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Abstract
Atomistic modelling of magnetic materials provides unprecedented detail about the
underlying physical processes that govern their macroscopic properties, and allows the
simulation of complex effects such as surface anisotropy, ultrafast laser-induced spin
dynamics, exchange bias, and microstructural effects. Here we present the key methods used
in atomistic spin models which are then applied to a range of magnetic problems. We detail the
parallelization strategies used which enable the routine simulation of extended systems with
full atomistic resolution.
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1. Introduction

Atomistic models of magnetic materials, where the atoms are
treated as possessing a local magnetic moment, originated
with Ising in 1925 as the first model of the phase transition in
a ferromagnet [1]. The Ising model has spin-up and spin-down
only states, and is amenable to analytical treatment, at least
in two dimensions. Although it is still extensively used in
the study of phase transitions, it is limited in applicability to
magnetic materials and cannot be used for dynamic simula-
tions. A natural extension of the Ising model is to allow the
atomic spin to vary freely in 3D space [2, 3] which yields
the classical Heisenberg model, where quantum mechanical
effects on the atomic spins are neglected [2]. Monte Carlo
simulations of the classical Heisenberg model allowed the
study of phase transitions, surface and finite size effects in
simple magnetic systems. The study of dynamic phenomena
however was intrinsically limited due to the use of Monte Carlo
methods until the development of dynamic [4, 5] and stochastic
Landau–Lifshitz–Gilbert atomistic spin models [6–8].

Today atomistic simulation of magnetic materials has
become an essential tool in understanding the processes
governing the complex behaviour of magnetic nanomaterials,
including ultrafast laser-induced magnetization dynamics
[9–11], exchange bias in core-shell nanoparticles [12–14]
and multilayers [5, 15], surface anisotropy in magnetic
nanoparticles [16, 17], microstructural effects [18–20], spin
valves [21] and spin torque [22], temperature effects and
properties [23–26] and magnetic recording media [27, 28]. A
significant capability of the atomistic spin model is to bridge
the gap between ab initio electronic structure calculations and
micromagnetics by using a multiscale model [29–32]. Such
a model is able to calculate effective parameters for larger
scale micromagnetic simulations [33], such as anisotropies,
and exchange constants [34]. The atomistic model is also
able to interface directly with micromagnetic simulations to
tackle extended systems by calculating interface properties
atomistically while treating the bulk of the material with a
micromagnetic discretization [35, 36]. Despite the broad ap-
plicability and importance of atomistic models, no easy-to-use
and open-source software packages are presently available to
researchers, unlike the mesoscopic micromagnetic approaches
where several packages are currently available [37–39].

Today most magnetic modelling is performed using nu-
merical micromagnetics in finite difference [37] and finite
element [38, 39] flavours. The theoretical basis of micromag-
netics is that the atomic dipoles which make up the magnetic
material can be approximated as a continuous vector field
where, due to the exchange interaction, the atomic dipoles in
a small finite volume are perfectly aligned. Micromagnetics
has proven to be an essential tool in understanding a range
of complex magnetic effects [40–42] but due to the rapid
pace of technological development in magnetic materials the
continuum approximation at its heart precludes its application
to many problems of interest at the beginning of the 21st
century, such as heat assisted magnetic recording [43], ultrafast
laser-induced demagnetization [44, 45], exchange bias in spin
valves [46], surface and interface anisotropy [47, 48] and high

anisotropy materials for ultrahigh density recording media
such as FePt [49]. The common theme to these problems
is a sub-nanometre spatial variation in the magnetization
caused by high temperatures, atomic level ordering (anti-
and ferrimagnets), or atomic surface and interface effects. To
tackle these problems requires a formalism to take account
of the detailed atomic structure to express its impact on the
macroscopic behaviour of a nano particle, grain or complete
device.

Some, but not all, of these problems can adequately be
tackled by next-generation micromagnetic approaches uti-
lizing the Landau–Lifshitz–Bloch equation [50–52], which
is based on a physically robust treatment of the coupling
of a macrospin to a heat bath, allowing the study of high
temperature processes [53], ultrafast demagnetization [54, 55]
and switching [56]. However, true atomic scale variations of
the magnetization, as apparent in antiferromagnets, surfaces
and interfaces, still require an atomistic approach. Additionally
with the decreasing size of magnetic elements, finite size ef-
fects begin to play in increasing role in the physical properties
of magnetic systems [57].

In this article we present an overview of the common
computational methods utilized in atomistic spin simulations
and details of their implementation in the open-source VAMPIRE

software package3. Testing of the code is an essential part
of ensuring the accuracy of the model and so we also detail
important tests of the various parts of the model and compare
them to analytic results while exploring some interesting
physics of small magnetic systems.

VAMPIRE is designed specifically with these problems in
mind, and can easily simulate nanoparticles, multilayer films,
interfacial mixing, surface anisotropy and roughness, core-
shell systems, granular media and lithographically defined
patterns, all with fully atomistic resolution. In addition, truly
realistic systems predicted by Molecular Dynamics simula-
tions [19, 20, 59] can also be used giving unprecedented
detail about the relationships between shape and structure
and the magnetic properties of nanoparticles. In addition to
these physical features VAMPIRE also utilizes the computing
power of multiprocessor machines through parallelization,
allowing systems of practical interest to be simulated routinely,
and large-scale problems on the 100+ nm length scale to be
simulated on computing clusters. Further details of the VAMPIRE

code and its architecture are presented in appendix A.

2. The atomistic spin model

The physical basis of the atomistic spin model is the local-
ization of unpaired electrons to atomic sites, leading to an
effective local atomistic magnetic moment. The degree of
localization of electrons has historically been a contentious
issue in 3d metals [60], due to the magnetism originating
in the outer electrons which are notionally loosely bound to
the atoms. Ab initio calculations of the electron density [61]
show that in reality, even in ‘itinerant’ ferromagnets, the spin
polarization is well-localized to the atomic sites. Essentially

3 Details available from vampire.york.ac.uk.
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this suggests that the bonding electrons are unpolarized, and
after taking into account the bonding charge the remaining
d-electrons form a well-defined effective localized moment on
the atomic sites.

Magnetic systems are fundamentally quantum mechani-
cal in nature since the electron energy levels are quantized,
the exchange interaction is a purely quantum mechanical
effect, and other important effects such as magnetocrystalline
anisotropy arise from relativistic interactions of electronic
orbitals with the lattice, which are the province of ab initio
models. In addition to these properties at the electronic level,
the properties of magnetic materials are heavily influenced
by thermal effects which are typically difficult to incorporate
into standard density functional theory approaches. Therefore
models of magnetic materials should combine the quantum
mechanical properties with a robust thermodynamic formal-
ism. The simplest model of magnetism using this approach is
the Ising model [1], which allows the atomic moments one of
two allowed states along a fixed quantization axis. Although
useful as a descriptive system, the forced quantization is
equivalent to infinite anisotropy, limiting the applicability of
the Ising model in relation to real materials. In the classical
description the direction of the atomic moment is a continuous
variable in 3D space allowing for finite anisotropies and
dynamic calculations. In some sense the classical spin model is
analogous to Molecular Dynamics, where the energetics of the
system are determined primarily from quantum mechanics, but
the time evolution and thermodynamic properties are treated
classically.

2.1. The classical spin Hamiltonian

The extended Heisenberg spin model encapsulates the essen-
tial physics of a magnetic material at the atomic level, where
the energetics of a system of interacting atomic moments is
given by a spin Hamiltonian (which neglects non-magnetic
effects such the as the Coulomb term). The spin Hamiltonian
H typically has the form:

H=Hexc+Hani+Happ (1)

denoting terms for the exchange interaction, magnetic
anisotropy, and externally applied magnetic fields respectively.

The dominant term in the spin Hamiltonian is the Heisen-
berg exchange energy, which arises due to the symmetry of the
electron wavefunction and the Pauli exclusion principle [60]
which governs the orientation of electronic spins in over-
lapping electron orbitals. Due to its electrostatic origin, the
associated energies of the exchange interaction are around
1–2 eV, which is typically up to 1000 times larger than the
next largest contribution and gives rise to magnetic ordering
temperatures in the range 300–1300 K. The exchange energy
for a system of interacting atomic moments is given by the
expression

Hexc =−
∑
i 6= j

Ji j Si · S j (2)

where Ji j is the exchange interaction between atomic sites
i and j , Si is a unit vector denoting the local spin moment
direction and S j is the spin moment direction of neighbouring

atoms. The unit vectors are taken from the actual atomic mo-
mentµs and given by Si =µs/|µs|. It is important to note here
the significance of the sign of Ji j . For ferromagnetic materials
where neighbouring spins align in parallel, Ji j > 0, and for
antiferromagnetic materials where the spins prefer to align
anti-parallel Ji j < 0. Due to the strong distance dependence
of the exchange interaction, the sum in equation (2) is often
truncated to include nearest neighbours only. This significantly
reduces the computational effort while being a good approxi-
mation for many materials of interest. In reality the exchange
interaction can extend to several atomic spacings [29, 30],
representing hundreds of pairwise interactions.

In the simplest case the exchange interaction Ji j is
isotropic, meaning that the exchange energy of two spins
depends only on their relative orientation, not their direction.
In more complex materials, the exchange interaction forms a
tensor with components:

JM
i j =

[Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

]
, (3)

which is capable of describing anisotropic exchange interac-
tions, such as two-ion anisotropy [29] and the Dzyaloshinskii–
Moriya interaction (off-diagonal components of the exchange
tensor). In the case of tensorial exchange HM

exc, the exchange
energy is given by the product:

HM
exc =−

∑
i 6= j

[
Si

x Si
y Si

z
] [Jxx Jxy Jxz

Jyx Jyy Jyz
Jzx Jzy Jzz

]S j
x

S j
y

S j
z

 . (4)

Obtaining the components of the exchange tensor may be
done phenomenologically, or via ab initio methods such as
the relativistic torque method [62–65] or the spin-cluster
expansion technique [30, 66–68]. The above expressions
for the exchange energy also exclude higher-order exchange
interactions such as three-spin and four-spin terms. In most
materials the higher-order exchange terms are significantly
smaller than the leading term and can safely be neglected.

