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ABSTRACT

One probe for systematic effects in gravitational lensing surveys is the presence of so-called B modes in the cosmic shear two-point
correlation functions, ξ±(ϑ), since lensing is expected to produce only E-mode shear. Furthermore, there exist ambiguous modes
that cannot uniquely be assigned to either E- or B-mode shear. In this paper we derive explicit equations for the pure-mode shear
correlation functions, ξE/B

± (ϑ), and their ambiguous components, ξamb
± (ϑ), that can be derived from the measured ξ±(ϑ) on a finite

angular interval, ϑmin ≤ ϑ ≤ ϑmax, such that ξ±(ϑ) can be decomposed uniquely into pure-mode functions as ξ+ = ξE
+ + ξB

+ + ξamb
+

and ξ− = ξE
− − ξ

B
− + ξamb

− . The derivation is obtained by defining a new set of Complete Orthogonal Sets of E and B mode-separating
Integrals (COSEBIs), for which explicit relations are obtained and which yields a smaller covariance between COSEBI modes. We
derive the relation between ξE/B/amb

± and the underlying E- and B-mode power spectra. The pure-mode correlation functions can
provide a diagnostic of systematics in configuration space. We then apply our results to Scinet LIght Cone Simulations (SLICS) and
the Kilo-Degree Survey (KiDS-1000) cosmic shear data, calculate the new COSEBIs and the pure-mode correlation functions, as
well as the corresponding covariances, and show that the new statistics fit equally well to the best fitting cosmological model as the
previous KiDS-1000 analysis and recover the same level of (insignificant) B modes. We also consider in some detail the ambiguous
modes at the first- and second-order level, finding some surprising results. For example, the shear field of a point mass, when cut along
a line through the center, cannot be ascribed uniquely to an E-mode shear and is thus ambiguous; additionally, the shear correlation
functions resulting from a random ensemble of point masses, when measured over a finite angular range, correspond to an ambiguous
mode.

Key words. cosmology – gravitational lensing – large-scale structure of the Universe

1. Introduction

Statistical analysis of the weak distortions light bundles undergo
as they traverse the inhomogeneous Universe (Blandford et al.
1991; Kaiser 1992, 1998) is believed to potentially be the most
powerful empirical probe for dark energy (Albrecht et al. 2006;
Peacock et al. 2006), provided systematic effects can be con-
trolled to a degree such that they are smaller than the statisti-
cal error of large weak lensing surveys (see, e.g., Mandelbaum
2018, and references therein). A powerful demonstration of this
technique was provided by the Canada-France Hawaii Telescope
Lensing Survey (CFHTLenS; see, e.g., Heymans et al. 2012,
2013; Erben et al. 2013), which revealed that the amplitude of
density fluctuations in the low-redshift Universe is smaller than
expected from the results obtained by measuring the fluctuations
of the cosmic microwave background (CMB). The current gen-
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eration of ground-based weak lensing surveys – the Kilo Degree
Survey (KiDS; e.g., Kuijken et al. 2015, 2019), the Dark Energy
Survey (DES; e.g., Sevilla-Noarbe et al. 2021; Gatti et al. 2021),
and the Hyper SuprimeCam (HSC) Survey (e.g., Aihara et al.
2018) – not only yield impressive improvements over previous
surveys in terms of survey area, spectral coverage, and/or depth,
but they have also led to a substantial development of analysis
tools regarding, for example, shear estimates and the determina-
tion of the redshift distribution of source galaxies. They have
also led to a consolidation of the tension regarding the level of
density fluctuations as measured by weak lensing and the CMB
(Heymans et al. 2021, but see also DES Collaboration et al. 2021
for less discrepant results; for a review on cosmological results
from cosmic shear, see Kilbinger 2018).

One of the tests for possible systematics in shear measure-
ments consists in the measurements of B-mode shear (Critten-
den et al. 2002; Schneider et al. 2002). Gravitational lensing by
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the large-scale matter distribution in the Universe is expected
to yield some B-mode shear due to lens-lens coupling, how-
ever with such a small amplitude that it should remain unde-
tectable even in all-sky surveys (Hilbert et al. 2009; Krause &
Hirata 2010). The difference between shear and reduced shear
(Schneider & Seitz 1995) affects the E-mode power spectrum
(e.g., White 2005; Shapiro 2009; Deshpande et al. 2020) but to
the leading order does not yield a B-mode contribution (Schnei-
der et al. 2002). Other potential sources of B-mode shear in data
could be due to the clustering of source galaxies (Schneider et al.
2002) or the inhomogeneous depth of wide-field surveys (Vale
et al. 2004; Heydenreich et al. 2020), but their amplitude again
is expected to be below the detection threshold. The expected
level of B modes from intrinsic alignments (see, e.g., Heymans
et al. 2006; Joachimi et al. 2013; Giahi-Saravani & Schäfer 2014;
Troxel & Ishak 2015; Joachimi et al. 2015; Hilbert et al. 2017;
Blazek et al. 2019, and references therein) is quite model depen-
dent and hence uncertain. The most likely cause for any signif-
icant B modes in shear data is thus the incomplete removal of
systematic effects, such as accounting for effects of the point-
spread function. For that reason, the significant detection of B
modes in a shear survey is considered a clear sign of remain-
ing systematic effects. We note that the opposite conclusion is
not valid: the absence of B modes does not imply that the data
are systematics-free. For example, a constant multiplicative bias
would create no B modes but would affect the E modes (see also
Kitching et al. 2019 for more discussion on this issue).

The most basic second-order shear statistics that can be de-
rived from survey data are the shear two-point correlation func-
tions (2PCFs), ξ±(ϑ), since their estimates are unbiased by the
presence of gaps in the imaging data. Other second-order shear
statistics can be obtained as weighted integrals over ξ±(ϑ). Of
those, measures that can separate E-mode shear from B-mode
shear are of particular interest. One such measure is the aper-
ture mass dispersion, which was introduced in Schneider et al.
(1998) and shown in Schneider et al. (2002) to be obtainable in
terms of the shear correlation functions. However, as pointed out
by Kilbinger et al. (2006), the calculation of the aperture mass
dispersion requires knowledge of the shear correlation function
down to zero separation, which cannot be measured, for exam-
ple due to the overlapping images of galaxy pairs. The unavail-
ability of ξ± at very small angular scales then yields a bias in
the aperture mass statistics and a corresponding mixing of E
and B modes. This issue was addressed in Schneider & Kil-
binger (2007), where the general conditions for E and B mode-
separating second-order shear measures that can be obtained
from ξ±(ϑ) on a finite interval of 0 < ϑmin ≤ ϑ ≤ ϑmax < ∞
were derived.

Based on this result, a Complete Orthogonal Set of E and B
mode-separating Integrals (COSEBIs) were defined in Schneider
et al. (2010; hereafter SEK). The COSEBIs contain the complete
E and B mode-separable second-order shear information obtain-
able from shear correlation functions on a finite angular inter-
val (see also Becker 2013; Becker & Rozo 2016 for a different
approach to decomposing the shear correlation functions into E-
mode, B-mode, and ambiguous mode statistics). Asgari et al.
(2012) studied the performance of COSEBIs on tomographic
cosmic shear data, where shear auto- and cross-correlation func-
tions are measured from several source galaxy populations with
different redshift distributions. In these papers it was demon-
strated that the first few COSEBI components contain essentially
all the cosmological information, and hence they serve as an effi-
cient data compression method. Furthermore, Asgari & Schnei-
der (2015) developed data compression further by defining com-

pressed COSEBIs (CCOSEBIs); they showed that even for to-
mographic cosmic shear data the cosmologically relevant infor-
mation is contained in fewer than ∼ n2

p/2 modes, where np is the
number of cosmological parameters. In addition, COSEBIs are
less sensitive to density fluctuations on small spatial scales than
the shear correlation functions, for a given ϑmin, and are there-
fore less affected by ill-understood baryonic effects in structure
evolution (Asgari et al. 2020).

In Asgari et al. (2017), COSEBIs and CCOSEBIs were ap-
plied to the CFHTLenS cosmic shear data to probe for the pres-
ence of B-mode contributions (see also Asgari et al. 2019; As-
gari & Heymans 2019, for applications to other cosmic shear
data). Using COSEBIs, Giblin et al. (2021) and Gatti et al.
(2021) showed that the most recent data sets from the KiDS sur-
vey (KiDS-1000; see Kuijken et al. 2019) and DES (DES-Y3;
see Sevilla-Noarbe et al. 2021) show no indications of significant
B-mode shear. In addition, Asgari et al. (2021) applied three dif-
ferent second-order shear statistics to the KiDS-1000 shear data
(Giblin et al. 2021), all of which yielded consistent results.

Whereas COSEBIs are extremely useful for extracting all E
and B mode-separable second-order information from a cosmic
shear survey, the interpretation of individual COSEBI modes is
less straightforward. Since they are not localized, neither in an-
gular space nor in Fourier space, a significant detection of B
modes with COSEBIs would be difficult to trace back to a given
angular scale (see Asgari et al. 2019, for a thorough discussion
on this point) and thus to a possible origin of these B modes.
A different approach for separating modes consists in consider-
ing pure-mode shear correlation functions, ξ±E/B(ϑ), which were
first defined in Crittenden et al. (2002); hereafter, we refer to
them as CNPT correlation functions, which corresponds to the
initials of the authors of that paper. However, estimating these
CNPT correlation functions requires the knowledge of the ξ±(ϑ)
for all angular scales. Due to the lack of such measurements,
previous applications of these CNPT correlation functions (see,
e.g., Hildebrandt et al. 2017 and references therein) required an
extrapolation of ξ± to the smallest and largest angular scales, or
supplementing their measured values by theoretical predictions.

In this paper we derive a new set of pure-mode correlation
functions that we designate as ξE/B

± (ϑ), which can be calculated
from the ξ± on a finite angular interval. These pure-mode corre-
lation functions can thus be obtained directly from the data with-
out extrapolation or modeling, and can hence be used to study
the angular dependence of any possible B-mode shear.

In order to derive ξE/B
± (ϑ), we reconsider COSEBIs, defin-

ing them with a slightly different orthogonality relation relative
to that used in SEK. In order to distinguish between these two
conventions, we denote the ones introduced by SEK as “SEK
COSEBIs” and the newly defined ones as “dimensionless COSE-
BIs” whenever the difference is relevant. We show in Sect. 2
that for a given interval, ϑmin ≤ ϑ ≤ ϑmax, the shear correlation
functions can be decomposed into E modes, B modes, and am-
biguous modes (see also Bunn 2011, for a mode decomposition
of CMB polarization data). The ambiguous modes are contribu-
tions to the shear correlation functions that cannot be uniquely
ascribed to either E or B modes on a finite separation interval but
can be caused by either of them. In Appendix A we consider in
detail these ambiguous modes, both in terms of the shear field
and in terms of shear correlation functions and their relation to
the E- and B-mode power spectra. For example, we show sev-
eral examples of ambiguous shear correlation functions that can
be obtained from an E-mode power spectrum, a B-mode power
spectrum, or a mixture thereof. We note that ambiguous modes
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in the shear correlation functions do occur because of the finite
interval over which they are measured. Indeed, formally setting
ϑmin = 0 and ϑmax = ∞, the shear correlation functions can be
uniquely decomposed into E and B modes without ambiguous
modes.

In Sect. 3 we define the pure-mode correlation functions and
derive closed-form expressions for them in terms of the ξ±(ϑ),
discuss their general properties, show that the COSEBIs can be
obtained in term of the ξE/B

± , compare them to the CNPT cor-
relation functions derived by Crittenden et al. (2002), to which
they converge in the limit of ϑmin → 0 and ϑmax → ∞, and obtain
their relation to the E- and B-mode shear power spectra. We then
measure both the new dimensionless COSEBIs and the pure-
mode correlation functions for the tomographic data of ∼ 1000
square degrees of the Kilo Degree Survey (KiDS-1000; see As-
gari et al. 2021; Heymans et al. 2021) and compare them with
the predictions from the best fitting Λ cold dark matter (ΛCDM)
cosmology results of Asgari et al. (2021). We also compare the
performance of ξE/B

± with the CNPT correlation functions us-
ing systematic-induced Scinet LIght Cone Simulations (SLICS;
Harnois-Déraps et al. 2018) following the methodology in As-
gari et al. (2019).

We briefly summarize and discuss our main results in Sect. 5.
Furthermore, in Appendix B we present closed-form expressions
for the new set of polynomial weight functions for the COSE-
BIs that satisfy their modified orthonormality relation that we
employ in this paper, and we provide an explicit code for calcu-
lating weight functions that are polynomial in lnϑ, yielding the
logarithmic COSEBIs. We find that the correlation matrix of the
new COSEBIs has considerably smaller off-diagonal elements,
implying that the new set of COSEBIs yields less mutual depen-
dence than the previous one. Appendix C explicitly shows that
the COSEBIs related to a subinterval of ϑmin and ϑmax can be
obtained from those on the full interval, and that the ambiguous
modes within the subinterval do not depend only on those of the
full interval, but also on its COSEBIs, implying that pure-mode
information gets transferred to ambiguous modes and is thus lost
when considering subintervals.

2. Decomposition into E and B modes

In this paper we are mainly concerned with second-order shear
statistics, expressed in terms of shear correlation functions. We
assume throughout that these correlation functions are due to a
statistically homogeneous and isotropic shear field, so that the
correlation functions depend only on the modulus of the separa-
tion vector. As we will show below, in this case the shear cor-
relation functions can be uniquely decomposed into E-, B-, and
ambiguous modes, irrespective of whether the observed shear is
physical (e.g., obtained from a potential) or partly caused by a
systematic effect. In Appendix A we discuss the distinction be-
tween these three modes of a shear field at the first-order level.

