept3 Res50 Resiol

In this section, we present defense results against blac?ean t gg.g gg.g gg.g gg.z gg.g ;32.2 ;g.g
box attacks on CIFAR-10. We study the transferability of"u9menteq=>. : : : : : :
the CNN-DT, ResNet-50, and VGG—1{3 models. In this s%/udy,conS'Def %0 734 820 700 [640 076 068
FGSM, C&W, PGD, and DeepFool are employed for black-
box attacks. The parameters of the attacks are the same aSons-Def achieves high performance on benign examples.
those listed in Table IV. Table VI lists the resulting CA andAs summarized in Table VII, the average accuracies of the
DSR of Cons-Def against black-box attacks on CIFAR-10; falean, augmented, and Cons-Def models are 82.5%, 83.5%,

example, the result of 60.6/93.2 in Table VI indicates tihat t and 75.9%, respectively. Compared to the clean models, the

CA and DSR are 60.6% and 93.2%, respectively. average improvement in the accuracies of the augmented
models is 1.0%. Intensity-based data augmentation is advan
TABLE VI tageous for classification purposes. The average accaratie
RESULTING CA AND DSR OF CONS-DEF AGAINST BLACK-BOX the clean model on the three datasets are 99.3%, 88.8%, and
ATTACKS ON CIFAR-10 (%). 70.7%, respectively. The average accuracies of Cons-Def on

. S S — —_— — the three datasets are 98.0%, 78.3%, and 66.1%, respgctivel
arget ource 00 H _

CNN-DT Ress0  60.6/932 651039 6220936 653042 orrespondingly, the average losses of Cons-Def on the thre
CNN-DT VGG16  34.0/84.6 54.7/92.3 32.5/76.9 51.0/91.5 datasets are 1.3%, 10.4%, and 4.5%, respectively. Overall,
Res50 CNN-DT  72.3/92.9 80.8/95.9 72.7/93.2 80.3/95.7 Cons-Def correctly classified most benign examples, and the
Res50  VGG16  47.7/84.3 75.6/94.8 44.4/77.1 73.1/95.3 e - o e
VGGIE ONNDT 717616 776936 7LUOLE 77.5/940 deficiency of our method on the bem_gr_1 exgmples is limited in
VGG16 Res50  755/91.8 78.5/93.9 77.5/93.1 78.4/94.1 an acceptable range. Cons-Def exhibits high performance on

benign examples.

The results in Table VI indicate that our proposed Cons- ,
Def is robust against black-box attacks. The CAs of tHe Robustness Experiments
target models CNN-DT, ResNet-50, and VGG-16 on CIFAR- Adversarial examples are crafted using attack parameters.
10 without attacks are 86.1%, 91.3%, and 88.1%, respegtivebince different parameters produce different attack pswer
As shown in the first and second lines in Table VI, the averages test the robustness against these parameters. Fig. 5 show
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the defense results against white-box attacks on CIFAR-10. VI. CONCLUSIONS

The experimental parameters of FGSM, C&W, PGD, and In this study, a consensus defense method was proposed.

DeepFool arer, ¢, <, anq itpp, respectively. To test the Cons-Def uses intensity exchange technology to augment the
robustness of Cons-Def, five levels are chosen for the fOtLr':E\inin examples. The aradients of the auamented examples
perturbation parametersy = ¢p = 0.01,0.03,0.1,0.3,0.8, 9 PIES. g g p

¢ — 0.01,0.1,1.0,10.1000, and itpp — 1,2.10.50.500. were op_posif[e to each other. Cons-Def uses the consensus
.8f classifications on augmented examples to defend against
SUversarial attacks. On the one hand, Cons-Def trains model
based on augmented examples. On the other hand, it imple-
vaGs ments classification and adversarial detection on augrdente
examples using the consensus of their predictions. The-Cons
Def method showed a high classification performance on
benign examples and was robust against white-box and black-
box adversarial attacks. Notably, Cons-Def could not d&fen
IS SONSS¢ against all adversarial attacks. If an adversarial attack i
b Caw successful on all augmented examples of an input, Cons-Def

The blue and red bars indicate classification and detecti
accuracies, respectively.

Res50

‘0,

VGGls

VGG16

| o, CNN-DT

0s encounters a failure defense.
Zos The experimental results showed that the structure of the
o4 network plays an important role in an attack. The same
| 02 white-box attack with the same parameters can drive differe
SSIFE VIS (\d:,I;FiﬁQ >9SS networks to produce significantly different accuraciesr Fo

black-box attacks, the attack performance varies sigmifiza
with respect to the structure of the source network. Theegfo
we plan to study the propagation errors of perturbationsiin o
future work.

Fig. 5.
CIFAR-10 test set. (a), (b), (c), and (d) are the defense results against
FGSM, C&W, PGD, and DeepFool attacks, respectively. The blue and
red results indicate classification and detection accuracies, respectively.

Robustness experiments against white-box attacks on the
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robust to PGD attacks.
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