While the exchange energy gives rise to magnetic ordering
at the atomic level, the thermal stability of a magnetic material
is dominated by the magnetic anisotropy, or preference for the
atomic moments to align along a preferred spatial direction.
There are several physical effects which give rise to anisotropy,
but the most important is the magnetocrystalline anisotropy
(namely the preference for spin moments to align with particu-
lar crystallographic axes) arising from the interaction of atomic
electron orbitals with the local crystal environment [69, 70].

The simplest form of anisotropy is of the single-ion
uniaxial type, where the magnetic moments prefer to align
along a single axis, e, often called the easy axis and is an
interaction confined to the local moment. Uniaxial anisotropy
is most commonly found in particles with elongated shape
(shape anisotropy), or where the crystal lattice is distorted
along a single axis as in materials such as hexagonal Cobalt and
L10 ordered FePt. The uniaxial single-ion anisotropy energy
is given by the expression:

Huni
ani =−ku

∑
i

(Si · e)2 (5)

3
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where ku is the anisotropy energy per atom. Materials with
a cubic crystal structure, such as iron and nickel, have a
different form of anisotropy known as cubic anisotropy. Cubic
anisotropy is generally much weaker than uniaxial anisotropy,
and has three principal directions which energetically are
easy, hard and very hard magnetization directions respectively.
Cubic anisotropy is described by the expression:

Hcub
ani =

kc

2

∑
i

(
S4

x + S4
y + S4

z

)
(6)

where kc is the cubic anisotropy energy per atom, and Sx , Sy ,
and Sz are the x , y, and z components of the spin moment S
respectively.

Most magnetic problems also involve interactions be-
tween the system and external applied fields, denoted as Happ.
External fields can arise in many ways, for example a nearby
magnetic material, or as an effective field from an electric
current. In all cases the applied field energy is simply given by:

Happ =−
∑

i

µsSi · Happ. (7)

2.2. A note on magnetic units

The subject of magnetic units is controversial due to the
existence of multiple competing standards and historical ori-
gins [60]. Starting from the atomic level however, the dimen-
sionality of units is relatively transparent. Atomic moments
are usually accounted for in multiples of the Bohr magneton
(µB), the magnetic moment of an isolated electron, with units
of J T−1. Given a number of atoms of moment µs in a volume,
the moment per unit volume is naturally in units of J T m−3,
which is identical to the SI unit of A m−1. However, the
dimensionality (moment per unit volume) of the unit A m−1

is not as obvious as J T−1m−3, and so the latter form is used
herein.

Applied magnetic fields are hence defined in Tesla, which
comes naturally from the derivative of the spin Hamiltonian
with respect to the local moment. The unit of Tesla for applied
field is also beneficial for hysteresis loops, since the area
enclosed a typical M–H loop is then given as an energy density
(J m−3). A list of key magnetic parameters and variables and
their units are shown in table 1.

3. System parameterization and generation

Unlike micromagnetic simulations where the magnetic system
can be partitioned using either a finite difference or finite
element discretization, atomistic simulations generally require
some a priori knowledge of atomic positions. Most simple
magnetic materials such as Fe, Co or Ni form regular crystals,
while more complex systems such as oxides, antiferromagnets
and Heusler alloys possess correspondingly complex atomic
structures. For ferromagnetic metals, the details of atomic
positions are generally less important due to the strong parallel
orientation of moments, and so they can often (but not always)
be represented using a simple cubic discretization. In contrast,
the properties of ferrimagnetic and antiferromagnetic materials

Table 1. Table of key variables and their units.

Variable Symbol Unit

Atomic magnetic moment µs Joules/Tesla (J T−1)

Unit cell size a Angstroms (Å)
Exchange energy Ji j Joules/link (J)
Anisotropy energy ku Joules/atom (J)
Applied field H Tesla (T)
Temperature T Kelvin (K)
Time t Seconds (s)

Parameter Symbol Value

Bohr magneton µB 9.2740× 10−24 J T−1

Gyromagnetic ratio γ 1.76× 1011 T−1 s−1

Permeability of free space µ0 4π × 10−7 T2 J−1 m3

Boltzmann constant kB 1.3807× 10−23 J K−1

are inherently tied to the atomic positions due to frustration
and exchange interactions, and so simulation of these materials
must incorporate details of the atomic structure.

In addition to the atomic structure of the material, it is also
necessary to parameterize the terms of the spin Hamiltonian
given by equation (1), principally including exchange and
anisotropy values but also with other terms. There are generally
two ways in which this may be done: using experimentally
determined properties or with a multiscale approach using
ab initio density functional theory calculations as input to the
spin model.

3.1. Atomistic parameters from ab initio calculations

Ab initio density functional theory (DFT) calculations utilize
the Hohenberg–Kohn–Sham theory [71, 72] which states that
the total energy E of a system can be written solely in terms the
electron density, ρ. Thus, if the electron density is known then
the physical properties of the system can be found. In practice,
the both electron density and the spin density are used as
fundamental quantities in the total energy expression for spin-
polarized systems [73]. In many implementations DFT-based
methods only consider the outer electrons of a system, since
the inner electrons play a minimal role in the bonding and also
partially screen the effect of the nuclear core. These effects
are approximated by a pseudopotential which determines the
potential felt by the valence electrons. In all-electron methods,
however, the core electron density is also relaxed. By energy
minimization, DFT enables the calculation of a wide range
of properties, including lattice constants, and in the case of
magnetic materials localized spin moments, magnetic ground
state and the effective magnetocrystalline anisotropy. Standard
software packages such as VASP [74], CASTEP [75, 76] and
SIESTA [77] make such calculations readily accessible. At
present determining site resolved properties such as anisotropy
constants and pairwise exchange interactions is more involved
and requires ab initio Green’s functions techniques such as
the fully relativistic Korringa–Kohn–Rostoker method [78,
79] or the LMTO method [80, 81] in conjunction with the
magnetic force theorem [62]. An alternative approach for
the calculation of exchange parameters is the utilization

4
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of the generalized Bloch theorem for spin-spiral states in
magnetic systems [82] together with a Fourier transformation
of k-dependent spin-spiral energies [83, 84].

A number of studies have determined atomic magnetic
properties from first principles calculations by direct mapping
onto a spin model, including the principal magnetic elements
Co, Ni and Fe [81], metallic alloys including FePt [29],
IrMn [31], oxides [85] and spin glasses [86], and also bilayer
systems such as Fe/FePt [87]. Such calculations give detailed
insight into microscopic magnetic properties, including atomic
moments, long-ranged exchange interactions, magnetocrys-
talline anisotropies (including surface and two-ion interac-
tions) and other details not readily available from phenomeno-
logical theories. Combined with atomistic models it is possible
to determine macroscopic properties such as the Curie tem-
perature, temperature-dependent anisotropies, and magnetic
ground states, often in excellent agreement with experiment.
However, the computational complexity of DFT calculations
also means that the systems which can be simulated with this
multi scale approach are often limited to small clusters, perfect
bulk systems and 2D periodic systems, while real materials of
course often contain a plethora of defects disrupting the long
range order. Some studies have also investigated the effects
of disorder in magnetic systems combined with a spin model
mapping, such as dilute magnetic semiconductors [88] and
metallic alloys [89].

Magnetic properties calculated at the electronic level have
a synergy with atomistic spin models, since the electronic
properties can often be mapped onto a Heisenberg spin model
with effective local moments. This multiscale electronic and
atomistic approach avoids the continuum approximations of
micromagnetics and treats magnetic materials at the natural
atomic scale.

3.2. Atomistic parameters from macroscopic
properties

The alternative approach to multiscale atomistic/density-
functional-theory simulations is to derive the parameters from
experimentally determined values. This has the advantage of
speed and lower complexity, whilst foregoing microscopic
details of the exchange interactions or anisotropies. Another
key advantage of generic parameters is the possibility of
parametric studies, where parameters are varied explicitly to
determine their importance for the macroscopic properties
of the system, such as has been done for studies of surface
anisotropy [17] and exchange bias [13].

Unlike micromagnetic simulations, the fundamental ther-
modynamic approach of the atomistic model means that all
parameters must be determined for zero temperature. The
spin fluctuations then determine the intrinsic temperature de-
pendence of the effective parameters which are usually put
into micromagnetic simulations as parameters. Fortunately
determination of the atomic moments, exchange constants and
anisotropies from experimental values is relatively straightfor-
ward for most systems.

3.2.1. Atomic spin moment. The atomic spin moment µs is
related to the saturation magnetization simply by:

µs =
Msa3

nat
(8)

where Ms is the saturation magnetization at 0 K in J T−1m−3,
a is the unit cell size (m), and nat is the number of atoms per unit
cell. We also note the usual convention of expressing atomic
moments in multiples or fractions of the Bohr magneton,
µB owing to their electronic origin. Taking BCC iron as an
example, the zero temperature saturation magnetization is
1.75 MA m−1 [90], unit cell size of a = 2.866 Å, this gives an
atomic moment of 2.22 µB/atom.

3.2.2. Exchange energy. For a generic atomistic model with
z nearest neighbour interactions, the exchange constant is
given by the mean-field expression:

Ji j =
3kBTc

εz
(9)

where kB is the Boltzmann constant and Tc is the Curie
temperature z is the number of nearest neighbours. ε is a
correction factor from the usual mean-field expression which
arises due to spin waves in the 3D Heisenberg model [91].
Because of this ε is also dependent on the crystal structure and
coordination number, and so the calculated Tc will vary slightly
according to the specifics of the system. For Cobalt with a Tc
of 1388 K and assuming a hexagonal crystal structure with
z = 12, this gives a nearest neighbour exchange interaction
Ji j = 6.064× 10−21 J/link.