2.1. General mode decomposition

Throughout this paper we use the flat-sky approximation; for the
largest angular scale considered in practical examples later on
(5 degrees), this is expected to be very accurate. We denote by
ξ±(ϑ) the 2PCFs of shear as a function of angular separation ϑ.
It was shown in Schneider & Kilbinger (2007) that an E- and
B-mode separation of second-order shear statistics is obtained

from the 2PCFs by

EE =
1
2

∫ ∞

0
dϑ ϑ

[
T+(ϑ) ξ+(ϑ) + T−(ϑ) ξ−(ϑ)

]
,

BB =
1
2

∫ ∞

0
dϑ ϑ

[
T+(ϑ) ξ+(ϑ) − T−(ϑ) ξ−(ϑ)

]
, (1)

provided the two weight functions T± are related through∫ ∞

0
dϑϑ J0(`ϑ) T+(ϑ) =

∫ ∞

0
dϑϑ J4(`ϑ) T−(ϑ) (2)

or, equivalently,

T+(ϑ) = T−(ϑ) +

∫ ∞

ϑ

dθ θ T−(θ)
(

4
θ2 −

12ϑ2

θ4

)
,

T−(ϑ) = T+(ϑ) +

∫ ϑ

0
dθ θ T+(θ)

(
4
ϑ2 −

12θ2

ϑ4

)
, (3)

where Ji are Bessel functions of the first kind. Then, EE and BB
contain only E and B modes, respectively. Furthermore, Schnei-
der & Kilbinger (2007) showed that an E- and B-mode separa-
tion can be obtained from the shear 2PCFs on a finite interval
ϑmin ≤ ϑ ≤ ϑmax, provided that the function T+ vanishes outside
this interval and satisfies the two conditions∫ ϑmax

ϑmin

dϑ ϑT+(ϑ) = 0 =

∫ ϑmax

ϑmin

dϑ ϑ3 T+(ϑ) . (4)

In this case, the function T−(ϑ) as calculated from Eq. (3) also
has finite support on the interval ϑmin ≤ ϑ ≤ ϑmax and in addition
satisfies the relations∫ ϑmax

ϑmin

dϑ
ϑ

T−(ϑ) = 0 =

∫ ϑmax

ϑmin

dϑ
ϑ3 T−(ϑ) . (5)

The physical reason for conditions (4), as explained in SEK, is
that a constant shear, and a shear field linear in angular position,
cannot be uniquely ascribed to either E or B modes; these am-
biguous modes are therefore filtered out. In Appendix A we also
provide a physical interpretation of conditions (5). Furthermore,
we note that in the hypothetical case ϑmin = 0, conditions (5) no
longer hold.1

2.2. Complete sets of E and B modes on a finite interval

In SEK we constructed two complete orthogonal sets of func-
tions T+n(ϑ) on the interval ϑmin ≤ ϑ ≤ ϑmax, subject to the
constraints (4), one of them being polynomials in ϑ, the other
being polynomials in lnϑ. Here, we consider again complete
sets of orthogonal functions on the same interval, however with
a slightly different metric. Specifically, we consider a set of func-
tions T+n(ϑ), n ≥ 1, that satisfy the orthonormality relation∫ ϑmax

ϑmin

dϑ ϑT+m(ϑ) T+n(ϑ) =
B
ϑ̄2

δmn (6)

for all m, n ≥ 1, and where each function T+n(ϑ) satisfies condi-
tions (4). Here,

ϑ̄ =
ϑmin + ϑmax

2
, B =

ϑmax − ϑmin

ϑmax + ϑmin
(7)

1 A specific example for EE and BB are the aperture dispersions,
M2

ap(θ) and M2
⊥(θ), considered in Schneider et al. (2002); for them,

ϑmin = 0 and ϑmax = 2θ. In that case, the corresponding function T−(ϑ)
is nonnegative, and hence does not obey conditions (5) – see Fig. 1 in
Schneider et al. (2002).
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are the mean angular scale within the interval and the relative
width, respectively. We note that ϑmin = (1 − B)ϑ̄, ϑmax = (1 +
B)ϑ̄. Explicit constructions of such function sets will be given
in Appendix B, where we choose T+n(ϑ) to be a polynomial in
either ϑ or in lnϑ, of order n + 1.

For each of the T+n(ϑ), we define the corresponding function
T−n(ϑ) according to Eq. (3). Interestingly, the T−n also form an
orthogonal set of functions on the interval ϑmin ≤ ϑ ≤ ϑmax, as
we will demonstrate next. For this, we make use of Eq. (2) and
the orthogonality relation of Bessel functions to write

T−n(ϑ) =

∫ ∞

0
d` ` J4(`ϑ)

∫ ϑmax

ϑmin

dθ θ J0(`θ) T+n(θ) . (8)

Carrying out the ` integration leads to the second of Eqs. (3),
but for the present purpose, it is more convenient to keep this
presentation. We now show a convenient property.

Lemma: We consider two functions F+(ϑ) and F′+(ϑ), de-
fined for ϑ ≥ 0, and let F−(ϑ) and F′−(ϑ) be the functions ob-
tained from them by applying the transformation

F−(ϑ) =

∫ ∞

0
d` ` J4(`ϑ)

∫ ∞

0
dθ θ J0(`θ) F+(θ) . (9)

Then,∫ ∞

0
dϑ ϑ F−(ϑ) F′−(ϑ) =

∫ ∞

0
dϑ ϑ F+(ϑ) F′+(ϑ) . (10)

The proof of the Lemma is rather straightforward: using trans-
formation (9), we obtain∫ ∞

0
dϑ ϑ F−(ϑ) F′−(ϑ) =

∫ ∞

0
dϑ ϑ

∫ ∞

0
d` ` J4(`ϑ)

×

∫ ∞

0
dθ θ J0(`θ) F+(θ)

∫ ∞

0
d`′ `′ J4(`′ϑ) (11)

×

∫ ∞

0
dθ′ θ′ J0(`′θ′) F′+(θ′) .

We now carry out the ϑ integration using∫ ∞

0
dϑ ϑ Jn(`ϑ) Jn(`′ϑ) =

1
`
δD(` − `′) , (12)

after which the `′ integration becomes trivial, yielding∫ ∞

0
dϑ ϑ F−(ϑ) F′−(ϑ) =

∫ ∞

0
d` `

∫ ϑmax

ϑmin

dθ θ J0(`θ) F+(θ)

×

∫ ∞

0
dθ′ θ′ J0(`θ′) F′+(θ′) =

∫ ∞

0
dθ θ F+(θ) F′+(θ) , (13)

applying Eq. (12) again. This completes the proof.
We next apply the Lemma by letting F+ = T+m, F′+ = T+n;

noting that the T+n are zero outside the interval ϑmin ≤ ϑ ≤
ϑmax, we see from Eqs. (8) and (9) that F− = T−m, F′− = T−n.
Therefore,∫ ϑmax

ϑmin

dϑ ϑT−m(ϑ) T−n(ϑ) =

∫ ϑmax

ϑmin

dϑ ϑT+m(ϑ) T+n(ϑ) =
B
ϑ̄2

δmn .

(14)

Thus, the set of T−n(ϑ) functions obeys the same orthogonality
relations as the T+n.

In order to obtain a complete set of functions on the interval
ϑmin ≤ ϑ ≤ ϑmax irrespective of conditions (4), we need to aug-
ment the set of the T+n by two more functions that do not obey
conditions (4), which we call T+a(ϑ) and T+b(ϑ). We choose
them as

T+a(ϑ) =
1
√

2ϑ̄2
; T+b(ϑ) =

√
3

2
√

2Bϑ̄2

(ϑ
ϑ̄

)2

−
(
1 + B2

) . (15)

Both functions are normalized according to Eq. (6), and they are
mutually orthogonal. Furthermore, both of them are orthogonal
to all T+n(ϑ) due to conditions (4). Thus, the set of of functions
T+µ(ϑ), µ = a, b, 1, 2, . . . , form a complete orthonormal set of
functions on the interval ϑmin ≤ ϑ ≤ ϑmax.2

We cannot use these two functions in Eq. (3) to obtain corre-
sponding functions T−a,b, since those would not have finite sup-
port. Instead, we choose the two additional functions

T−a(ϑ) =
1 − B2

√
2ϑ2

,

T−b(ϑ) =

√
3
8

1 − B2

B

[
1 + B2

ϑ2 −
(1 − B2)2ϑ̄2

ϑ4

]
, (16)

which are orthogonal to all T−n, according to Eq. (5), and obey
the orthonormality relation (14). Thus, we now have two com-
plete orthonormal sets of functions on the interval ϑmin ≤ ϑ ≤
ϑmax, the T+µ, and the T−µ.

We now define the quantities Eµ and Bµ through

Eµ =
1
2

∫ ϑmax

ϑmin

dϑ ϑ
[
T+µ(ϑ) ξ+(ϑ) + T−µ(ϑ) ξ−(ϑ)

]
,

Bµ =
1
2

∫ ϑmax

ϑmin

dϑ ϑ
[
T+µ(ϑ) ξ+(ϑ) − T−µ(ϑ) ξ−(ϑ)

]
. (17)

For µ = n, with n ≥ 1, these form the COSEBIs for the given set
of functions T±n, such that En depends only on E-mode shear,
and Bn contains only B-mode shear. For µ = a, b, Eµ and Bµ
do not have an analogous interpretation. We note that the or-
thonormality condition for the Tn± used in this paper makes the
COSEBIs dimensionless, in contrast to those defined in SEK:
From Eq. (6), we see that dimension of the T+n is (angle)−2, and
since the ξ± are dimensionless, we see from Eq. (1) that the EE,
BB, and thus the Eµ and Bµ are dimensionless.

Since the T+µ and the T−µ both form a complete orthonormal
set of functions, we can write the shear correlation functions on
the interval ϑmin ≤ ϑ ≤ ϑmax as a superposition,

ξ±(ϑ) =
ϑ̄2

B

∑
µ

τ±µ T±µ(ϑ) . (18)

Taking the sum of Eqs. (17), we find

Eµ + Bµ =

∫ ϑmax

ϑmin

dϑ ϑT+µ(ϑ) ξ+(ϑ)

=
ϑ̄2

B

∑
ν

τ+ν

∫ ϑmax

ϑmin

dϑ ϑT+µ(ϑ) T+ν(ϑ) = τ+µ , (19)

2 From Eqs. (4) and (6) it is obvious that T+a(ϑ) and T+b(ϑ) cannot be
represented as a linear combination of the T+n(ϑ); hence, the T+n(ϑ) do
not form a complete set of functions.
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where we inserted the expansion (18) and made use of the or-
thogonality relation (6). From the difference of Eqs. (17), we
obtain in complete analogy

Eµ − Bµ =

∫ ϑmax

ϑmin

dϑ ϑT−µ(ϑ) ξ−(ϑ) = τ−µ , (20)

so that

Eµ =
τ+µ + τ−µ

2
; Bµ =

τ+µ − τ−µ

2
. (21)

3. Pure-mode correlation functions

In this section we consider the pure-mode correlation functions;
more specifically, we show that the shear correlation functions
can be decomposed as

ξ+(ϑ) = ξE
+(ϑ) + ξB

+ (ϑ) + ξamb
+ (ϑ) ,

ξ−(ϑ) = ξE
−(ϑ) − ξB

− (ϑ) + ξamb
− (ϑ) , (22)

where the pure E- and B-mode correlation functions are defined
in terms of the COSEBIs,

ξE
+(ϑ) :=

ϑ̄2

B

∞∑
n=1

En T+n(ϑ) ; ξB
+ (ϑ) :=

ϑ̄2

B

∞∑
n=1

Bn T+n(ϑ) , (23)

ξE
−(ϑ) :=

ϑ̄2

B

∞∑
n=1

En T−n(ϑ) ; ξB
− (ϑ) :=

ϑ̄2

B

∞∑
n=1

Bn T−n(ϑ) , (24)

and the ξamb
± correspond to ambiguous modes,

ξamb
± (ϑ) =

ϑ̄2

B

∑
µ=a,b

τ±µ T±µ(ϑ) . (25)

In Sect. 3.1 we consider general properties of these pure-mode
correlation functions. We express these as integrals over the ξ±
in Sect. 3.2; hence, in order to calculate the pure-mode correla-
tion functions, one does not need to calculate the COSEBIs as
intermediate step. Readers less interested in the derivation of the
results can find the final expressions for the pure-mode corre-
lation functions in Eqs. (42, 43, 55, 56). In Sect. 3.3, we com-
pare our pure-mode correlation functions to the CNPT correla-
tion functions that were defined previously in Crittenden et al.
(2002) and Schneider et al. (2002), but not confined to a finite
separation interval. Some consistency checks for the pure-mode
correlation functions are described in Sect. 3.4, and their relation
to the power spectra is derived in Sect. 3.5.

3.1. General properties

According to these definitions and constraints (4) and (5) that the
basis functions T±n have to satisfy, we find that∫ ϑmax

ϑmin

dϑ ϑ ξE,B
+ (ϑ) = 0 =

∫ ϑmax

ϑmin

dϑ ϑ3 ξE,B
+ (ϑ) , (26)

∫ ϑmax

ϑmin

dϑ
ϑ
ξE,B
− (ϑ) = 0 =

∫ ϑmax

ϑmin

dϑ
ϑ3 ξ

E,B
+ (ϑ) . (27)

These relations show that the pure-mode correlation functions
need to have (at least) two roots in the interval ϑmin ≤ ϑ ≤ ϑmax,
and hence their functional form can be expected to differ sub-
stantially from ξ±(ϑ). An example for this was shown in Fig. 7

of SEK, where an equivalent definition of the pure-mode cor-
relation functions was applied. Furthermore, since T−n(ϑmin) =
T+n(ϑmin) and T−n(ϑmax) = T+n(ϑmax), we find that

ξE/B
+ (ϑmin) = ξE/B

− (ϑmin) , ξE/B
+ (ϑmax) = ξE/B

− (ϑmax) . (28)

As expected, the COSEBIs can be expressed in terms of the
pure-mode correlation functions, as we find from Eqs. (23, 24)
by multiplying them with ϑT±m(ϑ) and integrating over ϑ, mak-
ing use of the orthogonality relation (14):∫ ϑmax

ϑmin

dϑ ϑ ξE
+(ϑ) T+m(ϑ) = Em =

∫ ϑmax

ϑmin

dϑ ϑ ξE
−(ϑ) T−m(ϑ) ,∫ ϑmax

ϑmin

dϑ ϑ ξB
+ (ϑ) T+m(ϑ) = Bm =

∫ ϑmax

ϑmin

dϑ ϑ ξB
− (ϑ) T−m(ϑ) .

(29)

The foregoing equations allow us to find relations between
ξE/B

+ (ϑ) and ξE/B
− (ϑ). We start with a consistency relation, by

using the definition (23) and replacing En or Bn by the first ex-
pression in (29), which yields

ξE/B
+ (ϑ) =

ϑ̄2

B

∞∑
n=1

T+n(ϑ)
∫

dθ θ ξE/B
+ (θ) T+n(θ)

=
ϑ̄2

B

∑
µ

T+µ(ϑ)
∫

dθ θ ξE/B
+ (θ) T+µ(θ) = ξE/B

+ (ϑ) , (30)

where in the second step we made use of the fact that ξE/B
+ is

orthogonal to T+a and T+b, so that we could extend the sum over
all µ = a, b, 1, 2, . . . . In the final step, we made use of the com-
pleteness of the T+µ, which implies

ϑ̄2

B

∑
µ

T+µ(ϑ) T+µ(θ) =
1
θ
δD(ϑ − θ) . (31)

Next we derive a relation between ξE/B
+ and ξE/B

− , again using
Eqs. (23) and (29),

ξE/B
+ (ϑ) =

ϑ̄2

B

∞∑
n=1

T+n(ϑ)
∫

dθ θ ξE/B
− (θ) T−n(θ) . (32)

We consider the sum

∞∑
n=1

T+n(ϑ) T−n(θ)

=

∞∑
n=1

T+n(ϑ)
[
T+n(θ) +

∫ θ

ϑmin

dϕ ϕT+n(ϕ)
(

4
θ2 −

12ϕ2

θ4

)]
=

∑
µ

T+µ(ϑ)
[
T+µ(θ) +

∫ θ

ϑmin

dϕ ϕT+µ(ϕ)
(

4
θ2 −

12ϕ2

θ4

)]

−
∑
µ=a,b

T+µ(ϑ)
[
T+µ(θ) +

∫ θ

ϑmin

dϕ ϕT+µ(ϕ)
(

4
θ2 −

12ϕ2

θ4

)]
.