3.2.3. Anisotropy energy. The atomistic magnetocrystalline
anisotropy ku is derived from the macroscopic anisotropy
constant Ku by the expression:

ku =
Kua3

nat
(10)

where Ku in given in J m−3. In addition to the atomistic
parameters, it is also worth noting the analogous expressions
for the anisotropy field Ha for a single domain particle:

Ha =
2Ku

Ms
=

2ku

µs
(11)

where symbols have their usual meaning. At this point it is
worth mentioning that the measured anisotropy is a free energy
difference. While the intrinsic ku remains (to a first approxima-
tion) temperature independent, at a non-zero temperature the
free energy in the easy/hard directions is increased/decreased
due to the magnetization fluctuations. Thus the macroscopic
anisotropy value decreases with increasing temperature, van-
ishing at Tc. The thermodynamic basis of atomistic models
makes them highly suitable for the investigation of such
phenomena, as we show later. Applying the above, parameters
for the key ferromagnetic elements are given in table 2.
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Table 2. Table of derived constants for the ferromagnetic elements Fe, Co, Ni and Gd.

Fe Co Ni Gd Unit

Crystal structure bcc hcp fcc hcp —
Unit cell size a 2.866 2.507 3.524 3.636 Å
Interatomic spacing ri j 2.480 2.507 2.492 3.636 Å
Coordination number z 8 12 12 12 —
Curie temperature Tc 1043 1388 631 293 K
Spin-wave MF correction [91, 92] ε 0.766 0.790 0.790 0.790 —
Atomic spin moment µs 2.22 1.72 0.606 7.63 µB
Exchange energy Ji j 7.050× 10−21 6.064× 10−21 2.757× 10−21 1.280× 10−21 J/link
Anisotropy energy [93] k 5.65× 10−25 6.69× 10−24 5.47× 10−26 5.93× 10−24 J/atom

3.2.4. Ferrimagnets and antiferromagnets. In the case of
ferrimagnets and antiferromagnets the above methods for
anisotropy and moment determination do not work due
to the lack of macroscopic measurements, although the
estimated exchange energies apply equally well to the Néel
temperature provided no magnetic frustration (due to lattice
symmetry) is present. In general, other theoretical calculations
or formalisms are required to determine parameters, such
as mean-field approaches [9] or density functional theory
calculations [31].

3.3. Atomistic system generation

In addition to determining the parameters of the spin Hamil-
tonian, an essential part of the atomistic model is the determi-
nation of the nuclear, or atomic, positions in the system. In the
multiscale approach utilizing ab initio parameterization of the
system, the spin Hamiltonian is intrinsically tied to the atomic
positions. The additional detail offered by first principles
calculations is highly desirable even for perfect crystals and
atomically sharp interfaces, however the computational com-
plexity of the calculations limits the ability to parameterize a
spin Hamiltonian for systems of extended defects over 10 nm+
length scales, including physical effects such as vacancies,
impurities, dislocations and even amorphous materials.

For systems modelled using the nearest neighbour ap-
proximation, the atomic structures are much less restricted,
allowing for simulations of material defects such as interface
roughness [13] and intermixing [21], magnetic multilayers
[94], disordered magnetic alloys [9], surface [17] and finite
size effects [57]. VAMPIRE includes extensive functionality to
generate such systems, the details of which are included in
appendix B. In addition to crystallographic and molecular sys-
tems [95, 96] it is also possible to investigate magnetic effects
in disordered materials and nanoparticles by incorporating the
results of Molecular Dynamics simulations [19, 20, 97].

4. Integration methods

Although the spin Hamiltonian describes the energetics of the
magnetic system, it provides no information regarding its time
evolution, thermal fluctuations, or the ability to determine the
ground state for the system. In the following the commonly
utilized integration methods for atomistic spin models are
introduced.

4.1. Spin dynamics

The first understanding of spin dynamics came from ferro-
magnetic resonance experiments, where the time-dependent
behaviour of a magnetic materials is described by the equation
derived by Landau and Lifshitz [98], and in the modern form
given by:

∂m
∂t
=−γ [m×H+αm× (m×H)] (12)

where m is a unit vector describing the direction of the
sample magnetization, H is the effective applied field acting
on the sample, γ is the gyromagnetic ratio and α is a
phenomenological damping constant which is a property of
the material. The physical origin of the Landau–Lifshitz
(LL) equation arises due to two distinct physical effects. The
precession of the magnetization (first term in equation (12))
arises due to the quantum mechanical interaction of an atomic
spin with an applied field. The relaxation of the magnetization
(second term in equation (12)) is an elementary formulation of
energy transfer representing the coupling of the magnetization
to a heat bath which aligns the magnetization along the field
direction with a characteristic coupling strength determined by
α. In the LL equation the relaxation rate of the magnetization
to the field direction is a linear function of the damping
parameter, which was shown by Gilbert to yield incorrect
dynamics for materials with high damping [99]. Subsequently
Gilbert introduced critical damping, with a maximum effective
damping for α = 1, to arrive at the Landau–Lifshitz–Gilbert
(LLG) equation. Although initially derived to describe the
dynamics of the macroscopic magnetization of a sample, the
LLG is the standard equation of motion used in numerical
micromagnetics, describing the dynamics of small magnetic
elements.

The same equation of motion can also be applied at the
atomistic level. The precession term arises quantum mechan-
ically for atomic spins and the relaxation term now describes
direct angular momentum transfer between the spins and the
heat bath, which includes contributions from the lattice [100]
and the electrons [101]. A distinction between the macroscopic
LLG and the atomistic LLG now appears in terms of the effects
included within the damping parameter. In the macroscopic
LLG, α includes all contributions, both intrinsic (such as
spin–lattice and spin–electron interactions) and extrinsic (spin-
spin interactions arising from demagnetization fields, surface
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defects [102], doping [103] and temperature [50]), while the
atomistic LLG only includes the local intrinsic contributions.
To distinguish the different definitions of damping we therefore
introduce a microscopic damping parameter λ. Although the
form of the LLG is identical for atomistic and macroscopic
length scales, the microstructural detail in the atomistic model
allows for calculations of the effective damping including
extrinsic effects, such as rare-earth doping [103]. Including a
microscopic damping λ the atomistic Landau–Lifshitz–Gilbert
equation is given by

∂Si

∂t
=−

γ

(1+ λ2)
[Si ×Hi

eff + λSi × (Si ×Hi
eff)] (13)

where Si is a unit vector representing the direction of the
magnetic spin moment of site i , γ is the gyromagnetic ratio and
Hi

eff is the net magnetic field on each spin. The atomistic LLG
equation describes the interaction of an atomic spin moment
i with an effective magnetic field, which is obtained from the
negative first derivative of the complete spin Hamiltonian, such
that:

Hi
eff =−

1
µs

∂H
∂Si

(14)

where µs is the local spin moment. The inclusion of the spin
moment within the effective field is significant, in that the
field is then expressed in units of Tesla, given a Hamiltonian in
Joules. Given typical energies in the Hamiltonian of 10 µeV–
100 meV range. This gives fields typically in the range
0.1–1000 T, given a spin moment of the same order as the
Bohr magneton (µB).

4.2. Langevin dynamics

In its standard form the LLG equation is strictly only applicable
to simulations at zero temperature. Thermal effects cause
thermodynamic fluctuations of the spin moments which at
sufficiently high temperatures are stronger than the exchange
interaction, giving rise to the ferromagnetic-paramagnetic
transition. The effects of temperature can be taken into account
by using Langevin Dynamics, an approach developed by
Brown [104]. The basic idea behind Langevin Dynamics is
to assume that the thermal fluctuations on each atomic site
can be represented by a Gaussian white noise term. As the
temperature is increased, the width of the Gaussian distribution
increases, thus representing stronger thermal fluctuations.
The established Langevin Dynamics method is widely used
for spin dynamics simulations and incorporates an effective
thermal field into the LLG equation to simulate thermal
effects [105–107]. The thermal fluctuations are represented
by a Gaussian distribution 0(t) in three dimensions with a
mean of zero. At each time step the instantaneous thermal
field on each spin i is given by:

Hi
th =0(t)

√
2λkBT
γµs1t

(15)

where kB is the Boltzmann constant, T is the system temper-
ature, λ is the Gilbert damping parameter, γ is the absolute
value of the gyromagnetic ratio, µs is the magnitude of the

atomic magnetic moment, and 1t is the integration time step.
The effective field for application in the LLG equation with
Langevin Dynamics then reads:

Hi
eff =−

1
µs

∂H
∂Si
+Hi

th. (16)

Given that for each time step three Gaussian distributed
random numbers are required for every spin, efficient gen-
eration of such numbers is essential. VAMPIRE makes use the
Mersenne Twister [108] uniform random number generator
and the Ziggurat method [109] for generating the Gaussian
distribution.

It is useful at the this point to address the applicability
of the atomistic LLG equation to slow and fast problems
respectively. In reality the thermal and magnetic fluctuations
are correlated at the atomic level, arising from the dynamic
interactions between the atoms and lattice/electron system.
These correlations may be important in terms of the thermal
fluctuations experienced by the atomistic spins. In the conven-
tional Langevin dynamics approach described above, the noise
term is completely uncorrelated in time and space. For short
timescales however, the thermal fluctuations are correlated
in time, and so the noise is coloured [110]. The effect of
the coloured noise is to lessen the effect of sudden temper-
ature changes on the magnetization dynamics. However, the
existence of ultrafast magnetization dynamics [11, 44], and
that it is driven by a thermal rather than quantum mechanical
process [111], requires that the effective correlation time
is short, with an upper bound of around 1 fs. Given that
the correlation time is close to the integration timestep, the
applicability of the LLG to problems with timescales ≥ 1 fs
is sound. There will be a point however where the LLG is
no longer valid, where direct simulation of the microscopic
damping mechanisms will be necessary. Progress has been
made in linking molecular dynamics and spin models [100,
112, 113] which enables the simulation of spin–lattice inter-
actions, which is particularly relevant for slow problems, such
as conventional magnetic recording where switching occurs
over nanosecond timescales. However, it is also essential
to consider spin–electron effects [101, 114] necessary for
ultrafast demagnetization processes, although the physical
origins are still currently debated [115].

4.3. Time Integration of the LLG equation

In order to determine the time evolution of a system of
spins, it is necessary to solve the stochastic LLG equation,
as given by equations (13) and (16), numerically. The choice
of solver is limited due to the stochastic nature of the equations.
Specifically, it is necessary to ensure convergence to the
Stratonovich solution. This has been considered in detail by
Garcia-Palacios [105], but the essential requirement [116]
is that the solver enforces the conservation of the magni-
tude of the spin, either implicitly or by renormalization. The
most primitive integration scheme uses Euler’s method, which
assumes a linear change in the spin direction in a single
discretized time step, 1t . An improved integration scheme,
known as the Heun method [105] is commonly used, which

7



J. Phys.: Condens. Matter 26 (2014) 103202 Topical Review

allows the use of larger time steps because of its use of
a predictor–corrector algorithm. Other more advanced in-
tegration schemes have been suggested, such as the mid-
point method [117] and modified predictor–corrector midpoint
schemes [103, 118]. The principal advantage of the midpoint
scheme is that the length of the spin vector is preserved during
the integration which allows larger time steps to be used. How-
ever for the midpoint scheme the significant increase in com-
putational complexity outweighs the benefits of larger time
steps [118]. Modified predictor–corrector schemes [103, 118]
reduce the computational complexity of the midpoint scheme,
but with a loss of accuracy, particularly in the time-dependent
dynamics [103]. For valid integration of the stochastic LLG
equation it is also necessary for the numerical scheme to
converge to the Stratonovich solution [105, 119]. Although
proven for the midpoint and Heun numerical schemes, the
validity of the predictor–corrector midpoint schemes for the
stochastic LLG have yet to be confirmed. On balance the
Heun scheme, despite its relative simplicity, is sufficiently
computationally efficient that it is still the most widely used
integration scheme for stochastic magnetization dynamics, and
so we proceed to describe its implementation in detail.

In the Heun method, the first (predictor) step calculates
the new spin direction, S′i , for a given effective field Hi

eff by
performing a standard Euler integration step, given by:

S′i = Si +1S1t (17)

where

1S=−
γ

(1+ λ2)
[Si ×Hi

eff + λSi × (Si ×Hi
eff)]. (18)

The Heun scheme does not preserve the spin length and so it
is essential to renormalize the spin unit vector length Si after
both the predictor and corrector steps to ensure numerical
stability and convergence to the Stratanovich solution. After
the first step the effective field must be re-evaluated as the
intermediate spin positions have now changed. It should be
noted that the random thermal field does not change between
steps. The second (corrector) step then uses the predicted spin
position and revised effective field Hi ′

eff to calculate the final
spin position, resulting in a complete integration step given
by:

St+1t
i = Si +

1
2

[
1S+1S′

]
1t (19)

where

1S′ =−
γ

(1+ λ2)
[S′i ×Hi ′

eff + λS′i × (S
′

i ×Hi ′
eff)]. (20)

The predictor step of the integration is performed on every
spin in the system before proceeding to evaluate the corrector
step for every spin. This is then repeated many times so that the
time evolution of the system can be simulated. Although the
Heun scheme was derived specifically for a stochastic equation
with multiplicative noise, in the absence of the noise term the
Heun method reduces to a standard second order Runge–Kutta
method [120]. In order to test the implementation of the Heun
integration scheme, it is possible to compare the calculated
result with the analytical solution for the LLG. For the simple

case of a single spin initially along the x-axis in an applied
field along the z-axis, the time evolution [121] is given by:

Sx (t)= sech
(
λγ H
1+ λ2 t

)
cos

(
γ H

1+ λ2 t
)

Sy(t)= sech
(
λγ H
1+ λ2 t

)
sin
(
γ H

1+ λ2 t
)

Sz(t)= tanh
(
λγ H
1+ λ2 t

)
.

(21)

The expected and simulated time evolution for a single spin
with H = 10 T, 1t = 1× 10−15 s and λ= 0.1, 0.05 is plotted
in figure 1. Superficially the simulated and expected time
evolution agree very well, with errors around 10−6. The error
gives a characteristic trace the size and shape of which is
indicative of a correct implementation of the Heun integration
scheme.

Ideally one would like to use the largest time step possible
so as to simulate systems for the longest time. For micromag-
netic simulations at zero temperature, the minimum time step
is a well defined quantity since the largest field (usually the
exchange term) essentially defines the precession frequency.
However, for atomistic simulations using the stochastic LLG
equation with Langevin dynamics, the effective field becomes
temperature dependent. The consequence of this is that for
atomistic models the most difficult region to integrate is in the
immediate vicinity of the Curie point. Errors in the integration
of the system will be apparent from a non-converged value
for the average magnetization. This gives a relatively simple
case which can then be used to test the stability of integration
schemes for the stochastic LLG model. A plot of the mean
magnetization as a function of temperature is shown in figure 2
for a representative system consisting of 22× 22× 22 unit
cells with generic material parameters of FePt with an fcc
crystal structure, nearest neighbour exchange interaction of
Ji j = 3.0× 10−21 J/link and uniaxial anisotropy of 1.0×
10−23 J/atom. The system is first equilibrated for 10 ps at each
temperature and then the mean magnetization is calculated
over a further 10 ps.

First, comparing the effect of temperature on the minimum
allowable time step, the data show that for low temperatures
reasonably large time steps of 1× 10−15 give the correct
solution of the LLG equations, while near the Curie point
(690 K) the deviations from the correct equilibrium value
are significant. Consequently for simulations studying high
temperature reversal processes time steps of 1× 10−16 s are
necessary. It should be noted that the time steps which can be
used are material-dependent—specifically if a material with
higher Curie temperature is used then the usable time steps
will be correspondingly lower due to the increased exchange
field.

From a practical perspective a significant advantage of
the spin dynamics method is the ability to parallelize the
integration system by domain decomposition, details of which
are given in appendix C. This allows the efficient simulation
of relatively large systems consisting of tens or hundreds of
grains or nano structures with dimensions greater than 100 nm
for nanosecond timescales, with typical numbers of spins in
the range 106–108.
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Figure 1. Time evolution of a single isolated spin in an applied field of 10 T and time step of 1 fs. Magnetization traces (a) and (c) show
relaxation of the magnetization to the z-direction and precession of the x component (the y-component is omitted for clarity) for damping
constants λ= 0.1 and λ= 0.05 respectively. The points are the result of direction integration of the LLG and the lines are the analytical
solution plotted according to equation (21). Panels (b) and (d) show the corresponding error traces (difference between the expected and
calculated spin components) for the two damping constants for (a) and (c) respectively. For λ= 0.1 the error is below 10−6, while for lower
damping the numerical error increases significantly due to the increased number of precessions, highlighting the damping dependence of the
integration time step.

Figure 2. Time step dependence of the mean magnetization for
different reduced temperatures for the Heun integration scheme.
Low (T � Tc) and high (T � Tc) temperatures integrate accurately
with a 1fs timestep, but in the vicinity of Tc a timestep of around
10−16 is required for this system.

4.4. Monte Carlo methods

While spin dynamics are particularly useful for obtain-
ing dynamic information about the magnetic properties or
reversal processes for a system, they are often not the
optimal method for determining the equilibrium properties, for

example the temperature-dependent magnetization. The Monte
Carlo Metropolis algorithm [122] provides a natural way to
simulate temperature effects where dynamics are not required
due to the rapid convergence to equilibrium and relative ease
of implementation.

The Monte Carlo metropolis algorithm for a classical
spin system proceeds as follows. First a random spin i is
picked and its initial spin direction Si is changed randomly
to a new trial position S′i , a so-called trial move. The change
in energy 1E = E(S′i )− E(Si ) between the old and new
positions is then evaluated, and the trial move is then accepted
with probability

P = exp
(
−
1E
kBT

)
(22)

by comparison with a uniform random number in the range
0–1. Probabilities greater than 1, corresponding with a reduc-
tion in energy, are accepted unconditionally. This procedure is
then repeated until N trial moves have been attempted, where
N is the number of spins in the complete system. Each set of
N trial moves comprises a single Monte Carlo step.

The nature of the trial move is important due to two
requirements of any Monte Carlo algorithm: ergodicity and
reversibility. Ergodicity expresses the requirement that all
possible states of the system are accessible, while reversibility
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Figure 3. Schematic showing the three principal Monte Carlo
moves: (a) spin flip; (b) Gaussian; and (c) random.

requires that the transition probability between two states is
invariant, explicitly P(Si → S′i )= P(S′i → Si ). From equa-
tion (22) reversibility is obvious since the probability of a
spin change depends only on the initial and final energy.
Ergodicity is easy to satisfy by moving the selected spin
to a random position on the unit sphere, however this has
an undesirable consequence at low temperatures since large
deviations of spins from the collinear direction are highly
improbable due to the strength of the exchange interaction.
Thus at low temperatures a series of trial moves on the unit
sphere will lead to most moves being rejected. Ideally a move
acceptance rate of around 50% is desired, since very high and
very low rates require significantly more Monte Carlo steps to
reach a state representative of true thermal equilibrium.

One of the most efficient Monte Carlo algorithms for clas-
sical spin models was developed by Hinzke and Nowak [123],
involving a combinational approach using a mixture of dif-
ferent trial moves. The principal advantage of this method
is the efficient sampling of all available phase space while
maintaining a reasonable trial move acceptance rate. The
Hinzke–Nowak method utilizes three distinct types of move:
spin flip, Gaussian and random, as illustrated schematically in
figure 3.

The spin flip move simply reverses the direction of the
spin such that S′i =−Si to explicitly allow the nucleation of a
switching event. The spin flip move is identical to a move in
Ising spin models. It should be noted that spin flip moves do not
by themselves satisfy ergodicity in the classical spin model,
since states perpendicular to the initial spin direction are
inaccessible. However, when used in combination with other
ergodic trial moves this is quite permissible. The Gaussian trial
move takes the initial spin direction and moves the spin to a
point on the unit sphere in the vicinity of the initial position
according to the expression

S′i =
Si + σg0

|Si + σg0|
(23)

where0 is a Gaussian distributed random number and σg is the
width of a cone around the initial spin Si . After generating the
trial position S′i the position is normalized to yield a spin of unit
length. The choice of a Gaussian distribution is deliberate since
after normalization the trial moves have a uniform sampling
over the cone. The width of the cone is generally chosen to be
temperature dependent and of the form

σg =
2
25

(
kBT
µB

)1/5

. (24)

Figure 4. Visualization of Monte Carlo sampling on the unit sphere
for (a) random and (b) Gaussian sampling algorithms at T = 10 K.
The dots indicate the trial moves. The random algorithm shows a
uniform distribution on the unit sphere, and no preferential biasing
along the axes. The Gaussian trial moves are clustered around the
initial spin position, along the z-axis.