The sum over all µ can be carried out using the completeness
relation (31). For the sum over µ = a, b, we can calculate the
term in the bracket, to find that for µ = a and µ = b, the result is
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of the form a/θ2 + b/θ4, and hence can be expressed in terms of
the T−a,b(θ). Thus, we find that

ϑ̄2

B

∞∑
n=1

T+n(ϑ) T−n(θ)

=
δD(ϑ − θ)

ϑ
+ H(θ − ϑ)

(
4
θ2 −

12ϑ2

θ4

)
(33)

− Xa(ϑ)T−a(θ) − Xb(ϑ)T−b(θ) ,

where the Xa,b(ϑ) are quadratic functions of ϑwhose actual form
is of no relevance here. Inserting this result into Eq. (32), and
making use of the fact that ξE/B

− is orthogonal to T−a and T−b, we
finally find

ξE/B
+ (ϑ) = ξE/B

− (ϑ) +

∫ ϑmax

ϑ

dθ θ ξE/B
− (θ)

(
4
θ2 −

12ϑ2

θ4

)
. (34)

Thus, we obtain a relation between ξE/B
+ and ξE/B

− that is very
similar to the one between ξ+ and ξ− in the absence of B modes,

ξ+(ϑ) = ξ−(ϑ) +

∫ ∞

ϑ

dθ θ ξ−(θ)
(

4
θ2 −

12ϑ2

θ4

)
, (35)

except that the integral only extends to ϑmax. We can see from
Eq. (34) that conditions (28) are satisfied; for ϑ = ϑmax this is
trivial, and for ϑ = ϑmin, it follows from the functional form of
the integrand and the orthogonality of ξE/B

− to the T−a,b.
Using analogous steps, one can derive the inverse of the re-

lation,

ξE/B
− (ϑ) =

ϑ̄2

B

∞∑
n=1

En T−n(ϑ)

= ξE/B
+ (ϑ) +

∫ ϑ

ϑmin

dθ θ ξE/B
+ (θ)

(
4
ϑ2 −

12θ2

ϑ4

)
, (36)

again in close analogy to a corresponding relation between ξ+

and ξ− in the absence of B modes.
We would like to point out that the pure-mode correlation

functions ξE/B
+ (ϑ), ξE/B

− (ϑ), and the set of COSEBIs En and Bn,
respectively, contain exactly the same information, as Eqs. (34,
36, 23, 24) show that one of these quantities can be derived from
any of the other two. In practice, this exact equivalence will
apply only approximately, due to the finite number of COSEBI
modes and the finite binning of the correlation functions; we
demonstrate this issue in Sect. 4.

3.2. Pure-mode correlation functions from ξ±

Obviously, we can calculate these pure-mode correlation func-
tions from the set of the En, Bn that can be calculated from
Eqs. (17). However, as we show here, they can also be obtained
without first calculating the (infinite) set of COSEBIs. For that,
we consider

ξE
+(ϑ) + ξB

+ (ϑ) =
ϑ̄2

B

∑
µ

τ+µT+µ(ϑ) − τ+aT+a(ϑ) − τ+bT+b(ϑ)


= ξ+(ϑ) − [τ+aU+a(ϑ) + τ+bU+b(ϑ)] , (37)

where we made use of Eq. (18) and defined for µ = a, b

U+µ(ϑ) =
ϑ̄2

B
T+µ(ϑ) . (38)

Thus, in order to calculate this sum, we only need the two coef-
ficients τ+a,b that can be calculated from ξ+ using Eq. (19). Sim-
ilarly,

ξE
+(ϑ) − ξB

+ (ϑ) =
ϑ̄2

B

∞∑
n=1

τ−nT+n(ϑ)

=
ϑ̄2

B

∞∑
n=1

τ−n

[
T−n(ϑ) +

∫ ϑmax

ϑ

dθ
θ

T−n(θ)
(
4 −

12ϑ2

θ2

)]
= ξ−(ϑ) +

∫ ϑmax

ϑ

dθ
θ
ξ−(θ)

(
4 −

12ϑ2

θ2

)
(39)

−
ϑ̄2

B

∑
µ=a,b

τ−µ

[
T−µ(ϑ) +

∫ ϑmax

ϑ

dθ
θ

T−µ(θ)
(
4 −

12ϑ2

θ2

)]
,

where we used the relation (3) between the T+n and T−n and
the decomposition (18). The expression in the final bracket of
Eq. (39) can be calculated, using Eq. (16). For both µ = a, b, the
resulting expressions are of the form a + bϑ2, and thus can be
written in terms of the U+µ. We then find

ξE
+(ϑ) − ξB

+ (ϑ) = ξ−(ϑ) +

∫ ϑmax

ϑ

dθ
θ
ξ−(θ)

(
4 −

12ϑ2

θ2

)
−

∑
µ=a,b

τ−µ U−µ(ϑ) , (40)

where

U−a(ϑ) =
1 − B

√
2B(1 + B)3

3 (
ϑ

ϑ̄

)2

− 2(1 + B)2

 ,
U−b(ϑ) =

√
3

√
8B2

 (1 − B)(1 + 4B + B2)
(1 + B)3

(
ϑ

ϑ̄

)2

− (1 − B2)

 . (41)

We then finally obtain for the pure mode correlation functions

ξE
+(ϑ) =

1
2

[
ξ+(ϑ) + ξ−(ϑ) +

∫ ϑmax

ϑ

dθ
θ
ξ−(θ)

(
4 −

12ϑ2

θ2

)]
−

1
2

[S +(ϑ) + S −(ϑ)] , (42)

ξB
+ (ϑ) =

1
2

[
ξ+(ϑ) − ξ−(ϑ) −

∫ ϑmax

ϑ

dθ
θ
ξ−(θ)

(
4 −

12ϑ2

θ2

)]
−

1
2

[S +(ϑ) − S −(ϑ)] . (43)

Here, we have defined

S +(ϑ) ≡
∑
µ=a,b

τ+µU+µ(ϑ) =

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

ξ+(θ) H+(ϑ, θ) , (44)

S −(ϑ) ≡
∑
µ=a,b

τ−µU−µ(ϑ) =

∫ ϑmax

ϑmin

dθ
θ
ξ−(θ) H−(ϑ, θ) , (45)

where

H+(ϑ, θ) = ϑ̄2
∑
µ=a,b

T+µ(θ) U+µ(ϑ) (46)

=
1

8B3

4B2 + 3

(ϑ
ϑ̄

)2

− 1 − B2

 [( θ
ϑ̄

)2

− 1 − B2
] ,
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Table 1. Fiducial cosmological parameters.

S 8 Ωm Ωb h ns AIA Abary

0.759 0.246 0.015 0.767 0.901 0.264 2.859

Notes. We employ a flat ΛCDM model with parameters fitted to the
KiDS-1000 cosmic shear data (Asgari et al. 2021). The structure growth
parameter, S 8 = σ8(Ωm/0.3)0.5, and the amplitude of the intrinsic align-
ments of galaxies, AIA, are the only two parameters that KiDS-1000
cosmic shear data constrain. Ωm is the total matter density parame-
ter, and Ωb represents the density parameter for baryonic matter. The
spectral index of the primordial power spectrum is denoted as ns, while
h represents the dimensionless Hubble parameter. We allow for bary-
onic feedback through Abary, which is equal to 3.13 for a dark-matter-
only scenario. Additionally, the sum of the neutrino masses is fixed to
0.06 eV.

H−(ϑ, θ) = θ2
∑
µ=a,b

T−µ(θ) U−µ(ϑ)

=
(1 − B)2

8B3

{
3(1 − B)2

(1 + B)4 − (1 + 4B + B2)
(
ϑ

ϑ̄

)2 ( θ
ϑ̄

)−2

+

3(1 + B)2
(
ϑ

ϑ̄

)2

−
(
3 + 6B + 14B2 + 6B3 + 3B4

) } , (47)

and where we made use of Eq. (19) and the forgoing expressions
for the U±µ. We note that the functions S ±(ϑ) are of the form
a + bϑ2, and thus correspond to a shear correlation caused by
ambiguous modes. Indeed, by adding the two Eqs. (42) and (43),
we obtain the first of Eq. (22), with

ξamb
+ (ϑ) = S +(ϑ) . (48)

It is important to realize that the final expressions for S ±(ϑ) are
independent of the specific choice of the functions T±,a,b. It is
easy to see that any “rotation” in the two-dimensional subspace
of functions that do not obey conditions (4) or (5), respectively,
leaves the forgoing expressions invariant.

We plot an example for the decomposition of the shear cor-
relation function ξ+ into E modes and ambiguous modes in the
upper panel of Fig. 1. For separations close to ϑmin, ξE

+(ϑ) is
close to ξ+(ϑ); however, for larger values of ϑ, these two func-
tions are markedly different, due to the increasing amplitude of
the ambiguous modes. As expected, ξE

+(ϑ) has two roots in the
interval considered, whereas ξ+(ϑ) stays positive.

At first sight, one might wonder that the ambiguous correla-
tion function has a large amplitude. But what should be kept in
mind is that the information of this function is contained solely in
two numbers. In particular, as was shown in Asgari et al. (2012),
they contain little cosmological information even if assumed to
be solely due to E-mode shear.

Next, we turn to the “−” pure mode correlation functions.
Using in turn Eqs. (24), (18), (3), and (44), we find

ξE
−(ϑ) + ξB

− (ϑ) =
ϑ̄2

B

∞∑
n=1

τ+nT−n(ϑ)

=
ϑ̄2

B

∞∑
n=1

τ+n

[
T+n(ϑ) +

∫ ϑ

ϑmin

dθ θ
ϑ2 T+n(θ)

(
4 −

12θ2

ϑ2

)]
= ξ+(ϑ) − S +(ϑ) +

∫ ϑ

ϑmin

dθ θ
ϑ2

[
ξ+(θ) − S +(θ)

] (
4 −

12θ2

ϑ2

)
= ξ+(ϑ) +

∫ ϑ

ϑmin

dθ θ
ϑ2 ξ+(θ)

(
4 −

12θ2

ϑ2

)
− V+(ϑ) , (49)
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Fig. 1. Decomposition of the shear correlation functions ξ+(θ) (upper
panel) and ξ−(ϑ) (lower panel) into pure E modes (dashed blue curves)
and ambiguous modes (dotted magenta curves). The latter are quadratic
functions of θ and 1/θ for ξ+ and ξ−, respectively. We note that ξ+ =
ξE

++ξamb
+ due to the absence of B-mode shear assumed for this plot. Here,

we chose ϑmin = 0.′5 and ϑmax = 300′, and the correlation functions ξ±
were calculated for a standard cosmological model fitted to the KiDS-
1000 cosmic shear data (see Table 1). The source redshift distribution
corresponds to the highest tomographic bin of the KiDS-1000 data.

where we have defined the function

V+(ϑ) = S +(ϑ) +

∫ ϑ

ϑmin

dθ θ
ϑ2 S +(θ)

(
4 −

12θ2

ϑ2

)
=

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

ξ+(θ) K+(ϑ, θ) , (50)

and by using the definition (44) for S +, we obtain for the kernel
K+ the following expression:

K+(ϑ, θ) = H+(ϑ, θ) +

∫ ϑ

ϑmin

dϕ ϕ
ϑ2 H+(ϕ, θ)

(
4 −

12ϕ2

ϑ2

)
=

(1 − B)2

8B3

{
3(1 − B)2

(
ϑ

ϑ̄

)−4 [
(1 + B)4 − (1 + 4B + B2)

(
θ

ϑ̄

)2]
+

(
ϑ

ϑ̄

)−2 [
3(1 + B)2

(
θ

ϑ̄

)2

− (3 + 6B + 14B2 + 6B3 + 3B4)
] }

=

(
ϑ̄

ϑ

)2

H−(θ, ϑ) . (51)
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For the difference of the two “−” correlation functions we obtain

ξE
−(ϑ) − ξB

− (ϑ) =
ϑ̄2

B

∞∑
n=1

τ−nT−n(ϑ) = ξ−(ϑ) − V−(ϑ) , (52)

where

V−(ϑ) =
ϑ̄2

B

∑
µ=a,b

τ−µT−µ(ϑ) =

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

ξ−(θ) K−(ϑ, θ) , (53)

with the kernel function

K−(ϑ, θ) =
ϑ̄4

B

∑
µ=a,b

T−µ(ϑ)T−µ(θ)

=
ϑ̄4(1 − B2)2

Bϑ2θ2

{
1
2

+
3

8B2

1 + B2 − (1 − B2)2
(
ϑ̄

ϑ

)2
×

1 + B2 − (1 − B2)2
(
ϑ̄

θ

)2 } (54)

=
(1 − B2)2ϑ̄4

ϑ2θ2 H+

(
[1 − B2]ϑ̄2

ϑ
,

[1 − B2]ϑ̄2

θ

)
.

Therefore,

ξE
−(ϑ) =

1
2

[
ξ+(ϑ) + ξ−(ϑ) +

∫ ϑ

ϑmin

dθ θ
ϑ2 ξ+(θ)

(
4 −

12θ2

ϑ2

)]
−

1
2

[V+(ϑ) + V−(ϑ)] , (55)

ξB
− (ϑ) =

1
2

[
ξ+(ϑ) − ξ−(ϑ) +

∫ ϑ

ϑmin

dθ θ
ϑ2 ξ+(θ)

(
4 −

12θ2

ϑ2

)]
−

1
2

[V+(ϑ) − V−(ϑ)] . (56)

The functions V±(ϑ) are of the form aϑ−2 + bϑ−4, and therefore
correspond to shear correlations due to ambiguous modes. These
are subtracted from the rest of the expression to yield pure E-
and B-mode correlation functions. By subtracting Eq. (56) from
Eq. (55), we obtain the second of Eqs. (22), with

ξamb
− (ϑ) = V−(ϑ) . (57)

An example for the decomposition of ξ− into E- and ambiguous
modes is shown in the lower panel of Fig. 1. For large values
of ϑ, ξE

− differs only little from ξ−, but their difference increases
for smaller ϑ. In particular, ξE

− has two roots in the interval ϑ ∈
[ϑmin, ϑmax].

We point out that pure-mode correlation functions equiva-
lent to the foregoing ones were already defined in SEK. How-
ever, their expressions in terms of ξ± in SEK were considerably
more complicated than the present ones, and therefore, they have
not been applied to any data, as far as we know. Our choice of
the orthonormality relation, which differs from the one in SEK,
allowed us to obtain far more explicit expressions for the pure-
mode shear correlation functions, and they are easily applicable
to a set of measured ξ±, as we show in Sect. 4.

For completeness, we also note that in the case ϑmin = 0,
ξamb
− (ϑ) ≡ 0. In that case, B = 1, and thus T−a(ϑ) ≡ 0 ≡ T−b(ϑ).

3.3. Comparison with “old” pure-mode shear correlation
functions

3.3.1. General considerations

Previously, the CNPT correlation functions that were defined by
Crittenden et al. (2002) and Schneider et al. (2002) also yield a
mode separation; they are given in terms of the E- and B-mode
convergence power spectra PE,B(`) through

ξCNPT
E,B+ (ϑ) =

∫ ∞

0

d` `
2π

PE,B(`) J0(`ϑ) ,

ξCNPT
E,B− (ϑ) =

∫ ∞

0

d` `
2π

PE,B(`) J4(`ϑ) . (58)

These functions can be expressed solely in terms of the shear
correlation functions,

ξCNPT
E+ (ϑ) =

1
2

[
ξ+(ϑ) + ξ−(ϑ) +

∫ ∞

ϑ

dθ
θ
ξ−(θ)

(
4 −

12ϑ2

θ2

)]
,

ξCNPT
E− (ϑ) =

1
2

[
ξ+(ϑ) + ξ−(ϑ) +

∫ ϑ

0

dθ θ
ϑ2 ξ+(θ)

(
4 −

12θ2

ϑ2

)]
,

ξCNPT
B+ (ϑ) =

1
2

[
ξ+(ϑ) − ξ−(ϑ) −

∫ ∞

ϑ

dθ
θ
ξ−(θ)

(
4 −

12ϑ2

θ2

)]
,

(59)

ξCNPT
B− (ϑ) =

1
2

[
ξ+(ϑ) − ξ−(ϑ) +

∫ ϑ

0

dθ θ
ϑ2 ξ+(θ)

(
4 −

12θ2

ϑ2

)]
.

These can now be compared to the pure-mode correlation func-
tions on a finite interval. We see that the functional form differs
in two respects. First, the integrals over the correlation functions
ξ± only extend over the finite interval for ξE,B

± , whereas they ex-
tend to either 0 or ∞ for ξCNPT

E,B± . Second, in the ξE,B
± a term that

corresponds to the ambiguous modes is subtracted.
Another way to see the difference between the CNPT and the

pure-mode correlation functions is by noting that

ξ+(ϑ) = ξCNPT
E+ (ϑ) + ξCNPT

B+ (ϑ) ; ξ−(ϑ) = ξCNPT
E− (ϑ) − ξCNPT

B− (ϑ) ,
(60)

whereas the decomposition into the pure-mode correlation func-
tions is given by Eq. (22).

The ξCNPT
E,B± are unobservable as they require a measurement

of ξ± either down to zero separation or up to infinite separation;
neither is possible. We note that the ξCNPT

E,B± do not account for am-
biguous modes, since for an infinite field, there are no ambiguous
modes: a constant shear on an infinite field would violate the as-
sumption of statistical isotropy of the random field (whereas on
a collection of finite fields, the constant shear can have random
magnitude and orientations for each field), and a linear shear
field on an infinite field in addition would diverge (see the dis-
cussion in Appendix A). The ambiguous mode ξamb

+ is due to the
lack of information on ξ± for scales ϑ > ϑmax, whereas the ξamb

−

is rooted in the missing information from scales ϑ < ϑmin.
We can check that the pure-mode shear correlation func-

tions tend toward the CNPT correlation functions in the limit
ϑmin → 0 or ϑmax → ∞. We consider first the “+” modes and
let ϑmax → ∞, which also implies ϑ̄ → ∞ and B → 1 such that
(1 − B) = ϑmin/ϑ̄. In this limit, the function H+(ϑ, θ) tends to a
constant, and S +(ϑ)→ 0. Furthermore, H−(ϑ, θ)→ 0, due to the
factors (1 − B)2 in Eq. (47); correspondingly, S −(ϑ) → 0. Thus,
in this limit, expressions (42) and (43) for ξE/B

+ (ϑ) converge to
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Fig. 2. Measured E- and B-mode correlation functions from SLICS
simulations. Both E modes (squares) and B modes (crosses) are aver-
aged over ten shape-noise-free lines-of-sight. The pure-mode correla-
tion functions (magenta) are insensitive to information outside of the
defined angular separation range, [0.′5, 300′]. The CNPT correlation
functions (green) include ambiguous modes and information from out-
side of the measured range.

the corresponding ones in Eq. (59). For the “−” modes, we con-
sider ϑmin → 0, implying B→ 1. That means that K±(ϑ, θ)→ 0,
and thus V±(ϑ) → 0. Hence, we see that expressions (55) and
(56) for ξE/B

− (ϑ) converge to the corresponding ones in Eq. (59).

3.3.2. Comparison using SLICS

Asgari et al. (2019) modeled multiple data systematics that may
exist in cosmic shear data. They applied these systematics to
mock data from SLICS N-body simulations (see their Sect. 6
for details). Ten lines-of-sight were chosen and the measure-
ments were applied to shape-noise-free mock data. Aside from
the SEK COSEBIs they measured ξCNPT

E/B+
from these simulations.

Here we compare the pure mode correlation functions with their
measurements.

Figure 2 compares the measured signal for both the pure-
mode and the CNPT correlation functions. The results are shown
for the mean of ten lines-of-sight. Here the mock data are free
of systematic effects. The measurements are made for 50 loga-
rithmic bins in θ. As can be seen, these two sets of correlation
functions match at small separations, while they differ on larger
scales; this is because ambiguous modes are not removed from
ξCNPT

E/B+
. In addition, a theoretical prediction for ξ− is used beyond

θ = 300′, to calculate the integrals in Eq. (59). In particular, we
can see that the pure mode ξB

+ closely recovers the zero B-mode
prediction, in contrast to ξCNPT

B+
.

We chose the point-spread function leakage, as modeled in
Asgari et al. (2019, Sect. 5.1.1), as a test case. This systemat-
ics introduces both, artificial E and B modes. Figure 3 illustrates
the E- and B-mode measurements in the left and right panels,
respectively. In all cases the impact of the systematic is isolated
via subtracting the fiducial no-systematic signal shown in Fig. 2.
Again the old and new measurements match at small θ, while
they differ at larger scales. The infinite upper bounds in Eq. (59)
are more problematic here, since we do not have a theoretical
prediction for this systematic effect. Using the pure-mode corre-
lation functions allows us to isolate the scales where systematic

effects create B modes without the need for extrapolating the
measurements.

3.4. Consistency checks

Having obtained explicit expressions for the pure-mode shear
correlation functions, we now apply two checks on their consis-
tency. First, we show explicitly that they are insensitive to am-
biguous modes. Second, we show that for a pure E-mode shear
field, the B-mode correlation functions vanish identically.

3.4.1. Insensitivity of ξE,B
± to ambiguous modes

As we mentioned before, some shear modes are neither E nor
B modes, and they should not affect the ξE,B

± functions. For ex-
ample, a constant shear field, with γ(θ) = γ0 leads to a pair of
correlation functions ξ+(ϑ) = |γ0|

2, ξ−(ϑ) = 0. In this particular
case, we find from Eqs. (42, 43) that

ξE
+(ϑ) = ξB

+ (ϑ) =
1
2

[
ξ+(ϑ) − S +(ϑ)

]
, (61)

with all other terms vanishing. However, since

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

H+(ϑ, θ) = 1 , (62)

S +(ϑ) = |γ0|
2 = ξ+(ϑ) and ξE

+(ϑ) = 0 = ξB
+ (ϑ) in this case.

Hence, this ambiguous mode is filtered out. More generally, if
we consider a linear shear field, for which ξ+(ϑ) = a + b(ϑ/ϑ̄)2

and ξ−(ϑ) = 0, then again Eq. (61) holds, and since

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

[
a + b

(
θ

ϑ̄

)2]
H+(ϑ, θ) = a + b

(
ϑ

ϑ̄

)2

, (63)

we again obtain S +(ϑ) = ξ+(ϑ) and thus ξE
+(ϑ) = 0 = ξB

+ (ϑ).

3.4.2. ξB
± ≡ 0 for pure E-mode shear

As an important consistency check of the foregoing discussion,
we now want to show that the B-mode correlation functions
ξB
± identically vanish if the shear field does not contain any B

modes. In this case, the two correlation functions ξ± are related
through

ξ+(θ) = ξ−(θ) +

∫ ∞

θ

dϕ
ϕ
ξ−(ϕ)

(
4 −

12θ2

ϕ2

)
,

ξ−(θ) = ξ+(θ) +

∫ θ

0

dϕ ϕ
θ2 ξ+(ϕ)

(
4 −

12ϕ2

θ2

)
. (64)

Hence, in the absence of B modes, Eq. (43) reduces to

2ξB
+ (ϑ) =

∫ ∞

ϑmax

dθ
θ
ξ−(θ)

(
4 −

12ϑ2

θ2

)
− S +(ϑ) + S −(ϑ) . (65)
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Fig. 3. Comparison between the CNPT and pure-mode correlation functions on systematic-induced mock data, averaged over ten shape-noise-free
lines-of-sight. The point-spread function leakage as modeled by Asgari et al. (2019) is used here. The fiducial no-systematic signal is subtracted
from the systematic-induced ones. All measurements are done for 50 logarithmic bins between 0.5 and 300 arcminutes.

In order to show that this vanishes, we first consider the term S +

and rewrite it with the help of Eq. (64),

S +(ϑ) =

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

ξ+(θ) H+(ϑ, θ)

=

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

H+(ϑ, θ)
[
ξ−(θ) +

∫ ϑmax

θ

dϕ
ϕ
ξ−(ϕ)

(
4 −

12θ2

ϕ2

)
+

∫ ∞

ϑmax

dϕ
ϕ
ξ−(ϕ)

(
4 −

12θ2

ϕ2

) ]
=

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

H+(ϑ, θ) ξ−(θ) (66)

+

∫ ϑmax

ϑmin

dϕ
ϕ
ξ−(ϕ)

∫ ϕ

ϑmin

dθ θ
ϑ̄2

H+(ϑ, θ)
(
4 −

12θ2

ϕ2

)
+

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

H+(ϑ, θ)
∫ ∞

ϑmax

dϕ
ϕ
ξ−(ϕ)

(
4 −

12θ2

ϕ2

)
,

where the function H+(ϑ, θ) is given by Eq. (46), and in the sec-
ond step we have changed the order of integration, subject to the
constraint ϑmin ≤ θ ≤ ϕ ≤ ϑmax. Thus, we have rewritten S +

solely in terms of ξ−, as are the other terms in Eq. (65). One
finds that∫ ϑmax

ϑmin

dθ θ
ϑ̄2

H+(ϑ, θ)
(
4 −

12θ2

ϕ2

)
= 4 −

12ϑ2

ϕ2 , (67)

which shows that the final term in Eq. (66) cancels the first term
on the r.h.s. of Eq. (65). Hence, ξB

+ does not have any contribu-
tions of ξ− from outside the considered interval. The remaining
terms are

2ξB
+ (ϑ) =

∫ ϑmax

ϑmin

dθ
θ
ξ−(θ)

[ (
θ

ϑ̄

)2

H+(ϑ, θ)

+

∫ θ

ϑmin

dϕ ϕ
ϑ̄2

H+(ϑ, ϕ)
(
4 −

12ϕ2

θ2

)
− H−(ϑ, θ)

]
, (68)

where the function H−(ϑ, θ) is given by Eq. (47). Carrying out
the ϕ integral, one can show that the bracket in Eq. (68) vanishes
identically, and thus ξB

+ (ϑ) ≡ 0 in the absence of B modes.

Similarly, we find from Eqs. (56) and (64) in the case of van-
ishing B modes

2ξB
− (ϑ) =

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

ξ+(θ) [K−(ϑ, θ) − K+(ϑ, θ)]

−

∫ ϑmin

0

dθ θ
ϑ2 ξ+(θ)

(
4 −

12θ2

ϑ2

)
(69)

+

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

K−(ϑ, θ)
∫ θ

0

dϕ ϕ
θ2 ξ+(ϕ)

(
4 −

12ϕ2

θ2

)
.

The last integral is then split into one from 0 to ϑmin and one
from ϑmin to θ. For the former, we note the result that∫ ϑmax

ϑmin

dθ
θ

K−(ϑ, θ)
(
4 −

12ϕ2

θ2

)
=
ϑ̄2

ϑ2

(
4 −

12ϕ2

ϑ2

)
, (70)

so that the corresponding θ integral just cancels the second term
in Eq. (69). Hence, ξB

− (ϑ) contains no contribution from scales
outside the angular interval considered. For the θ integration of
the second ϕ integral, we change the order of integration, subject
to ϑmin ≤ ϕ ≤ θ ≤ ϑmax, to get

2ξB
− (ϑ) =

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

ξ+(θ)
[
K−(ϑ, θ) − K+(ϑ, θ)

+

∫ ϑmax

θ

dϕ
ϕ

K−(ϑ, ϕ)
(
4 −

12θ2

ϕ2

) ]
. (71)

One can show that the term in the bracket is identically zero,
which shows that ξB

− (ϑ) ≡ 0 for the case that the shear field has
no B-mode contribution.

3.5. Relation to the power spectrum

We now consider the relation between the shear power spectra
and the pure-mode shear correlation functions. The ξ±(ϑ) are
related to the E- and B-mode power spectra PE(`) and PB(`) by

ξ+(ϑ) =

∫ ∞

0

d` `
2π

J0(`ϑ) [PE(`) + PB(`)] ,

ξ−(ϑ) =

∫ ∞

0

d` `
2π

J4(`ϑ) [PE(`) − PB(`)] . (72)
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Expressions (42, 43, 55, 56) show that ξE/B
± (ϑ) are linear in the

ξ± and hence can be expressed in the form

ξE
±(ϑ) =

∫ ∞

0

d` `
2π

[
WE
±E(`, ϑ) PE(`) + WE

±B(`, ϑ)PB(`)
]
,

ξB
± (ϑ) =

∫ ∞

0

d` `
2π

[
WB
±E(`, ϑ) PE(`) + WB

±B(`, ϑ)PB(`)
]
. (73)

We start with ξE
+, for which the coefficients read

WE
+E(`, ϑ) =

1
2

[
J0(`ϑ) + J4(`ϑ) +

∫ ϑmax

ϑ

dθ
θ

J4(`θ)
(
4 −

12ϑ2

θ2

)
−

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

J0(`θ) H+(ϑ, θ) −
∫ ϑmax

ϑmin

dθ
θ

J4(`θ) H−(ϑ, θ)
]
,

WE
+B(`, ϑ) =

1
2

[
J0(`ϑ) − J4(`ϑ) −

∫ ϑmax

ϑ

dθ
θ

J4(`θ)
(
4 −

12ϑ2

θ2

)
−

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

J0(`θ) H+(ϑ, θ) +

∫ ϑmax

ϑmin

dθ
θ

J4(`θ) H−(ϑ, θ)
]
.

We expect that the latter coefficient vanishes, since the pure E-
mode correlation function should not depend on the B-mode
power spectrum. Indeed, it can be shown that WE

+B(`, ϑ) ≡ 0.
By adding the previous two equations, we can simplify the ex-
pression for WE

+E(`, ϑ) to

WE
+E(`, ϑ) = J0(`ϑ) −

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

J0(`θ) H+(ϑ, θ)

= J0(`ϑ) −
(1 + B)
4B2`ϑ̄

3 (
ϑ

ϑ̄

)2

− (3 − 2B + 3B2)

 J1(`ϑmax)

−
(1 − B)
4B2`ϑ̄

3 (
ϑ

ϑ̄

)2

− (3 + 2B + 3B2)

 J1(`ϑmin)

+
3

4B3(`ϑ̄)2

(ϑ
ϑ̄

)2

− (1 + B2)

 (74)

×
[
(1 + B)2 J2(`ϑmax) − (1 − B)2 J2(`ϑmin)

]
.

We first note that the function WE
+E does not only depend on the

product `ϑ, as was the case for the corresponding filter for ξ+.
Since the pure-mode correlation functions depend on the angu-
lar interval ϑmin ≤ ϑ ≤ ϑmax, the filter WE

+E has an explicit de-
pendence on the interval boundaries, expressed through B, ϑ̄ and
the arguments of the Bessel functions. The additional terms in
WE

+E filter out the ambiguous modes. In fact, since for small `,
WE

+E(`, ϑ) ∝ `4, low-` modes in the power spectrum are strongly
suppressed.

The foregoing fact is an important observation. The filter that
relates ξ+ to the power spectra is J0(`ϑ), which tends to unity as
` → 0. Hence, ξ+ is very sensitive to small-` power (i.e., to
large-scale modes). The fact that the filter WE

+E has a leading `4

dependence shows that the sensitivity of ξ+ to large-scale modes
is due solely to the ambiguous modes in ξ+.