The Gaussian trial move thus favours small angular changes
in the spin direction at low temperatures, giving a good
acceptance probability for most temperatures.

The final random trial move picks a random point on the
unit sphere according to

S′i =
0

|0|
(25)

which ensures ergodicity for the complete algorithm and
ensures efficient sampling of the phase space at high tem-
peratures. For each trial step one of these three trial moves is
picked randomly, which in general leads to good algorithmic
properties.

To verify that the random sampling and Gaussian trial
moves give the expected behaviour, a plot of the calculated
trial moves on the unit sphere for the different algorithms is
shown in figure 4. The important points are that the random
trial move is uniform on the unit sphere, and that the Gaussian
trial move is close to the initial spin direction, along the z-axis
in this case.

At this point it is worthwhile considering the relative
efficiencies of Monte Carlo and spin dynamics for calcu-
lating equilibrium properties. Figure 5 shows the simulated
temperature-dependent magnetization for a test system using
both LLG spin dynamics and Monte Carlo methods. Agree-
ment between the two methods is good, but the spin dynamics
simulation takes around twenty times longer to compute due to
the requirements of a low time step and slower convergence to
equilibrium. However, Monte Carlo algorithms are notoriously
difficult to parallelize, and so for larger systems LLG spin
dynamic simulations are generally more efficient than Monte
Carlo methods.

5. Test simulations

Having outlined the important theoretical and computational
methods for the atomistic simulation of magnetic materials,
we now proceed to detail the tests we have refined to ensure
the correct implementation of the main components of the
model. Such tests are particularly helpful to those wishing to
implement these methods. Similar tests developed for micro-
magnetic packages [124] have proven an essential benchmark
for the implementation of improved algorithms and codes with
different capabilities but the same core functionality.

10



J. Phys.: Condens. Matter 26 (2014) 103202 Topical Review

Figure 5. Comparative simulation of temperature-dependent
magnetization for Monte Carlo and LLG simulations. Simulation
parameters assume a nearest neighbour exchange of
6.0× 10−21 J/link with a simple cubic crystal structure, periodic
boundary conditions and 21952 atoms. The Monte Carlo
simulations use 50 000 equilibration and averaging steps, while the
LLG simulations use 5000 000 equilibration and averaging steps
with critical damping (λ= 1) and a time step of 0.01 fs. The value
of Tc ∼ 625 K calculated from equation (9) is shown by the dashed
vertical line. The temperature-dependent magnetization is fitted to
the expression m(T )= (1− T/Tc)

β (shown by the solid line) which
yields a fitted Tc = 631.82 K and exponent β = 0.334 297.

5.1. Angular variation of the coercivity

Assuming a correct implementation of an integration scheme
as described in the previous section, the first test case of interest
is the correct implementation of uniaxial magnetic anisotropy.
For a single spin in an applied field and at zero temperature,
the behaviour of the magnetization is essentially that of a
Stoner–Wohlfarth particle, where the angular variation of the
coercivity, or reversing field, is well known [125]. This test
serves to verify the static solution for the LLG equation by
ensuring an easy axis loop gives a coercivity of Hk = 2ku/µs
as expected analytically. For this problem the Hamiltonian
reads

H=−kuS2
z −µsS · Happ (26)

where ku is the on-site uniaxial anisotropy constant and Happ
is the external applied field. The spin is initialized pointing
along the applied field direction, and then the LLG equation
is solved for the system, until the net torque on the system
S×Heff ≤ |10−6

| T, essentially a condition of local minimum
energy.

The field strength is decreased from saturation in steps
of 0.01 H/Hk and solved again until the same condition is
reached. A plot of the calculated alignment of the magnetiza-
tion to the applied field (S · Happ) for different angles from the
easy axis is shown in figure 6. The calculated hysteresis curve
conforms exactly to the Stoner–Wohlfarth solution.

5.2. Boltzmann distribution for a single spin

To quantitatively test the thermal effects in the model and
the correct implementation of the stochastic LLG or Monte
Carlo integrators, the simplest case is that of the Boltzmann

Figure 6. Plot of alignment of magnetization with the applied field
for different angles of from the easy axis. The 0◦ and 90◦ loops
were calculated for very small angles from the easy and hard axes
respectively, since in the perfectly aligned case the net torque is zero
and no change of the spin direction occurs.

Figure 7. Calculated angular probability distribution for a single
spin with anisotropy for different effective temperatures ku/kBT .
The lines show the analytic solution given by equation (27).

distribution for a single spin with anisotropy (or applied
field), where the probability distribution is characteristic of
the temperature and the anisotropy energy. The Boltzmann
distribution is given by:

P(θ)∝ sin θ exp
(
−

ku sin2 θ

kBT

)
(27)

where θ is the angle from the easy axis. The spin is initialized
along the easy axis direction and the system is allowed
to evolve for 108 time steps after equilibration, recording
the angle of the spin to the easy axis at each time. Since
the anisotropy energy is symmetric along the easy axis, the
probability distribution is reflected and summed about π/2,
since at low temperatures the spin is confined to the upper
well (θ < π/2). Figure 7 shows the normalized probability
distribution for three reduced temperatures.

The agreement between the calculated distributions is
excellent, indicating a correct implementation of the stochastic
LLG equation.
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5.3. Curie temperature

Tests such as the Stoner–Wohlfarth hysteresis or Boltzmann
distribution are helpful in verifying the mechanical implemen-
tation of an algorithm for a single spin, but interacting systems
of spins present a significant challenge in that no analytical
solutions exist. Hence it is necessary to calculate some well-
defined macroscopic property which ensures the correct imple-
mentation of interactions in a system. The Curie temperature
Tc of a nanoparticle is primarily determined by the strength of
the exchange interaction between spins and so makes an ideal
test of the exchange interaction. As discussed previously the
bulk Curie temperature is related to the exchange coupling by
the mean-field expression given in equation (9). However, for
nanoparticles with a reduction in coordination number at the
surface and a finite number of spins, the Curie temperature and
criticality of the temperature-dependent magnetization will
vary significantly with varying size [57].

To investigate the effects of finite size and reduction in
surface coordination on the Curie temperature, the equilibrium
magnetization for different sizes of truncated octahedron
nanoparticles was calculated as a function of temperature. The
Hamiltonian for the simulated system is

H=−
∑
i 6= j

Ji j Si · S j (28)

where Ji j = 5.6× 10−21 J/link, and the crystal structure is
face-centred-cubic, which is believed to be representative
of Cobalt nanoparticles. Given the relative strength of the
exchange interaction, anisotropy generally has a negligible
impact on the Curie temperature of a material, and so the
omission of anisotropy from the Hamiltonian is purely for
simplicity. The system is simulated using the Monte Carlo
method with 10 000 equilibration and 20 000 averaging steps.
The system is heated sequentially in 10 K steps, with the
final state of the previous temperature taken as the starting
point of the next temperature to minimize the number of steps
required to reach thermal equilibrium. The mean temperature-
dependent magnetization for different particle sizes is plotted
in figure 8.

From equation (9) the expected Curie temperature is
1282 K, which is in agreement with the results for the 10 nm
diameter nanoparticle. For smaller particle sizes the magnetic
behaviour close to the Curie temperature loses its criticality,
making Tc difficult to determine. Traditionally the Curie point
is taken as the maximum of the gradient dm/dT [57], however
this significantly underestimates the actual temperature at
which magnetic order is lost (which is, by definition, the Curie
temperature). Other estimates of the Curie point such as the
divergence in the susceptibility are probably a better estimate
for finite systems, but this is beyond the scope of the present
article. Another effect visible for very small particle sizes is
the appearance of a magnetization above the Curie point, an
effect first reported by Binder [126]. This arises from local
moment correlations which exist above Tc. It is an effect only
observable in nanoparticles where the system size is close to
the magnetic correlation length.

Figure 8. Calculated temperature-dependent magnetization and
Curie temperature for truncated octahedron nanoparticles with
different size. A visualization of a 3 nm diameter particle is inset.

5.4. Demagnetizing fields

For systems larger than the single domain limit [33] and
systems which have one dimension significantly different
from another, the demagnetizing field can have a dominant
effect on the macroscopic magnetic properties. In micromag-
netic formalisms implemented in software packages such as
OOMMF [37], MAGPAR [38] and NMAG [39], the calculation of
the demagnetization fields is calculated accurately due to
the routine simulation of large systems where such fields
dominate. Due to the long-ranged interaction the calculation
of the demagnetization field generally dominates the compute
time and so computational methods such as the fast-Fourier-
transform [127, 128] and multipole expansion [129] have been
developed to accelerate their calculation.

In large-scale atomistic calculations, it is generally suffi-
cient to adopt a micromagnetic discretization for the demag-
netization fields, since they only have a significant effect on
nanometre length scales [7]. Additionally due to the generally
slow variation of magnetization, the timescales associated
with the changes in the demagnetization field are typically
much longer than the time step for atomistic spins. Here we
present a modified finite difference scheme for calculating the
demagnetization fields, described as follows.

The complete system is first discretized into macrocells
with a fixed cell size, each consisting of a number of atoms,
as shown in figure 9(a). The cell size is freely adjustable
from atomistic resolution to multiple unit cells depending on
the accuracy required. The position of each macrocell pmc is
determined from the magnetic ‘centre of mass’ given by the
expression

pαmc =

∑n
i µi pαi∑n

i µi
(29)

where n is the number of atoms in the macrocell, µi is the
local (site-dependent) atomic spin moment and α represents
the spatial dimension x, y, z. For a magnetic material with the
same magnetic moment at each site, equation (29) corrects for
partial occupation of a macrocell by using the mean atomic
position as the origin of the macrocell dipole, as shown in
figure 9(b). For a sample consisting of two materials with
different atomic moments, the ‘magnetic centre of mass’ is
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Figure 9. (a) Visualization of the macrocell approach used to
calculate the demagnetization field, with the system discretized into
cubic macrocells. Each macrocell consists of several atoms, shown
schematically as cones. (b) Schematic of the macrocell
discretization at the curved surface of a material, indicated by the
dashed line. The mean position of the atoms within the macrocell
defines the centre of mass where the effective macrocell dipole is
located. (c) Schematic of a macrocell consisting of two materials
with different atomic moments. Since the magnetization is
dominated by one material, the magnetic centre of mass moves
closer to the material with the higher atomic moments.

closer to the atoms with the higher atomic moments, as shown
in figure 9(c). This modified micromagnetic scheme gives
a good approximation of the demagnetization field without
having to use computationally costly atomistic resolution
calculation of the demagnetization field.

The total moment in each macrocell mmc is calculated
from the vector sum of the atomic moments within each cell,
given by

mα
mc =

n∑
i

µi Sαi . (30)

Depending on the particulars of the system, the macrocell
moments can vary significantly depending on position, com-
position and temperature. At elevated temperatures close to
the Curie point, the macrocell magnetization becomes small,
and so the effects of the demagnetizing field are much less
important. Similarly in compensated ferrimagnets consisting
of two competing sublattices the overall macrocell magnetiza-
tion can also be small again leading to a reduced influence of
the demagnetizing field.

The demagnetization field within each macrocell p is
given by

Hmc,p
demag =

µ0

4π

∑
p 6=q

3(mmc
q · r̂)r̂−mmc

q

r3

− µ0

3
mmc

p

V p
mc

(31)
where r is the separation between dipoles p and q , r̂ is a unit
vector in the direction p→ q , and V p

mc is the volume of the
macrocell p. The first term in equation (31) is the usual dipole
term arising from all other macrocells in the system, while the
second term is the self-demagnetization field of the macrocell,
taken here as having a demagnetization factor 1/3. Strictly
this is applicable only for the field at the centre of a cube.
However, the non-uniformity of the field inside a uniformly
magnetized cube is not large and the assumption of a uniform
demagnetization field is a reasonable approximation. The self-
demagnetization term is often neglected in the literature, but
in fact is essential when calculating the field inside a magnetic
material. Once the demagnetization field is calculated for each
macrocell, this is applied uniformly to all atoms as an effective
field within the macrocell. It should be noted however that
the macrocell size cannot be larger than the smallest sample
dimension, otherwise significant errors in the calculation of
the demagnetizing field will be incurred.

The volume of the macrocell Vmc is an effective volume
determined from the number of atoms in each cell and given
by

Vmc = na
mcVatom = na

mc
Vuc

na
uc

(32)

where na
mc is the number of atoms in the macrocell, na

uc is the
number of atoms in the unit cell and Vuc is the volume of the
unit cell. The macrocell volume is necessary to determine the
magnetization (moment per volume) in the macrocell. For unit
cells much smaller than the system size, equation (32) is a good
approximation, however for a large unit cell with significant
free space, for example a nanoparticle in vacuum, the free
space contributes to the effective volume which reduces the
effective macrocell volume.

5.4.1. Demagnetizing field of a platelet. To verify the im-
plementation of the demagnetization field calculation it is
necessary to compare the calculated fields with some analytic
solution. Due to the complexity of demagnetization fields
analytical solutions are only available for simple geometric
shapes such cubes and cylinders [130], however for an infinite
perpendicularly magnetized platelet the demagnetization field
approaches the magnetic saturation −µ0 Ms. To test this limit
we have calculated the demagnetizing field of a 20 nm×
20 nm× 1 nm platelet as shown in figure 10. In the centre
of the film agreement with the analytic value is good, while at
the edges the demagnetization field is reduced as expected.

5.4.2. Performance characteristics. In micromagnetic simu-
lations, calculation of the demagnetization field usually dom-
inates the runtime of the code and generally it is preferable to
have as large a cell size as possible. For atomistic calculations
however, additional flexibility in the frequency of updates of
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Figure 10. Calculated cross-section of the demagnetization fields in
a 20 nm× 20 nm× 1 nm platelet (visualization inset) with
magnetization perpendicular to the film plane. A macrocell size of 2
unit cells is used. In the centre of the film the calculated
demagnetization field is −2.236 T which compares well to the
analytic solution of Hdemag =−µ0 M =−2.18 T. Note that the 2D
grid used slightly overestimates the demagnetization field.

the demagnetization field is permitted due to the short time
steps used and the fact that the magnetization is generally a
slowly varying property.

To investigate the effects of different macrocell sizes and
the time taken between updates of the demagnetization field
we have simulated hysteresis loops of a nanodot of diameter 40
nm and height of 1.4 nm. Figure 11(a) shows hysteresis loops
calculated for different macrocell sizes for the nanodot. For

most cell sizes the results of the calculation agree quite well,
however, for a cell size of 4 unit cells, the calculated coercivity
is significantly larger, owing to the creation of a flat macrocell
(with dimensions 4× 4× 1 unit cells). This illustrates that for
systems with small dimensions, extra care must be taken when
specifying the macro cell size in order to avoid non-cubic
cells. In general, the problem with asymmetric macrocells is
not trivial to solve within the finite difference formalism, since
the problem arises due to a modification of both the intracell
and intercell contributions to the demagnetizing field.

Figure 11(b) shows the runtime for a single update of the
demagnetizing field on a single CPU for different macrocell
size discretizations. Noting the logarithmic scale for the simu-
lation time, single unit cell discretizations are computationally
costly while not giving significantly better results than larger
macrocell discretizations. Although the demagnetization field
calculation is an n2

mc problem, it is possible to pre-calculate
the distances between the macrocells at the cost of increased
memory usage. Due to the computational cost of calculating
the position vectors, this method is often much faster than the
brute force calculation. However, due to the fact that memory
usage increases proportionally to n2

mc, fine discretizations for
large systems can require many GBs of memory.

By collating terms in equation (31) it is possible to con-
struct the following matrix Mpq for each pairwise interaction:

Mpq =[
(3rx rx − 1)/r 3

pq − 1/3 3rx ry 3rx rz

3rx ry (3ryry − 1)/r 3
pq − 1/3 3ryrz

3rx rz 3ryrz (3rzrz − 1)/r 3
pq − 1/3

]
(33)

Figure 11. Simulated hysteresis loops and computational efficiency for a 40 nm× 40 nm× 1 nm nanodot for different cell sizes (multiples
of unit cell size) ((a), (b)) and update rates (seconds between update calculations) ((c), (d)).
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where rx , ry , rz are the components of the unit vector in the
direction p→ q, and rpq is the separation of macrocells. Since
the matrix is symmetric along the diagonal only six numbers
need to be stored in memory. The total demagnetization field
for each macrocell p is then given by:

Hmc,p
demag =

µ0

4π

∑
p 6=q

Mpq · mmc
q

− µ0

3
mmc

p

V p
mc

. (34)

The relative performance of the matrix optimization is plotted
for comparison in figure 11(b), showing a significant reduction
in runtime. Where the computer memory is sufficiently large,
the recalculated matrix should always be employed for optimal
performance.

In addition to variable macrocell sizes, due to the small
time steps employed in atomistic models and that the mag-
netization is generally a slowly varying property, it is not
always necessary to update the demagnetization fields every
single time step. Hysteresis loops for different times between
updates of the demagnetization field are plotted in figure 11(c).
In general hysteresis calculations are sufficiently accurate
with a picosecond update of the demagnetizing field, which
significantly reduces the computational cost.

In general good accuracy for the demagnetizing field
calculation can be achieved with coarse discretization and
infrequent updates, but fast dynamics such as those induced
by laser excitation require much faster updates, or simulation
of domain wall processes in high anisotropy materials requires
finer discretizations to achieve correct results.

5.4.3. Demagnetizing field in a prolate ellipsoid. Since the
macrocell approach works well in platelets and nanodots, it
is also interesting to apply the same method to a slightly
more complex system: a prolate ellipsoid. An ellipsoid adds
an effective shape anisotropy due to the demagnetization
field, and so for a particle with uniaxial magnetocrystalline
anisotropy along the elongated direction (z), the calculated
coercivity should increase according to the difference in the
demagnetization field along x and z, given by:

H shape
dm =+1Nµ0 Ms (35)

where 1N = Nz − Nx . The demagnetizing factors Nx , Ny ,
and Nz are known analytically for various ellipticities [131],
and here we assume a/c = b/c = 0.5, where a, b, and c are
the extent of the ellipsoid along x , y and z respectively.

To verify the macrocell approach gives the same expected
increase of the coercivity we have simulated a generic ferro-
magnet with atomic moment 1.5 µB, an FCC crystal structure
with lattice spacing 3.54 Å and anisotropy field of Ha = 1 T.
The particle is cut from the lattice in the shape of an ellipsoid,
of diameter 10 nm and height of 20 nm, as shown inset in
figure 12. A macrocell size of 2 unit cells is used, which is
updated every 100 time steps (0.1 ps).

As expected the coercivity increases due to the shape
anisotropy. From [131] the expected increase in the coercivity
is H shape

dm = 0.37 T which compares well to the simulated
increase of 0.33 T.

Figure 12. Simulated hysteresis loops for an ellipsoidal nanoparticle
with an axial ratio of 2 showing the effect of the demagnetizing field
calculated with the macrocell approach. A visualization of the
simulated particle is inset.

6. Parallel implementation and scaling

Although the algorithms and methods discussed in the preced-
ing sections describe the mechanics of atomistic spin models, it
is important to note finally the importance of parallel process-
ing in simulating realistic systems which include many-particle
interactions, or nano patterned elements with large lateral
sizes. Details of the parallelization strategies which have been
adopted to enable the optimum performance of VAMPIRE for
different problems are presented in appendix C. In general
terms the parallelization works by subdividing the simulated
system into sections, with each processor simulating part of
the complete system. Spin orientations at the processor bound-
aries have to be exchanged with neighbouring processors to
calculate the exchange interactions, which for small problems
and large numbers of processors can significantly reduce
the parallel efficiency. The use of latency hiding, where the
local spins are calculated in parallel with the inter-processor
communications, is essential to ensure good scaling for these
problems.