Turning to ξB
+ , it is straightforward to see that WB

+E(`, ϑ) =

WE
+B(`, ϑ) = 0 and WB

+B(`, ϑ) = WE
+E(`, ϑ). Thus, the pure B-

mode correlation function is independent of the E-mode power
spectrum, and the relation between ξB

+ and PB is the same as
between ξE

+ and PE.

The filter functions for ξE
− are

WE
−E/B(`, ϑ) =

1
2

[
J0(`ϑ) ± J4(`ϑ) +

∫ ϑ

ϑmin

dθ θ
ϑ2 J0(`θ)

(
4 −

12θ2

ϑ2

)
−

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

J0(`θ) K+(ϑ, θ) ∓
∫ ϑmax

ϑmin

dθ θ
ϑ̄2

J4(`θ) K−(ϑ, θ)
]
,

where the upper (lower) signs apply for WE
−E (WE

−B). We find that
WE
−B(`, ϑ) ≡ 0, as expected, that is, the B-mode power does not

contribute to the pure E-mode correlation function ξE
−. Taking

the sum of the two filter functions, we find that

WE
−E(`, ϑ) = J0(`ϑ) +

∫ ϑ

ϑmin

dθ θ
ϑ2 J0(`θ)

(
4 −

12θ2

ϑ2

)
−

∫ ϑmax

ϑmin

dθ θ
ϑ̄2

J0(`θ) K+(ϑ, θ)

= J4(`ϑ) +
(1 − B2)
4B2`ϑ̄

[
amin
−1 J1(`ϑmin) + amax

−1 J1(`ϑmax)
]

(75)

+
3(1 − B2)2

4B3(`ϑ̄)2

[
amin
−2 J2(`ϑmin) + amax

−2 J2(`ϑmax)
]
,

where the coefficients are

amin
−1 = (1 + B)

3(1 − B2)2
(
ϑ

ϑ̄

)−4

− (3 − 2B + 3B2)
(
ϑ

ϑ̄

)−2 ,
amax
−1 = (1 − B)

3(1 − B2)2
(
ϑ

ϑ̄

)−4

− (3 + 2B + 3B2)
(
ϑ

ϑ̄

)−2 ,
amin
−2 = (1 + B)2(1 − 4B + B2)

(
ϑ

ϑ̄

)−4

− (1 − B2)
(
ϑ

ϑ̄

)−2

, (76)

amax
−2 = (1 + B2)

(
ϑ

ϑ̄

)−2

− (1 − B)2(1 + 4B + B2)
(
ϑ

ϑ̄

)−4

.

Finally, we find WB
−E(`, ϑ) ≡ 0, again as expected since the cor-

relation function ξB
− (ϑ) should not depend on the E-mode power

spectrum, and WB
−B(`, ϑ) = WE

−E(`, ϑ). Thus, of the eight fil-
ter functions WE/B

±E/B, four are identically zero, and the remaining
four are pairwise identical, so that only the two given in Eqs. (74)
and (75) need to be evaluated.

We note that as ϑmin → 0, ϑmax → ∞, WE
+E(`, ϑ) → J0(`ϑ)

and WE
−E(`, ϑ) → J4(`ϑ), due to the behavior of the Bessel func-

tions for small and large arguments. Hence, in this case the rela-
tion between the pure-mode shear correlation functions and the
power spectra reduces to that of the CNPT correlation functions.

Finally, from the decomposition (22) of the correlation func-
tions and the results of this subsection, we find the relation be-
tween the ambiguous modes and the power spectra,

ξamb
+ (ϑ) =

∫
d`
2π

[
J0(`ϑ) −WE

+E(`, ϑ)
]

[PE(`) + PB(`)] ,

ξamb
− (ϑ) =

∫
d`
2π

[
J4(`ϑ) −WE

−E(`, ϑ)
]

[PE(`) − PB(`)] . (77)

Given that both of the ξamb
± (ϑ) are characterized by only two co-

efficients, it is obvious that one can find many combinations of
E- and B-mode power spectra for which these coefficients are
the same. Therefore, these ambiguous mode correlation func-
tions can result from different combinations of E and B modes.
We give some specific examples for this in Appendix A.3.
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Fig. 4. Dimensionless logarithmic COSEBI (see Appendix B) measurements from KiDS-1000 data. The E and B modes are shown in the top
and bottom triangles, respectively. Each panel depicts results for a pair of redshift bins, z-i j. The solid red curves correspond to the best fitting
model to the SEK COSEBIs as analyzed in Asgari et al. (2021, compare with their Fig. 3). The B modes are consistent with zero (p-value = 0.36)
and the best-fit model describes the data very well (p-value = 0.2). We note that the COSEBI modes are discrete and the points are connected to
one another for visual aid.

4. KiDS-1000 measurements

4.1. Data description

The Kilo Degree Survey is designed with weak gravitational
lensing applications in mind. Its data, therefore, benefit from
high-quality images in the r-band (mean seeing of 0.7 arcsec-
onds), which is used for the shape measurements (Giblin et al.
2021). In addition, all galaxies have matched depth images in
optical, ugri, and near-infrared photometric bands, ZY JHKs.
The five near-infrared bands are observed by the VISTA Kilo-
degree INfrared Galaxy (VIKING) survey (Edge et al. 2013).
These nine bands are used to estimate photometric redshifts for
all galaxies that contribute to the cosmic shear signal. The fourth
KiDS data release includes 1006 square degrees of images (Kui-
jken et al. 2019). The data are divided into five tomographic bins
before 2PCFs are measured for the 15 distinct combinations of

redshift bins3. The redshift distribution for each tomographic bin
is calibrated using KiDS+VIKING-like observations of fields
containing spectroscopic samples (Hildebrandt et al. 2021).

The theoretical predictions were calculated with the KiDS
Cosmology Analysis Pipeline4 (kcap), which is built from the
modular cosmology pipeline CosmoSIS5 (Zuntz et al. 2015). The
primordial power spectrum was estimated using the camb Boltz-
mann code (Lewis et al. 2000). Its nonlinear evolution was cal-
culated via the augmented halo model approach of Mead et al.
(2015), which also accounts for the impact of baryon feedback
from active galactic nuclei. We modeled the intrinsic alignments
of galaxies with the nonlinear linear alignment (NLA) model of

3 https://github.com/KiDS-WL/Cat_to_Obs_K1000_P1
4 https://github.com/KiDS-WL/kcap
5 https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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Fig. 5. KiDS-1000 pure E-mode correlation functions. The top and bottom panels show ξE
+ and ξE

−, respectively. The theory curve is shown for
both unbinned (solid blue) and binned (dashed orange) cases. The data points should be compared with the binned curve. The model is calculated
assuming the best fitting standard cosmology to SEK COSEBIs (Asgari et al. 2021). Although the model is not fitted to this data vector, we find
that it agrees with the data very well (p-value = 0.09 for ξE

+ and 0.28 for ξE
−).

Bridle & King (2007, see also Hirata & Seljak 2004) and used
a modified Limber approximation (LoVerde & Afshordi 2008)
to project the three-dimensional power spectra into two dimen-
sions, PE(`). This was then used to make predictions for the pure
mode correlation functions and the new dimensionless COSE-
BIs.

4.2. COSEBIs and pure-mode correlations for KiDS-1000

We calculated the new dimensionless logarithmic COSEBIs (see
Appendix B) by integrating over the measured ξ±.6 The pure-
mode correlation functions were determined by integrating over
the ξ±, according to the relations given in Sect. 3.2. As a con-
sistency check, we also calculated ξE/B

± using Eqs. (23) and (24),

6 We refer the reader to Asgari et al. (2017) for details on this conver-
sion from ξ± to COSEBIs.

using the first 20 COSEBIs modes. We found that the sums in
Eqs. (23) and (24) converge to the previous result after about the
first five COSEBI modes.

Figures 4, 5, and 6 display the measured dimensionless
COSEBIs, ξE

± and ξB
± for the angular separation range of 0.5

to 300 arcminutes. In these figures, the error bars are drawn
from the diagonal of their respective covariance matrix. Each
panel belongs to a pair of redshift bins. The theoretical curves
were calculated using the best fitting flat ΛCDM cosmology to
the KiDS-1000 cosmic shear data (SEK COSEBIs; Asgari et al.
2021) whose parameter values are given in Table 1. Although
not listed here we also fix the mean redshift displacement pa-
rameters to their best fitting values as estimated in Asgari et al.
(2021). In all cases, the theory values are connected to each
other for ease of comparison, although they are all discrete with
the exception of the unbinned theory curves (blue) in Fig 5. For
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Fig. 6. KiDS-1000 pure B-mode correlation functions. ξB
+ is displayed in the top panels, while ξB

− is shown in the bottom ones. Each panel
represents measurements for a pair of redshift bins, z − i j, and its associated p-value. We find that the B modes are consistent with zero when we
consider the full data vectors (p-value = 0.11 for ξB

+ and 0.20 for ξB
− ).

COSEBIs this is true by definition, while for ξE/B
± the binning

of the data requires the theoretical predictions to also be binned
(orange dashed curves).

4.3. Covariances and Fisher analysis

We first derived the covariance matrix for the new COSEBIs us-
ing the methodology detailed in Joachimi et al. (2021) and Ap-
pendix A of Asgari et al. (2020). The corresponding correlation
matrix is shown in the left panel of Fig. 7 and compared to the
correlation matrix for the SEK COSEBIs shown on the right. As
can be seen, the dimensionless COSEBIs are considerably less
correlated, making them more mutually independent.

We then estimated the covariance matrices for the pure-mode
correlation functions, making use of the linear relation between
them and the COSEBIs given by Eqs. (23) and (24). The corre-
lation coefficients are shown in Fig. 8 for ξE/B

± .

Although the theoretical curves are not fitted to the data in
Figs. 4 and 5, we see that they describe the data very well.7 We
estimated the goodness-of-fit using the probability of exceeding
the measured χ2 (i.e., the p-value). Following Joachimi et al.
(2021) we assume that the effective number of free parameters is
4.5 and set the degrees of freedom to the number of data points,
minus 4.5. We then find that all p-values are above 0.09 (p-
values for each data vector are reported in the caption of their
figure). This is to be expected as the fit is done to the SEK
COSEBIs (p-value = 0.16), which separate E and B modes on
the same angular range. Figure 6 and the bottom panels of Fig. 4,

7 In principle, as mentioned before, the dimensionless COSEBIs and
the pure-mode correlation functions should yield exactly the same result
as using the SEK COSEBIs, as all these quantities contain the same
information. In practice, however, the results will slightly differ, due to
the use of a finite number of COSEBI modes and a finite number of ϑ
bins for the correlation functions.

Article number, page 14 of 24



P. Schneider, M. Asgari, Y. Najafi et al.: Pure-mode correlation functions for cosmic shear and application to KiDS-1000

0 20 40 60
0

10

20

30

40

50

60

70

Dimensionless COSEBIs

0 20 40 60
0

10

20

30

40

50

60

70

SEK COSEBIs

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. Correlation matrices for new (left) and old (right) logarithmic COSEBIs. Here we illustrate the correlation matrices for the first five
COSEBI modes. Each five-by-five block shows the values for one pair of redshift bins, starting with the lowest bins at the bottom-left corner.

depict the B-mode signals. We find that the B modes are consis-
tent with zero in all cases and all p-values are above 0.1. We
also report the p-values for individual pairs of redshift bins in
Fig. 6, which can be compared with the results of Giblin et al.
(2021) who used SEK COSEBIs to determine the significance
of B modes in KiDS-1000 data. We note that, as demonstrated
in Asgari et al. (2019), the significance of the B modes has a
nontrivial dependence on the way the data are binned and, equiv-
alently, on the number of COSEBI modes that are used8, as well
as on the types of systematic effects that exist in the data. While
certain systematics produce E and B modes on similar angular
separations (see for example the impact of point-spread-function
leakage in Fig. 3), others such as a CCD-chip bias that produces
a repeating pattern in the images (see for example Asgari et al.
2019, regular pattern Figs. 9 and 10), show a different scale de-
pendence for E and B modes. Therefore, similar to COSEBIs
here we recommend to use multiple binning schemes to test the
significance of B modes. In fact, we found similar trends to Gib-
lin et al. (2021) depending on the number of θ bins. When we di-
vide the [0.′5, 300′] range into 20 θ bins we found that bin 55 has
the smallest p-value = 0.04, whereas dividing the same range
into five bins resulted in smaller p-values for redshift bin combi-
nations 22 and 35. Nevertheless, all p-values are above the 0.01
threshold and thus we conclude that the B modes are insignifi-
cant. We also found that by increasing the number of θ bins, the
p-values resulting from ξB

+ and ξB
− become very similar, confirm-

ing that these two functions contain the same information.
We compare the information content of the pure mode cor-

relation function, ξE
+ with the SEK COSEBIs, in Fig. 9. We use

a Fisher formalism and assume the fiducial values in Table 1 for
model parameters. As was shown in Asgari et al. (2021), we ex-
pect to have meaningful constraints only for the structure growth
parameter S 8 and the amplitude of the intrinsic alignments AIA.
Therefore, we fixed all other parameters and only show the 1σ

8 The number of COSEBI modes and theta bins do not have a one-to-
one relation. However, the higher COSEBI modes are more sensitive to
smaller scale variations across the full range of the correlation functions.
These variations are lost when data are binned coarsely.

and 2σ contours for S 8 and AIA. We see that the information
content of ξE

+ and COSEBIs is identical, and conclude that there
is no extra cosmological information to be gained from the pure-
mode correlation functions. This is also true when we compare
the dimensionless and SEK COSEBIs Fisher matrices. This is
to be expected, as both methods make use of the E-mode infor-
mation that is available in the given angular interval. With the
Fisher analysis we can also estimate the expected errors on the
measured parameters. We find that the error on S 8 is 0.014 and
on AIA is 0.274, both are slightly smaller than the full likelihood
analysis of Asgari et al. (2021), as expected.

5. Summary and discussion

In this paper we have derived pure-mode shear correlation func-
tions that can be obtained from the measured shear correlations,
ξ±(ϑ), on a finite interval, 0 < ϑmin ≤ ϑ ≤ ϑmax < ∞. This was
achieved by redefining the orthonormality relation of COSEBIs,
which allowed us to construct two complete sets of orthonormal
weight functions, T±µ(ϑ), on this finite interval; explicit expres-
sions for these new weight functions are given in Appendix B.
Two of these weight functions correspond to ambiguous modes,
and with the remaining ones, the mode-separating COSEBIs
were defined. Owing to the completeness of these function sets,
we were able to decompose the shear correlation functions into
their E- and B-mode correlations, ξE/B

± (ϑ), and their contribution
by ambiguous modes (see Eq. 22). These different components
can be straightforwardly determined from the ξ±(ϑ) measured
on a finite interval, in contrast to the CNPT correlation functions
(see Sect. 3.3), which require extrapolation or the modeling of ξ±
for separations smaller or larger than where measurements of ξ±
are available. Hence, there is no longer any reason to use these
CNPT correlation functions. Only in the limit of ϑmin → 0 and
ϑmax → ∞ do they agree with mode-separating ones.

These new correlation functions allow the study of E- and B-
mode second-order shear as a function of angular scale. Hence,
they should serve as a diagnostic for the angular dependence of
potential B modes in a survey. To illustrate this, we applied the
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Fig. 8. Correlation coefficients for pure-mode correlation functions. They are shown for the autocorrelations of ξE
+ (top left), ξE

− (top right), ξB
+

(bottom left), and ξB
− (bottom right). The covariance matrices are calculated for nine θ bins and five redshift bins, resulting in 15 distinct pairs of

redshifts. The top-left corner of each panel shows the correlation coefficients for the lowest-redshift bins.

pure-mode correlation functions to simulation data, without and
with systematics added, and compared the results with our ear-
lier analysis (Asgari et al. 2019).