To demonstrate the performance and scalability of VAM-

PIRE, we have performed tests for three different system sizes:
small (10 628 spins), medium (8× 105 spins), and large (8×
106 spins). We have access to two Beowulf-class clusters; one
with 8 cores/node with an Infiniband 10 Gbps low-latency
interconnect, and another with 4 cores/node with a Gigabit
Ethernet interconnect. For parallel simulations the intercon-
nect between the nodes can be a limiting factor for increasing
performance with increasing numbers of processors, since
as more processors are added, each has to do less work per
time step. Eventually network communication will dominate
the calculation since processors with small amounts of work
require the data from other processors in shorter times, leading
to a drop in performance. The scaling performance of the
code for 100 000 time steps on both machines is presented in
figure 13.

The most challenging case for parallelization is the small
system size, since a significant fraction of the system must
be communicated to other processors during each timestep.
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Figure 13. Runtime scaling of VAMPIRE for three different problem
sizes on the Infiniband network (a) and Ethernet network (b),
normalized to the runtime for 2 cores for each problem size.

On the Ethernet network system for the smallest system size
reasonable scaling is seen only for 4 CPUs due to the high
latency of the network. However larger problems are much less
sensitive to network latency due to latency hiding, and show
excellent scalability up to 32 CPUs. Essentially this means that
larger problems scale much better than small ones, allowing
more processors to be utilized. This is of course well known for
parallel scaling problems, but even relatively modest systems
consisting of 105 spins show significant improvements with
more processors.

For the system with the low-latency Infiniband network,
excellent scalability is seen for all problems up to 64 CPUs.
Beyond 64 CPUs the reduced scalability for all problem
sizes is likely due to a lack of network bandwidth. The
bandwidth requirements are similar for all problem sizes,
since smaller problems complete more time steps in a given
period of time and so have to send several sets of data to other
processors. Nevertheless improved performance is seen with
increasing numbers of CPUs allowing for continued reductions
in compute time. Although not shown, initial tests on an
IBM Blue Gene class system have demonstrated excellent
scaling of VAMPIRE up to 16 000 CPUs, allowing the real
possibility for atomistic simulations with lateral dimensions
of micrometres. Additional scaling tests for systems including
calculation of the demagnetizing field and a long-ranged
exchange interaction are presented in appendix C.

7. Conclusions and perspectives

We have described the physical basis of the rapidly developing
field of atomistic spin models, and given examples via its
implementation in the form of the VAMPIRE code. Although
the basic formalism underpinning atomistic spin models is
well established, ongoing developments in magnetic materials
and devices means that new approaches will need to be
developed to simulate a wider range of physical effects at the
atomistic scale. One of the most important phenomena is spin
transport and magnetoresistance which is behind an emergent
field of spin–electronics, or spintronics. Simulation of spin
transport and spin torque switching is already in development,
and must be included in atomistic level models in order to
simulate a wide range of spintronic materials and devices,
including read sensors and MRAM (magnetic random access
memory). Other areas of interest include ferroelectrics, the spin
Seebeck effect [132], and Coloured noise [110] where simu-
lation capabilities are desirable, and incorporation of these
effects are planned in future. In addition to modelling known
physical effects, it is hoped that improved models of damping
incorporating phononic and electronic mechanisms will be
developed which enable the study of magnetic properties of
materials at sub-femtosecond timescales.

The ability of atomistic models to incorporate magnetic
parameters from density functional theory calculations is a
powerful combination which allows complex systems such
as alloys, surfaces and defects to be accurately modelled. This
multiscale approach is essential to relate microscopic quantum
mechanical effects to a macroscopic length scale accessible to
experiment. Such a multiscale approach leads to the possibility
of simulation driven technological development, where the
magnetic properties of a complete device can be predicted and
optimized through a detailed understanding of the underlying
physics. Due to the potential of multiscale simulations, it is
planned in future to develop links to existing DFT codes such
as CASTEP [75, 76] to allow easier integration of DFT parameters
and atomistic spin models.

The computational methods presented here provide a
sound basis for atomistic simulation of magnetic materials, but
further improvements in both algorithmic and computational
efficiency are of course likely. One area of potential compu-
tational improvement is GPGPU (general purpose graphics
processing unit) computation, which utilizes the massively
parallel nature of GPUs to accelerate simulations, with speed
ups over a single CPU of 75 times routinely reported. With
several supercomputers moving to heterogenous computing ar-
chitectures utilizing both CPUs and GPUs, supporting GPGPU
computation is likely to be important in future, and an imple-
mentation in our VAMPIRE code is currently planned. In terms
of algorithmic improvements it should be noted that the Heun
numerical scheme although simple is relatively primitive by
modern standards, and moving to a midpoint scheme may
allow for larger time steps to be used than currently.

With the continuing improvements in computer power,
atomistic simulations have become a viable option for the
routine simulation of magnetic materials. With the increas-
ing complexity of devices and material properties, atomistic
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models are a significant and important development. While
micromagnetic models remain a powerful tool for the simula-
tion and design of devices, the limitations of the (continuum)
micromagnetic formalism are increasingly exposed by its fail-
ure to deal with the complex physics of elevated temperatures,
ultrafast magnetization processes and interfaces. The atomistic
model also allows for the study of complex microstructural
effects which is pertinent to Brown’s paradox [133], where
there is generally a large disparity between the intrinsic and
measured magnetic properties arising from nucleation caused
by defects in the sample structure. While micromagnetics will
remain the computational model of choice for large-scale and
coarse-grained applications, the ability to accurately model
the effects of microscopic details, temperature effects and
ultrafast dynamics make atomistic models an essential tool to
understand the physics of magnetic materials at the forefront
of of the field.

Acknowledgments

The authors wish to thank Jerome Jackson for helpful discus-
sions particularly with regard to the parallel implementation
of the code; Thomas Schrefl for insisting on the name of
VAMPIRE ; Matt Probert, Phil Hasnip, Joe Barker, Uli Nowak and
Ondrej Hovorka for helpful discussions; and Laszlo Szunyogh,
Phivos Mavropoulos and Stefan Blügel for assistance with
the section on the ab initio parameterization of the atomistic
model. We also acknowledge the financial support from the EU
Seventh Framework Programme grant agreement No. 281043
FEMTOSPIN and Seagate Technology Inc. This work made use
of the facilities of N8 HPC provided and funded by the N8
consortium and EPSRC (Grant No. EP/K000225/1) co-ordinated
by the Universities of Leeds and Manchester and the EPSRC

Small items of research equipment at the University of York
ENERGY (Grant No. EP/K031589/1).

Appendix A. Code structure and design philosophy

In addition to implementing the necessary computational
methods for magnetic atomistic calculations, it is also im-
portant to provide a framework structure for the code, where
new additions in the form of features or improvements can
be made with minimal disturbance to other sections of the
code. Equally important for intensive computational problems
is ensuring high performance of the code so that simulations
proceed as rapidly as possible.

In VAMPIRE this is achieved through hybrid coding using
a mixture of object-oriented and functional programming
styles. Object-oriented programming is widely used in modern
software projects as a level of abstraction around the data, or
objects, in the code. This abstraction makes it easy to store
information about an element, for example an atom, as a single
unified data type, known as a class. One significant caveat with
object-oriented code is that it is generally hard to optimize for
maximum performance. High performance codes generally
utilize a different coding approach known as functional pro-
gramming, where the focus is on functions which operate on
numerous data sets. However the organization of data into large

blocks in functional programming generally makes it harder to
organize the data. VAMPIRE therefore makes use of both method-
ologies to gain the benefits of object-oriented design during the
initialization phase, while for the performance-critical parts
of the code the data is re-arranged to use a functional style
for maximum performance. Due to the requirements of high
performance, object-oriented design and parallelization, the
C++ programming language was chosen for all parts of the
code. The popularity of the C++ language also allows for
easy future integration of other libraries, such as NVIDIA’s
CUDA framework for utilizing graphics processing units. For
portability the code also has a minimal dependence on external
libraries and also conforms to the published standard allowing
simple compilation on the widest possible variety of computer
architectures.

In addition to the low-level structure described in terms of
object-oriented and functional programming styles, the code
is also designed in a modular fashion so that most of the
mechanistic operations (such as the parallelization and data
analysis) are separated from high level functions which control
the various simulation types. This enables users to easily add
new simulation types or physical effects to the code, without
having to be concerned with the inner workings.

Appendix B. Atomistic system generation in
VAMPIRE

VAMPIRE has a number of dedicated functions for generating
atomic systems within the nearest neighbour approximation.
The principal advantage of the nearest neighbour approxi-
mation is its simplicity and ability to consider a wide range
of physical effects such as finite size, surfaces, ferri and
antiferromagnets, disordered systems etc. with relative ease.
VAMPIRE also includes in-built particle structures to enable
generation of systems with simple geometric shapes such as
spheres, cylinders, truncated octahedra and cubes.

The first step is to generate a crystal lattice of the
desired type and dimensions sufficiently large to incorporate
the complete simulated system. For the nearest neighbour
approximation the Hamiltonian is generally only well defined
for a single unified crystal structure, and therefore such
generic simulations require a single crystal from which the
system is cut. More complex structures are readily simulated,
however the user must define the complete Hamiltonian for the
system, taking into account the realistic interfaces between
different crystals. VAMPIRE uses the unit cell as the essential
building block of the atomic structure, since the exchange
interactions of atoms between neighbouring unit cells are
known before the structure is generated. The global crystal
is generated by replicating the basic unit cell on a grid in
x , y and z. This bare crystal structure is then cut into the
desired geometry, for example a single nanoparticle, Voronoi
granular structure, or a user defined 2D geometry by removing
atoms from the complete generated crystal. Atoms within this
geometry are then assigned to one or more materials as desired
(each material having different magnetic properties such as
atomic spin moments, anisotropy or exchange interactions),
generating the complete atomic system. The assignment of

17



J. Phys.: Condens. Matter 26 (2014) 103202 Topical Review

different parts of the system to different materials enables the
easy simulation of multilayers and core-shell nanoparticles, as
well as combinations of these for systems such as multilayer
magnetic recording media. As an example, figure 14 shows
a visualization of a multilayer magnetic recording media
generated using VAMPIRE .