We applied the newly constructed dimensionless COSEBIs
to the KiDS-1000 tomographic cosmic shear data set, for which
we also computed the pure-mode shear correlation functions.
Calculating the covariance of the COSEBIs and the binned ξE/B

± ,
we have shown that their measured values are fully consistent
with the best fitting model parameters obtained in Asgari et al.
(2021), exhibiting only very small differences in the p-values.
Using the Fisher analysis, we also showed that the results on the
two parameters best constrained by the cosmic shear data (S 8
and AIA) are indistinguishable between the COSEBIs and the
pure-mode correlation functions – as was to be expected. The
discrete nature of the COSEBIs makes them the more convenient
quantities for a cosmological analysis.

In Appendix A we provide a few illustrative examples of am-
biguous modes in the shear correlation function, that is, modes
that cannot be uniquely attributed either to E or B modes. In-
corporation of such modes into a cosmological analysis carries
the risk that they are affected by a contribution coming from B
modes, and hence the analysis may be biased. We therefore cau-
tion against the use of ambiguous modes when deriving con-
straints on model parameters; instead, employing COSEBIs for
that purpose avoids this potential trap. We note that the sensi-
tivity of ξ+(ϑ) to low-` power, due to the filter J0(`ϑ) relating
them, is solely due to ambiguous modes; the corresponding fil-
ter function for the pure-mode correlation has an `4 dependence
for ` → 0.

As was shown in Asgari et al. (2012), if one assumes that the
ambiguous modes are pure E modes, then they contain additional
cosmological information – this corresponds to the case termed
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Fig. 9. Fisher matrix forecast for KiDS-1000. The SEK COSEBIs
(blue) are compared with ξE

+ (pink), showing that they contain the same
level of information about the model parameters, S 8 and AIA. All other
parameters, listed in Table 1, are fixed to their fiducial values. The fact
that one sees only one ellipse is because both methods give the same
Fisher ellipses, which thus lie on top of each other, as expected. This
figure is made with ChainConsumer (Hinton 2016).

“full COSEBIs” in Asgari et al. (2012). The relative amount of
information in these ambiguous modes depends on the angular
range ϑmin to ϑmax, and presumably on the number of cosmo-
logical parameters. However, as was made clear above, from
the measurement of the correlation functions on this finite inter-
val, one cannot tell whether these ambiguous modes are pure E
modes or whether B modes are mixed in. We therefore strongly
advise against the use of ambiguous modes for cosmological pa-
rameter inference.

The same statement holds for the correlation functions ξ±;
to use them for cosmological parameter estimates, one needs to
(implicitly) assume that they are pure E-mode functions, which
cannot be verified from a measurement on a finite angular sep-
aration interval. Thus, such estimates may contain an unknown
level of systematics due to B modes that remain undetected by
the COSEBIs but are hidden in the ambiguous modes.

Finally, we show in Appendix C that the COSEBIs defined
on a subinterval of the original one can be obtained as linear
combinations of the original COSEBIs. This was to be expected
since these original COSEBIs contain the full E and B mode-
separable information about second-order shear statistics. We
thus conclude that it suffices to consider the COSEBIs on the
full angular range where the ξ± are measured without needing to
consider subintervals. The lack of localized information in the
individual COSEBIs is remedied by the use of the pure-mode
shear correlation functions derived here.

Acknowledgements. We acknowledge the constructive comments by the anony-
mous referee which led to an improvement of the presentation. This work was
supported by the Deutsche Forschungsgemeinschaft with the grant SCHN342-
13 and the Heisenberg grant Hi 1495/5-1, the European Research Council under
grants number 647112 and 770935, by an STFC Ernest Rutherford Fellowship
(project reference ST/S004858/1), by the Max Planck Society and the Alexan-
der von Humboldt Foundation in the framework of the Max Planck-Humboldt
Research Award endowed by the Federal Ministry of Education and Research
ERC with the Consolidator Grant No. 770935, by the Vici grant 639.043.512,

financed by the Netherlands Organisation for Scientific Research (NWO), by the
Royal Society and Imperial College, by the CMS-CSST-2021-A01, NSFC of
China under grant 11973070, the Shanghai Committee of Science and Technol-
ogy grant No.19ZR1466600 and Key Research Program of Frontier Sciences,
CAS, Grant No. ZDBS-LY-7013, and the Leverhulme Trust. Based on obser-
vations made with ESO Telescopes at the La Silla Paranal Observatory under
programme IDs 177.A-3016, 177.A-3017, 177.A-3018 and 179.A-2004, and on
data products produced by the KiDS consortium. The KiDS production team ac-
knowledges support from: Deutsche Forschungsgemeinschaft, ERC, NOVA and
NWO-M grants; Target; the University of Padova, and the University Federico II
(Naples).
Author contributions: All authors contributed to the development and writing
of this paper. The authorship list is given in two groups: the lead authors
(PS,MA,YNJ) followed by an alphabetical group that covers those who have
either made a significant contribution to the data products, or to the scientific
analysis.

References
Aihara, H., Arimoto, N., Armstrong, R., et al. 2018, PASJ, 70, S4
Albrecht, A., Bernstein, G., Cahn, R., et al. 2006, astro-ph/060959
Asgari, M. & Heymans, C. 2019, MNRAS, 484, L59
Asgari, M., Heymans, C., Blake, C., et al. 2017, MNRAS, 464, 1676
Asgari, M., Heymans, C., Hildebrandt, H., et al. 2019, A&A, 624, A134
Asgari, M., Lin, C.-A., Joachimi, B., et al. 2021, A&A, 645, A104
Asgari, M. & Schneider, P. 2015, A&A, 578, A50
Asgari, M., Schneider, P., & Simon, P. 2012, A&A, 542, A122
Asgari, M., Tröster, T., Heymans, C., et al. 2020, A&A, 634, A127
Becker, M. R. 2013, MNRAS, 435, 1547
Becker, M. R. & Rozo, E. 2016, MNRAS, 457, 304
Blandford, R. D., Saust, A. B., Brainerd, T. G., & Villumsen, J. V. 1991, MN-

RAS, 251, 600
Blazek, J. A., MacCrann, N., Troxel, M. A., & Fang, X. 2019, Phys. Rev. D, 100,

103506
Bridle, S. & King, L. 2007, New Journal of Physics, 9, 444
Bunn, E. F. 2011, Phys. Rev. D, 83, 083003
Crittenden, R. G., Natarajan, P., Pen, U.-L., & Theuns, T. 2002, ApJ, 568, 20
DES Collaboration, Abbott, T. M. C., Aguena, M., et al. 2021, arXiv e-prints,

arXiv:2105.13549
Deshpande, A. C., Kitching, T. D., Cardone, V. F., et al. 2020, A&A, 636, A95
Edge, A., Sutherland, W., Kuijken, K., et al. 2013, The Messenger, 154, 32
Erben, T., Hildebrandt, H., Miller, L., et al. 2013, MNRAS, 433, 2545
Gatti, M., Sheldon, E., Amon, A., et al. 2021, MNRAS, 504, 4312
Giahi-Saravani, A. & Schäfer, B. M. 2014, MNRAS, 437, 1847
Giblin, B., Heymans, C., Asgari, M., et al. 2021, A&A, 645, A105
Harnois-Déraps, J., Amon, A., Choi, A., et al. 2018, MNRAS, 481, 1337
Heydenreich, S., Schneider, P., Hildebrandt, H., et al. 2020, A&A, 634, A104
Heymans, C., Grocutt, E., Heavens, A., et al. 2013, MNRAS, 432, 2433
Heymans, C., Tröster, T., Asgari, M., et al. 2021, A&A, 646, A140
Heymans, C., Van Waerbeke, L., Miller, L., et al. 2012, MNRAS, 427, 146
Heymans, C., White, M., Heavens, A., Vale, C., & van Waerbeke, L. 2006, MN-

RAS, 371, 750
Hilbert, S., Hartlap, J., White, S. D. M., & Schneider, P. 2009, A&A, 499, 31
Hilbert, S., Xu, D., Schneider, P., et al. 2017, MNRAS, 468, 790
Hildebrandt, H., van den Busch, J. L., Wright, A. H., et al. 2021, A&A, 647,

A124
Hildebrandt, H., Viola, M., Heymans, C., et al. 2017, MNRAS, 465, 1454
Hinton, S. R. 2016, The Journal of Open Source Software, 1, 00045
Hirata, C. M. & Seljak, U. 2004, Phys. Rev. D, 70, 063526
Joachimi, B., Cacciato, M., Kitching, T. D., et al. 2015, Space Sci. Rev., 193, 1
Joachimi, B., Lin, C. A., Asgari, M., et al. 2021, A&A, 646, A129
Joachimi, B., Semboloni, E., Hilbert, S., et al. 2013, MNRAS, 436, 819
Kaiser, N. 1992, ApJ, 388, 272
Kaiser, N. 1998, ApJ, 498, 26
Kilbinger, M. 2018, arXiv e-prints, arXiv:1807.08249
Kilbinger, M., Schneider, P., & Eifler, T. 2006, A&A, 457, 15
Kitching, T. D., Paykari, P., Hoekstra, H., & Cropper, M. 2019, The Open Journal

of Astrophysics, 2, 5
Krause, E. & Hirata, C. M. 2010, A&A, 523, A28
Kuijken, K., Heymans, C., Dvornik, A., et al. 2019, A&A, 625, A2
Kuijken, K., Heymans, C., Hildebrandt, H., et al. 2015, MNRAS, 454, 3500
Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473
LoVerde, M. & Afshordi, N. 2008, Phys. Rev. D, 78, 123506
Mandelbaum, R. 2018, ARA&A, 56, 393
Mead, A. J., Peacock, J. A., Heymans, C., Joudaki, S., & Heavens, A. F. 2015,

MNRAS, 454, 1958
Peacock, J. A., Schneider, P., Efstathiou, G., et al. 2006, ESA-ESO Working

Group on “Fundamental Cosmology”, Tech. rep.

Article number, page 17 of 24



Schneider, P. 1996, MNRAS, 283, 837
Schneider, P., Eifler, T., & Krause, E. 2010, A&A, 520, A116
Schneider, P. & Kilbinger, M. 2007, A&A, 462, 841
Schneider, P. & Seitz, C. 1995, A&A, 294, 411
Schneider, P., van Waerbeke, L., Jain, B., & Kruse, G. 1998, MNRAS, 296, 873
Schneider, P., van Waerbeke, L., & Mellier, Y. 2002, A&A, 389, 729
Sevilla-Noarbe, I., Bechtol, K., Carrasco Kind, M., et al. 2021, ApJS, 254, 24
Shapiro, C. 2009, ApJ, 696, 775
Troxel, M. A. & Ishak, M. 2015, Phys. Rep., 558, 1
Vale, C., Hoekstra, H., van Waerbeke, L., & White, M. 2004, ApJ, 613, L1
White, M. 2005, Astroparticle Physics, 23, 349
Wolfram, S. 1991, Mathematica: a system for doing mathematics by computer,

ed. Wolfram, S.
Zuntz, J., Paterno, M., Jennings, E., et al. 2015, Astronomy and Computing, 12,

45

Article number, page 18 of 24



P. Schneider, M. Asgari, Y. Najafi et al.: Pure-mode correlation functions for cosmic shear and application to KiDS-1000

Appendix A: Shear fields from ambiguous modes

In this appendix, we consider ambiguous modes of the shear field
in more detail. This will be done in different ways. First, we give
several examples of shear fields that cannot uniquely be assigned
to either E-mode or B-mode shear. We then show that a statis-
tical ensemble of such shear fields give rise to the ambiguous
modes in the shear 2PCFs. Finally, we show that ambiguous
modes in the shear correlation functions can be caused by vari-
ous combinations of E- and B-mode power spectra.

Appendix A.1: Ambiguous shear fields

Following Crittenden et al. (2002) and Schneider et al. (2002),
we formally describe a general shear field by a superposition
of E and B modes, by defining the complex deflection potential
ψ(θ) = ψE(θ) + iψB(θ), where ψE/B are real functions. The cor-
responding convergence is then obtained from the Poisson equa-
tion, κ(θ) = κE(θ) + iκB(θ) = (1/2)∇2ψ(θ). The shear field is
given by

γ = γ1+iγ2 =

ψE
,11 − ψ

E
,22

2
− ψB

,12

+i

ψE
,12 +

ψB
,11 − ψ

B
,22

2

 , (A.1)

where subscripts following a comma denote partial derivatives
with respect to θi. We consider the following combinations of
second derivatives of the shear,

Cc := γ2,11 − γ2,22 − 2γ1,12 =
1
2

(ψB
,1111 + ψB

,2222) + ψB
,1122 ,

Cg := γ1,11 − γ1,22 + 2γ2,12 =
1
2

(ψE
,1111 + ψE

,2222) + ψE
,1122 . (A.2)

Thus, we see that a shear field that does not contain a B-mode
component satisfies Cc ≡ 0, whereas one that has no E-mode
contribution satisfies Cg ≡ 0. In the following we provide ex-
amples for shear fields for which Cg ≡ 0 ≡ Cc, and thus result
either from an E- or a B-mode deflection potential.

The first example is one where the deflection potential is a
polynomial of order 3. Since constant and linear terms in ψ do
not cause any shear, we write

ψE/B = aE/B
11 θ2

1 + aE/B
12 θ1θ2 + aE/B

22 θ2
2

+ bE/B
111 θ

3
1 + bE/B

112 θ
2
1θ2 + bE/B

122 θ1θ
2
2 + bE/B

222 θ
3
2 . (A.3)

This yields the linear shear field

γ1 = aE
11 − aE

22 − aB
12 +

(
3bE

111 − bE
122 − 2bB

112

)
θ1

+
(
bE

112 − 3bE
222 − 2bB

122

)
θ2 ,

γ2 = aE
12 + aB

11 − aB
22 +

(
2bE

112 + 3bB
111 − bB

122

)
θ1 (A.4)

+
(
2bE

122 + bB
112 − 3bB

222

)
θ2 .

It is obvious that such a linear shear field can be equally obtained
from E-mode and B-mode deflection potentials, and thus such
a shear field corresponds to an ambiguous mode. Obviously,
Cg ≡ 0 ≡ Cc for such a field.

A less trivial example is obtained by considering axi-
symmetric shear fields of the form

γ(θ) = −F
(
|θ|2

) θ
θ∗
, (A.5)

where here we use complex notation for a vector θ (i.e., θ =
θ1 + iθ2), and the asterisk denotes complex conjugation. The

term θ/θ∗ = e2iϕ, where ϕ is the polar angle of θ, is just a phase
factor. Such a shear field is tangential to the origin at every point,
and can be generated by an axi-symmetric mass distribution κE

or, equivalently, an axi-symmetric deflection potential ψE. From
Eq. (A.2) we find that Cc(θ) ≡ 0 for this shear field, independent
of the function F. For Cg, we find

Cg(θ) = −4
[
2F′

(
|θ|2

)
+ |θ|2F′′

(
|θ|2

)]
, (A.6)

which is nonzero in general. However, for F(X) = const. or
F(X) ∝ X−1, Cg also vanishes. We consider the latter case first:
it corresponds to

γ(θ) = −
1
|θ|2

θ

θ∗
=
−1
θ∗2

, (A.7)

the shear field of a point mass. Curiously, we can also get the
same shear field from a B-mode potential. Indeed, we let

ψE =
1 − f

2
ln

(
|θ2|

)
; ψB = − f arctan (θ2/θ1) , (A.8)

and then we get

γ(θ) = −
θ2

1 − θ
2
2 + 2iθ1θ2

|θ|4
, (A.9)

in agreement with Eq. (A.7), for any value of f . This indeed is
a curious result, stating that a pure tangential shear field – the
“classical” case of an E-mode field – can be obtained from a B-
mode potential. Putting this is different words: If we take the
tangential shear field (A.7) and rotate the shear at every position
by 45 degree (equivalent to multiplying the shear by a factor i),
then we get the classical case of a B-mode shear field. How-
ever, this rotated field can be obtained from a pure E-mode po-
tential ψE = − arctan(θ2/θ1). We should point out, though, that
the arctan(θ2/θ1) is not defined on the θ2-axis where it jumps
from −π/2 to π/2, and thus the rosette-like shear field cannot be
obtained from a globally defined E-mode potential (or conver-
gence). But if one considers the shear field on any finite region
not crossing the θ2-axis, one cannot tell whether the shear field
(A.7) is due to an E or a B mode.9

Likewise, the shear field

γ(θ) = −
θ

θ∗
, (A.10)

which is a tangential shear field with an amplitude independent
of radius |θ|, can be generated both by an E- and B-mode deflec-
tion potential: letting

ψE =
f − 1

2
|θ|2 ln

(
|θ|2

)
and ψB = f |θ|2 arctan (θ2/θ1)

(A.11)

leads to the shear field (A.10) for any f .

9 We note that arctan(θ2/θ1) = ϕ for −π/2 < ϕ < π/2. Hence, we could
replace the arctan(θ2/θ1) just by ϕ. In this case, the function would
undergo only one discontinuity on a circle around the origin.
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Appendix A.2: Shear correlation functions from ambiguous
shear fields

We now consider isotropic statistical ensembles of ambiguous
shear fields and consider the resulting shear correlation func-
tions. For that, we consider the shear on two points on the θ1-
axis, at θ = (±ϑ/2, 0), so that ξ+(ϑ) = 〈γ(−ϑ/2)γ∗(ϑ/2)〉 and
ξ−(ϑ) = 〈γ(−ϑ/2)γ(ϑ/2)〉.10 Starting with the linear shear field,
we consider an ensemble of such fields, and write the shear in
complex notation as

γ(θ) = G2 + G1θ + G3θ
∗ , (A.12)

where, due to the fact that the shear is a spin-2 field, the co-
efficients Gn are spin-n quantities that, under a rotation of the
coordinate frame, transform as Gn → Gn e−niϕ. Accordingly,

γ(−ϑ/2) γ(ϑ/2) = G2
2 − (G2

1 + G2
3 + 2G1G3)ϑ2/4 ,

γ(−ϑ/2) γ∗(ϑ/2) = |G2|
2 −

(
|G1|

2 + |G3|
2 + G1G∗3 + G∗1G3

)
ϑ2/4

+
[
G2

(
G∗1 + G∗3

)
−G∗2 (G1 + G3)

]
ϑ/2 . (A.13)

If we now consider a statistical ensemble of such linear fields, we
have to average over the coefficients. Statistical isotropy then im-
plies that 〈GmGn〉 = 0 =

〈
GmG∗n

〉
for m , n, as well 〈GnGn〉 = 0,

due to phase averaging over these spin , 0 quantities. Therefore,

ξ+(ϑ) = 〈γ(−ϑ/2) γ∗(ϑ/2)〉 = |G2|
2 −

(
|G1|

2 + |G3|
2
)
ϑ2/4 ,

ξ−(ϑ) = 〈γ(−ϑ/2) γ(ϑ/2)〉 = 0 , (A.14)

which corresponds to the ambiguous modes discussed in
Sect. A.1.

We next turn to the shear field caused by an ensemble of
point masses. Specifically, we consider a circular region of ra-
dius Θ in which there are N point masses at locations θi and
relative masses mi, with mean mass 〈m〉. At the end we consider
the limit Θ → ∞, N → ∞, such that the mean number density
n̄ = N/(πΘ2) is constant. The shear field then reads

γ(θ) =

N∑
i=1

(
mi

(θ − θi)2

)∗
. (A.15)

We assume the positions θi of the point masses to be random
inside the circle. Therefore, the expectation value of the product
γ(−ϑ/2)γ(ϑ/2) is

ξ−(ϑ) = 〈γ(−ϑ/2)γ(ϑ/2)〉 =

 N∏
n=1

1
πΘ2

∫ Θ

0
d|θn| |θn|

∫ 2π

0
dϕn


×

N∑
i, j=1

(
mi

(θi − ϑ/2)2

m j

(θ j + ϑ/2)2

)∗
. (A.16)

We now split the sum into terms i , j and those with i = j. In
the former case, each term of the sum depends only on two θn,
and the rest integrate out to unity. Those off-diagonal terms yield

N∑
i, j

mim j

(πΘ2)2 I∗(ϑ/2) I∗(−ϑ/2) , (A.17)

where

I(ϑ/2) =

∫ Θ

0
dθ θ

∫ 2π

0
dϕ

1(
θ eiϕ − ϑ/2

)2 . (A.18)

10 The imaginary part of these correlators vanishes due to parity invari-
ance.

We can now calculate the inner integral. For that, we let u = eiϕ,
dϕ = −i du/u, so the ϕ integral becomes∫ 2π

0
dϕ

1(
θ eiϕ − ϑ/2

)2 = −i
∮

du
u

1
(θu − ϑ/2)2 , (A.19)

where the integral extends over the unit circle. This integral was
calculated in Schneider (1996) to yield
4π
ϑ2

[
2H

(
ϑ

2
− θ

)
−
ϑ

2
δD

(
θ −

ϑ

2

)]
. (A.20)

so that I(ϑ/2) = 0 for Θ > ϑ/2. Thus, the off-diagonal terms
in Eq. (A.16) do not contribute to ξ−. In fact, I(θ) is the shear
caused by a uniform disk of matter of radius Θ, and it is well
known that such a disk causes no shear for Θ > θ.

This leaves us with the diagonal terms i = j,

ξ−(ϑ) =
N

〈
m2

〉
πΘ2

∫ Θ

0
dθ θ

∮
−i du

u
1

(θ u − ϑ/2)2

1
(θ u + ϑ/2)2 .

(A.21)
Employing the residue theorem, we note three poles at u1 = 0,
u2 = ϑ/(2θ), and u3 = −ϑ/(2θ), with Res(u1) = 16/ϑ4,
Res(u2) = Res(u3) = −8/ϑ4. The latter two poles lie inside
the unit circle for θ > ϑ/2, and for this case, the contour integral
vanishes. Thus, we find

ξ−(ϑ) = n̄
〈
m2

〉 4π
ϑ2 , (A.22)

corresponding to one of the ambiguous modes discussed in
Sect. A.1. Repeating the calculations for the correlation ξ+(ϑ),
we find that the non-diagonal terms in the double sum vanish as
well, and we are left with

ξ+(ϑ) =
N

〈
m2

〉
πΘ2

∫ Θ

0
dθ θ

∮
−i du

u
1

(θ u − ϑ/2)2

1
(θ/u + ϑ/2)2 .

(A.23)
The integrand in the contour integral has poles at u1 = ϑ/(2θ)
and u2 = −2θ/ϑ, and the corresponding residue are Res(u1) =
−16(ϑ2−4θ2)/(ϑ2+4θ2)3 and Res(u2) = 16(ϑ2−4θ2)/(ϑ2+4θ2)3.
The former (latter) pole is inside the unit circle for θ > ϑ/2
(θ < ϑ/2). Performing the θ integral then yields ξ+(ϑ) = 0.

In fact, this result could have been anticipated: the conver-
gence power spectrum for a random field of point masses is a
constant, and the correlation function of the convergence van-
ishes for any finite separation. But the shear correlation function
ξ+ is identical to the convergence correlation, so that ξ+(ϑ) = 0
for ϑ > 0. Furthermore, for a constant power spectrum, the sec-
ond of Eqs. (72) shows that ξ−(ϑ) ∝ ϑ−2. We also note that the
first of Eqs. (64) implies that ξ−(ϑ) ∝ ϑ−2 yields ξ+(ϑ) = 0.

We have been unable to find an analogous example of a shear
field that can be obtained from a deflection potential and which
yields a ξ−(ϑ) ∝ ϑ−4 correlation. However, if we drop the re-
quirement that the shear field can be obtained from a potential –
for example, the shear field is due to some systematics unrelated
to the lensing effect – then one can construct such examples. If
we consider the spin-3 field

γ(θ) = F
(
|θ|2

)
θ3 , (A.24)

then we find that Cc ≡ 0 ≡ Cg if F(X) satisfies the differential
equation X2F′′ + 6XF′ + 6F = 0. The two independent solu-
tions, F ∝ X−2 and F ∝ X−3, then lead to shear fields of the
form γ(θ) ∝ θ3/|θ|4 and γ(θ) ∝ θ3/|θ|6. Choosing the latter and
constructing a random field with it, in the same way as we did
above for the point masses, we find indeed that ξ−(ϑ) ∝ ϑ−4.
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Appendix A.3: Ambiguous modes in ξ± and their relation to
power spectra

We consider here the relation between shear correlation function
and the underlying power spectra, and provide examples of cor-
relations functions that can be derived equally well from an E-
or B-mode power spectrum, or a linear combination of both.

We start by noting that the relation between the correla-
tion functions and the E- and B-mode power spectra, PE(`) and
PB(`), respectively, is given by Eq. (72). If the correlation func-
tions are known for all ϑ, one can invert these relations and get
a unique decomposition into E and B modes,

PE(`) = π

∫ ∞

0
dϑ ϑ

[
ξ+(ϑ) J0(`ϑ) + ξ−(ϑ) J4(`ϑ)

]
,

PB(`) = π

∫ ∞

0
dϑ ϑ

[
ξ+(ϑ) J0(`ϑ) − ξ−(ϑ) J4(`ϑ)

]
, (A.25)

but on a finite interval of separations, this decomposition is not
possible. As an example, we consider the power spectrum11

P0(`) =
2πϑ2

`2ϑ2
0

[
`
(
ϑ2

0 ξ0 + ϑ2
2 ξ2

)
J1(`ϑ2) − 2ϑ2 ξ2 J2(`ϑ2)

]
,

(A.26)

where ϑ2 > ϑmax, and ϑ0 is a fiducial angular scale, and let the
E- and B-mode power spectra be PE(`) = f P0(`), PB(`) = (1 −
f )P0(`). Then we find from Eq. (72) that

ξ+(ϑ) = ξ0 + ξ2

(
ϑ

ϑ0

)2

; ξ−(ϑ) = 0 (A.27)

for ϑ < ϑ2, and thus for ϑ ≤ ϑmax, valid for any value of f .
Hence, we can obtain the pair of correlation functions (A.27) for
any distribution of power on the E- and B-mode power spectra.
Therefore, we have the two ambiguous modes ξ+ = const. and
ξ+ ∝ ϑ2. We note that these modes are ambiguous only on a
finite interval. For ϑ > ϑ2, ξ+ = 0, but ξ− , 0, and in partic-
ular, ξ− ∝ (2 f − 1). Hence, if we had information about ξ± on
all scales, we could determine the parameter f , and the mode
assignment would be unique.

Similarly, we consider the power spectrum

P0(`) =
2πϑ2

0

`2ϑ3
1

[
2ξ−2ϑ1J2(`ϑ1) + `

(
ξ−2ϑ

2
1 + ξ−4ϑ

2
0

)
J3(`ϑ1)

]
,

(A.28)

where ϑ1 < ϑmin. We now distribute this power as PE(`) =
(1 + f )P0(`), PB(`) = f P0(`) over E- and B modes, and then find
from Eq. (72) that

ξ+(ϑ) = 0 ; ξ−(ϑ) = ξ−2

(
ϑ

ϑ0

)−2

+ ξ−4

(
ϑ

ϑ0

)−4

, (A.29)

which is valid for ϑ > ϑ1 and thus for ϑ ≥ ϑmin. We note that
this pair of correlation functions are independent of f , and thus
valid for any distribution of the power P0 over E and B modes.
Hence, this is a second pair of ambiguous modes, namely ξ+ = 0,
and ξ− ∝ ϑ−2 and ξ− ∝ ϑ−4. Whereas ξ−(ϑ) = 0 for ϑ < ϑ1,
ξ+(ϑ) , 0 for smaller ϑ, and in particular it is proportional to

11 We ignore the fact that P0 can be negative; instead, we may assume
that P0 is an additive contribution to a total power spectrum that is pos-
itive for all `.

(1 + 2 f ). Thus, again, these modes are ambiguous only on a
finite interval.

For the more general case, we assume that the correlation
functions ξ+(ϑ) = ξ0

+(ϑ) + ∆ξ+(ϑ), ξ−(ϑ) = ξ0
−(ϑ) + ∆ξ−(ϑ) are

written as a sum of two terms, where the ones with a “0” su-
perscript do not yield any ambiguous modes E0

a,b = 0 = B0
a,b.

On the other hand, we assume that ∆ξ+(ϑ) is purely ambiguous
(i.e., of the form ∆ξ+(ϑ) = ξ0 + ξ2(ϑ/ϑ0)2 on the finite interval
ϑmin ≤ ϑ ≤ ϑmax) but has an arbitrary functional form for larger
and smaller separations. The coefficients ξ0,2 are directly related
to the Ea,b + Ba,b defined above. From Eq. (A.25), we then find

P0 := ∆PE(`) + ∆PB(`) = 2π
∫ ∞

0
dϑ ϑ J0(`ϑ) ∆ξ+(ϑ) . (A.30)

We again distribute the power over modes in the form ∆PE(`) =
f P0(`), ∆PB(`) = (1− f )P0(`), and then calculate ∆ξ−(ϑ) on the
finite interval,

∆ξ−(ϑ) = (2 f − 1)
∫ ∞

0
d` ` J4(`ϑ)

∫ ∞

0
dθ θ J0(`θ) ∆ξ+(θ)

= (2 f − 1)
{

∆ξ+(ϑ) +

∫ ϑmin

0
dθ θ∆ξ+(θ)

(
4
ϑ2 −

12θ2

ϑ4

)
+

∫ ϑ

ϑmin

dθ θ

ξ0 + ξ2

(
ϑ

ϑ0

)2 ( 4
ϑ2 −

12θ2

ϑ4

) }
(A.31)

= (2 f − 1)
{

1
ϑ2

4 ∫ ϑmin

0
dθ θ∆ξ+(ϑ) − 2ϑ2

minξ0 −
ϑ4

min

ϑ0
ξ2


+

1
ϑ4

12
∫ ϑmin

0
dθ θ3 ∆ξ+(ϑ) + 3ϑ4

minξ0 +
2ϑ6

min

ϑ2
0

ξ2

 } ,
where we made use of the relation∫ ∞

0
d` ` J0(`ϑ) J4(`θ) =

1
ϑ
δD(ϑ − θ) +

(
4
θ2 −

12ϑ2

θ4

)
H(θ − ϑ) ,

where δD and H denote the Dirac delta “ function” and the Heav-
iside step function, respectively. We see that ∆ξ−(ϑ) only con-
tains ambiguous modes inside the finite interval and that their
amplitudes depend on the integral of ∆ξ+ over scales below ϑmin;
in other words, the amplitudes are assumed to be unmeasured.
Because of this, the fraction f of B-mode power attributed to the
∆ξ± cannot be determined. We can go through the analogous
exercise to fix ∆ξ− and calculate ∆ξ+, which then only contains
ambiguous modes with an amplitude that depends on f and mo-
ments of ξ− taken over scales larger than ϑmax.

Appendix B: A new set of COSEBIs

The µ = n coefficients in Eq. (17) define the COSEBIs. These
COSEBIs depend on the choice of the weight functions T±n(ϑ).
We point out that the T±n(ϑ) used in this paper differ from
those in SEK in their dimensions: whereas in SEK, these fil-
ter functions were chosen to be dimensionless, we chose them
here to have dimension (angle)−2, as can be seen from Eq. (6).
Correspondingly, the COSEBIs defined here are dimensionless,
whereas they have dimension (angle)2 in SEK. We think the cur-
rent choice is more natural than the earlier one.

Furthermore, our orthonormality relation (6) differs from
that of SEK through the factor ϑ in the integral. This new defini-
tion allowed us to show that the T−n(ϑ) also form an orthonormal
basis, which they do not with the orthonormality relation used in
SEK.
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In SEK, we constructed two sets of functions T±n(ϑ), one
polynomials in ϑ and the other polynomials in ln(ϑ), termed
linear and logarithmic COSEBIs, respectively. The latter were
shown to be more convenient, in that fewer COSEBI modes are
needed to extract the full cosmological information contained in
mode-separable correlation functions.

Appendix B.1: Linear COSEBIs

We consider the case of polynomial COSEBIs first, for which
we transform the interval ϑmin ≤ ϑ ≤ ϑmax onto the interval
−1 ≤ x ≤ 1 via

ϑ = ϑ̄(1 + Bx) . (B.1)

We then set T±n(ϑ) = ϑ̄−2t±n(x). Since dϑ = Bϑ̄ dx, we then see
from Eqs. (6) and (14) that the t±n(x) obey the orthonormality
relations∫ 1

−1
dx (1 + Bx) t±m(x) t±n(x) = δmn . (B.2)

This equation also motivates the pre-factor in the orthonormality
relation (6). Furthermore, the constraints (4) are translated into∫ 1

−1
dx (1 + Bx) t+n(x) = 0 =

∫ 1

−1
dx (1 + Bx)3 t+n(x) . (B.3)

The functions T−n(ϑ) = ϑ̄−2t−n(x) are then calculated from

t−n(x) = t+n(x) +
4B

(1 + Bx)2

∫ x

−1
dy (1 + By) t+n(y)

−
12B

(1 + Bx)4

∫ x

−1
dy (1 + By)3 t+n(y) . (B.4)

We constructed a set of polynomial functions t+n(x) obeying the
orthonormality relation (B.2) and the constraints (B.3), where
t+n(x) is a polynomial of (n + 1)-th order, given by

t+1(x) =
(5 − B2) P2(x) − 3B P1(x) + B2 P0(x)

√
10 − 6B2

,

t+n(x) =

[
2(n + 2) B Pn+1

(
1
B

)
Pn+2

(
1
B

)]−1/2

(B.5)

×

n+1∑
k=0

(−1)k(2k + 1) Pk

(
1
B

)
Pk(x) for n ≥ 2 .

The sign of the t+n(x) has been chosen such that t+n(−1) > 0,
implying T+n(ϑmin) > 0. In order to show the validity of this
result, we first consider, for n ≥ 2, the expression

(1 + Bx)
n+1∑
k=0

(−1)k(2k + 1)Pk

(
1
B

)
Pk(x)

= B
n+1∑
k=0

(−1)k
{

2k + 1
B

Pk

(
1
B

)
Pk(x) (B.6)

+ Pk

(
1
B

)
[(k + 1)Pk+1(x) + kPk−1(x)]

}
,

where we used the recursion relation for Legendre polynomi-
als, Pk. Changing the summation index for the last two terms
as k → k ± 1 and applying the recursion relation for Legendre

polynomials again, this time for the Pk(1/B), we see that only
two terms survive, and we obtain

(1+Bx)
n+1∑
k=0

(−1)k(2k + 1)Pk

(
1
B

)
Pk(x) (B.7)

= (−1)n+1(n + 2)B
[
Pn+1

(
1
B

)
Pn+2(x) + Pn+2

(
1
B

)
Pn+1(x)

]
.

Therefore, we find that, for n ≥ 2,

(1 + Bx) t+n(x) = (−1)n+1

√
(n + 2)B

2Pn+1(1/B)Pn+2(1/B)

×

[
Pn+1

(
1
B

)
Pn+2(x) + Pn+2

(
1
B

)
Pn+1(x)

]
. (B.8)

Using the orthogonality relation of the Legendre polynomials, it
is then straightforward to show that the orthonormality relation
(B.2) is satisfied for m, n ≥ 2. Furthermore, since (1 + Bx)t+n
for n ≥ 2 contains no term Pk(x) with k ≤ 2, the orthogonality
relation is clearly valid for m = 1, n ≥ 2. Finally, it is easy to
see that conditions (B.3) are satisfied for n ≥ 2, and for n = 1,
it can be shown from straightforward integration. Hence, the
system (B.5) forms the set of polynomial weight functions we
were looking for.

It should be stressed that these functions are easy to calcu-
late: for a given survey setup, one needs to calculate the Pk(1/B)
only once, and the Pn(x) are easily obtainable from the recursion
relation of the Legendre polynomials. Whereas it is possible
in principle to obtain explicit expressions for the corresponding
functions t−n(x), this may not be needed: since the calculation
of COSEBIs requires the calculation of the ξ± and the T−n at a
large number of ϑ-values (see Asgari & Schneider 2015), it is
probably computationally more efficient to evaluate the integrals
in Eq. (B.4) using very small increments in the upper bound x.

Appendix B.2: Logarithmic COSEBIs

The roots of the polynomial weight functions T+n(ϑ) are fairly
uniformly distributed over the interval ϑmin < ϑ < ϑmax. The
shear correlation functions ξ±(ϑ) vary more strongly for smaller
ϑ than for larger ϑ, and therefore are expected to contain more
(cosmological) information on these smaller scales. Therefore,
it is useful to consider a set of weight functions T+n(ϑ) that also
show more structure on smaller scales, as done before in SEK.
We let

T+n(ϑ) =
1
ϑ̄2

t+n

(
ln

ϑ

ϑmin

)
, (B.9)

so that the functions t+n(z) are defined for 0 ≤ z ≤

ln(ϑmax/ϑmin) = zm. The constraints (4) and the orthonormal-
ity relation (6) then read in terms of the t+n:∫ zm

0
dz e2z t+n(z) = 0 ,∫ zm

0
dz e4z t+n(z) = 0 , (B.10)∫ zm

0
dz e2z t+n(z) t+m(z) =

Bϑ̄2

ϑ2
min

δmn .

We now choose the t+n(z) to be polynomials of order n + 1, and
write them in the form

t+n(z) =

n+1∑
k=0

cnk zk . (B.11)
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Nmax=20; tmin=1; tmax=400; tbar=(tmax+tmin)/2; BB=2(tmax-tmin)/tbar; zm=Log[Rationalize[tmax/tmin]]
gamm[a_,z_]=Gamma[a,0,z]
Do[J[k,j]=Re[N[gamm[j+1,-k zm]/(-k)^(j+1),130]],{k,2,4},{j,0,2 Nmax+1}]
Do[Do[a[n,j]=J[2,j]/J[2,n+1]; a[n+1,j]=J[4,j]/J[4,n+1],{j,0,n}]; b[n]=-1; b[n+1]=-1;
Do[a[m,j]=NSum[J[2,i+j] c[m,i],{i,0,m+1}, WorkingPrecision->80, NSumTerms->Nmax],{m,1,n-1},{j,0,n}];
Do[bb[m]=-NSum[J[2,i+n+1] c[m,i],{i,0,m+1}, WorkingPrecision->80, NSumTerms->Nmax],{m,1,n-1}];
Do[a[m,j]=a[m,j]/bb[m],{m,1,n-1},{j,0,n}]; Do[b[m]=1,{m,1,n-1}];
A=Table[a[i,j],{i,1,n+1},{j,0,n}]; B=Table[b[i],{i,1,n+1}];
CC=LinearSolve[A,B]; Do[c[n,j]=CC[[j+1]],{j,0,n}]; c[n,n+1]=1;
tt[n,z_]=Simplify[Sum[c[n,j] z^j,{j,0,n+1}]];
roots=NSolve[tt[n,z]==0,z];Do[r[n,j]=roots[[j,1,2]],{j,1,n+1}];
t[n,z_]=Product[(z-r[n,j]),{j,1,n+1}];
normgral=NIntegrate[Exp[2z] t[n,z]^2,{z,0,zm},WorkingPrecision->50];
norm[n]=Sqrt[tbar^2 BB/tmin^2/normgral]; t[n,z_]=t[n,z] norm[n], {n,1,Nmax}]

ROOTS=Table[N[r[n,j],8],{n,1,Nmax},{j,1,Nmax+1}]; NORM=Table[N[norm[n],8],{n,1,Nmax}]

Fig. B.1. Mathematica (Wolfram 1991) program to calculate the roots in Eq. (B.12). They are stored with eight significant digits in the lower-left
half of the table ROOTS, and the table NORM contains the normalization coefficients, Nn
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Fig. B.2. Comparison between the new dimensionless (solid red)
and the old SEK (dashed blue) COSEBIs. We show the form of the fifth
COSEBI weight function, W5(`). Each curve is normalized with respect
to its maximum value. We chose an angular separation interval of 0.5
to 300 arcminutes to define the weights.

The equations (B.10) then lead to a linear system of equations
for the coefficients cnk, as was shown in SEK. Indeed, this sys-
tem is very similar to the corresponding one in SEK, and differs
only in the definition of the orthonormality relation for the T+n.
Hence, we refer the reader to SEK for details of the method how
the solution for the cnk is obtained. As was mentioned there, one
needs the cnk to have very high numerical precision, in particular
for large values of ϑmax/ϑmin. However, if we write the polyno-
mials in the form

t+n(z) = Nn

n+1∏
i=1

(z − rni) , (B.12)

then a moderate precision for the roots rni is sufficient. As an
example, for ϑmax/ϑmin = 400 and eight significant digits of the
rni, the orthonormality relations for the first 20 T+n are satisfied
to better than 10−18. In Fig. B.1, we display a Mathematica (Wol-
fram 1991) program that calculates the roots rni.

An expression for the corresponding function T−n(ϑ) =
t−n[ln(ϑ/ϑmin)]/ϑ̄2 can then be calculated from Eq. (3), yielding

t−n(z) = t+n(z) +

∫ z

0
dy t+n(y)

[
4e2(y−z) − 12e4(y−z)

]
. (B.13)

Hence, the t−n can be easily calculated as numerical integrals
over the t+n in the form (B.12).

The COSEBIs are related to the underlying power spectrum
by the integral

En =

∫ ∞

0

d` `
2π

PE(`) Wn(`) , (B.14)

where the weight function Wn is given by

Wn(`) =

∫ ϑmax

ϑmin

dϑ ϑT+n(ϑ) J0(ϑ`) . (B.15)

These weight functions thus describe the sensitivity of the
COSEBIs to the power spectrum. As an example, we plot in
Fig. B.2 the function W5(`) and compare it to the correspond-
ing one of the COSEBIs defined in SEK, in both cases for the
logarithmic weight functions. As can be seen, the “new” W5 is
significant nonzero over a somewhat broader range in `. It is this
feature that makes the new COSEBIs less correlated than the old
ones, as shown in Fig. 7. On the other hand, the wider `-range
may lead to an increase in the sensitivity of the COSEBIs to dif-
ferent baryonic feedback effects, compared to that of the SEK
COSEBIs (see Asgari et al. 2020), which shall be explored in
future work.

In particular, it must be stressed that the information con-
tent of the SEK COSEBIs and the dimensionless COSEBIs are
exactly the same, if their full (infinite) sets are considered; in
fact, one can transform one set into the other. The difference
in the properties illustrated in Figs. 7 and B.2 are not due to the
different orthonormality relations, but due to the specific choice
of polynomial weight functions T+n(ϑ). Different sets of weight
functions may be constructed, for example to make the first N
of the Wn(`) more localized and thus potentially less sensitive to
baryonic effects.

Appendix C: COSEBIs on a subinterval

In this section we consider the relation between the COSEBIs
on a subinterval ϑ′min ≤ ϑ ≤ ϑ′max, and the original ones on
[ϑmin, ϑmax], where ϑmin ≤ ϑ

′
min < ϑ′max ≤ ϑmax. We denote with

B′ and ϑ̄′ the relative width and the mean angle inside the subin-
terval. Furthermore, we denote by T ′±µ(ϑ) the basis functions on
the subinterval, which have a support on this subinterval. The
coefficients τ′±µ, defined in analogy with Eqs. (19) and (20), are
then obtained from the correlation functions ξ± by

τ′±µ =

∫ ϑ′max

ϑ′min

dϑ ϑT ′±µ(ϑ) ξ±(ϑ) =
∑
ν

T ±µν τ±ν , (C.1)

where we used representation (18) of the correlation function
and defined

T ±µν =
ϑ̄2

B

∫ ϑ′max

ϑ′min

dϑ ϑT ′±µ(ϑ) T±ν(ϑ) . (C.2)
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Using the relation between the τ±n and the COSEBIs En, Bn, we
obtain

E′µ =
τ′+µ + τ′−µ

2
=

1
2

∑
ν

[(
T +
µν + T −µν

)
Eν +

(
T +
µν − T

−
µν

)
Bν

]
,

B′µ =
τ′+µ − τ

′
−µ

2
=

1
2

∑
ν

[(
T +
µν − T

−
µν

)
Eν +

(
T +
µν + T −µν

)
Bν

]
.

We now look at some properties of the transfer matrices T ±.
Since the functions T ′−m and T−n are related to T ′+m and T+n
though the transformation (9), we can apply the Lemma in
Sect. 2 and obtain from Eq. (C.2) that

T −mn = T +
mn . (C.3)

Furthermore, for ν = a, b, the functions T+ν(ϑ) are of the form
x0 + x2ϑ

2. From the analog of conditions (4) for the T ′+µ func-
tions, we then infer that

T +
ma = 0 = T +

mb . (C.4)

Similarly, for ν = a, b, the functions T−ν(ϑ) are of the form
x2ϑ

−2 + x4ϑ
−4, so that the condition (5) yields

T −ma = 0 = T −mb . (C.5)

Together, we than find that

E′m =

∞∑
n=1

T +
mn En ; B′m =

∞∑
n=1

T +
mn Bn . (C.6)

This result then shows that the E- and B-mode COSEBIs on the
subinterval can be calculated from the E- and B-mode COSEBIs
on the original angular interval. The transfer matrix T + depends
on the choice of basis functions; in general we expect that in or-
der to obtain E′m to a given accuracy, one needs to use En’s up to
significantly larger n. However, subdividing the angular interval
into subintervals, as has been done in some previous work, does
not yield any additional information if one chooses the maxi-
mum order of COSEBIs properly.

Since in general, T ±an andT ±bn will be nonzero, the ambiguous
modes in the subinterval will not only depend on the ambigu-
ous modes on the full interval, but some E and B modes of the
full interval will be transferred to the ambiguous modes on the
subinterval. This is to be expected: the smaller the angular range
is, the more pure-mode information gets lost to the ambiguous
modes.
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