Once the structure is defined the exchange interactions
for all atoms in the system are calculated from a list of nearest
neighbour interactions for the defined unit cell. Since each cell
on the grid contains a fixed number of atoms, and the exchange
interactions of those atoms with other neighbouring cells are
known relative to the local cell, the interaction list is trivial to
generate. For computational efficiency the final interaction list
is then stored as a one dimensional (1D) linked list.

Appendix C. Parallelization strategies

A consistent trend among computers today is the drive towards
parallel architectures, designed to improve overall perfor-
mance in a consistent and scalable fashion. The downside
of this approach is that software must be specially modi-
fied to take advantage of the hardware, which still presents
a significant challenge. In order to make the best use of
parallel computers, we have adopted a number of distinct
parallelization strategies. This approach means that for any
given problem, an optimal strategy can be utilized to achieve
maximum performance.

C.1. Statistical parallelism

The most trivial form of parallelism is batch or statistical,
where the statistical properties of a system are determined by
a series of independent calculations, each of which can be
run in parallel. Statistical parallelism has the prime advantage
that the division of work leads to an ideal scaling behaviour,
since each of the runs are entirely independent and require no
intercommunication.

In magnetic simulations, the most common applications
of statistical parallelism are sweeps of the parameter space
for a particular system, or in determining thermodynamic
averages. For the former, a given system is calculated for
different values of key parameters, for example, anisotropy
or exchange constants; for the latter, the same system is
simulated, but each run is given a different seed for the random
number generator. This leads to a different thermodynamic
evolution, which can provide information about the statistical
behaviour of the system. It should be noted that the correct
seeding of the random number generator, where a number of
uncorrelated random number sequences are generated, is quite
complex [108]. For magnetic simulations, the chaotic nature
of the system, whereby a small change in the time evolution
rapidly leads to a significantly different result, means that crude
sequential number seeding is quite satisfactory.

C.2. Geometric decomposition

Although statistical parallelism is useful for some types of
simulation, it has one significant limitation: it can only be

applied to relatively small systems, as the entire problem
must be solved on a single processor. For larger systems it
is necessary to divide the system into smaller parts for parallel
execution. The most efficient method for such parallelization is
generally geometric decomposition, where the space is divided
into cells, and each processor is assigned a cell to simulate. If
well implemented, geometric decomposition can be scaled to
run on thousands of CPUs, and this is one of the key aims of
our implementation.

The starting point for geometric decomposition is effi-
ciently dividing the space to run on NCPU CPUs. In order to
achieve this, we have devised an algorithm which takes into
account the physical system dimensions and which searches
for a solution where

nx · ny · nz = NCPU (C.1)

while minimizing the surface to volume ratio. If the dimensions
of the overall system are given by lx , ly , and lz , then the volume
of each cell is:

Vcell =
lx

nx
·

ly

ny
·

lz

nz
(C.2)

and the surface area of each cell is:

Acell = 2
[

lx ly

nx ny
+

lylz

nynz
+

lx lz

nx nz

]
. (C.3)

The surface to volume ratio is then given by:

Acell

Vcell
= 2

[
nz

lz
+

ny

ly
+

nx

lx

]
. (C.4)

It is clear that the minimum in the surface to volume ratio
occurs for nα/ lα = 1 for all three dimensions, essentially
showing that longer dimensions parallelize better with more
CPUs.

Given that the dimensions of the system are fixed, the only
free variables are the number of CPUs in each dimension, nx ,
ny , and nz . These are further constrained by equation (C.1). In
order to find the optimal solution for a given number of CPUs,
the starting point is nα = lx√

NCPU
. Exact solutions for nx , ny and

nz are then searched for and the one with the lowest surface
to volume ratio is selected. This approach is very flexible and
allows for efficient decomposition for any number of CPUs.
The only problematic solution is for prime numbers of CPUs,
where only one exact solution exists, though this is a rare
occurrence for large numbers of CPUs. A visualization of a
cubic system decomposed into 48 blocks is shown in figure 15.

Having decomposed the system, each CPU is allocated
a cell which defines its own spatial domain. In order to
maintain maximum scalability, each CPU generates its own
portion of the complete system, and all associated data. This
has the advantage of minimizing the memory footprint and
also parallelizing the system creation, which can become a
significant bottleneck for very large numbers of processors.
Once the local atoms have been generated it is necessary
to know which atoms on remote processors (halo atoms)
are potentially interacting with atoms on the local processor
(boundary atoms), as well as which atoms are interacting
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Figure 14. Visualization of a magnetic recording medium generated using VAMPIRE. The medium consists of magnetically hard and soft
layers with interfacial mixing of atoms between the layers. The material is granular in nature, and so a Voronoi tessellation as overlaid on
top of the layers to form the isolated magnetic grains. Finally, a dilute intermixing layer is applied between the grains representing the
diffusion of magnetic atoms into the SiO2 between the grains, as seen in real media.

Figure 15. Visualization of the decomposition of a cubic system into
48 blocks of equal volume.

Figure 16. Visualization of the different categorizations of atoms on
a processor, determined by their spatial location. The core and
boundary regions exist on the local processor, denoted by the
regions within the dashed line. The halo region contains atoms on
remote processors which atoms on the local processor potentially
interact with.

locally only (core atoms). This essentially defines three distinct
regions, as shown schematically in figure 16.

The maximum interaction range of the atoms is known
globally, and so provided all atoms in this range are included,
generation of the neighbour list is trivially the same as the serial

case. In practice this is implemented by a global broadcast
of each processor’s domain, i.e., which regions of space are
‘owned’ by each processor. Each processor then looks at each
atom in its boundary region, and then dispatches a copy of the
atom to the appropriate neighbouring processors. This method
has the advantage that it is quite general, and can be applied to
any decomposition method, not necessarily cubes. At this point
parallel periodic boundary conditions are easily implemented
in the same manner, by copying atoms at the edge of the system
to the desired processors. Once all boundary atoms have been
sent, and all halo atoms have been received, the neighbour list
is generated in the usual fashion with a linked-cell algorithm.
After the actual neighbour list has been generated, it is likely
that some of the copied halo atoms are in fact not needed,
and so these atoms are deleted. Similarly some atoms in the
in the boundary region may not interact with the halo, and
these atoms are re-assigned to the core region. Following this
book-keeping exercise, parallel simulation of the system can
begin.

The method we have adopted for parallel simulation
of the system makes use of latency hiding, where requests
for data from other processors are made prior to a locally
compute-intensive period, after which the requested data
should have arrived. Such latency hiding is an important
consideration when running the code on many processors.
In practice atoms on each processor are ordered according to
their interaction classification, i.e.: core; boundary; and finally
halo atoms. The integration of the system proceeds as follows:

• A request is made for all halo data from other processors.

• The core region is then integrated.

• If the halo data has not arrived, then wait for it.

• Integrate the boundary region.

• Global synchronization.

The parallel integration is repeated the desired number of
times during the simulation.
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C.3. Replicated data

For continuous systems, geometric decomposition provides
an efficient way of parallelizing the calculation. However, for
sparse systems geometric decomposition can be inefficient
due to poor load balancing, where some processors have many
more atoms than others. This means some processors spend
a significant amount of time waiting for others to complete
the integration step, leading to a reduction in scalability. In
magnetism, such systems are typically granular, consisting of
a small number of grains. One solution to sparse systems is to
utilize a replicated data approach, where each processor has a
complete copy of all data, similar to the statistical parallelism
method. Each processor then simulates (1/ncpu)th of the total
system, without any constraints on spatial locality. The atoms
are classified in a similar way to the geometric decomposition
approach, as core, boundary, and halo, and integrated in exactly
the same way.

The principal disadvantages of the replicated data ap-
proach are the increased memory footprint (each processor
must generate a complete copy of the system), and the ten-
dency to have a high proportion of boundary spins. The latter
can be mitigated by re-ordering spins in memory to ensure
some degree of spatial locality. For granular systems this
is fact trivial, since the assignment of each spin to a grain
provides the necessary geometric information, and so the
spins are ordered by a unique grain identification, which is
also spatially correlated. In addition to its use in simulation
of sparse systems, the replicated data approach is also the
strategy adopted for the parallel calculation of the long-ranged
demagnetization fields. The method for the parallel code
is identical to that described earlier, where the spins are
allocated to macrocells which then interact with each other.
Since the calculation of the demagnetization field in each
cell requires knowledge of all other cells, replicated data is
the logical choice for the parallelization. The demagnetization
field calculation proceeds as follows:

• The macrocell moments are initialized to zero on all
processors.
• Each processor determines the contribution of its spins

to each macrocell.
• The macrocell moments are summed globally, so that

each processor has a complete copy of the macrocell
magnetizations.
• Each processor calculates the demagnetization field only

for macrocells which contain local spins.
• The local demagnetization field on each spin is deter-

mined from its macrocell demagnetization field.

This approach leads to excellent scaling, as for reason-
able macrocell sizes the communication costs are minimal,
and for �1 macrocell per processor the method scales lin-
early with ncpu. Fine macrocell discretizations (�27 unit
cells/macrocell) can lead to significant memory and compu-
tation costs, but in general this is unnecessary for most atomic
scale calculations.

Figure 17. Runtime scaling of VAMPIRE for three different problem
sizes including demagnetizing fields (a) and a spin Hamiltonian
including a long-ranged exchange interaction (b), normalized to the
runtime for 2 cores for each problem size. The cluster has 8
processors per node, and an Infiniband interconnect for inter-node
communications.

C.4. Additional scaling tests

VAMPIRE has already been shown to scale well for a generic
system with nearest neighbour exchange interactions, but in
order to verify the general usefulness of the parallelization
we have also considered an extended system including the
demagnetization field calculation, and a system using ab
initio parameters for FePt [29] which includes a long-ranged
exchange interaction extending over several unit cells, as
shown in figure 17.

The simulations in figure 17(a) including the demagnetiz-
ing fields use a 2× 2 unit cell macrocell size, updated every 10
steps, for system sizes of approximately 104, 105 and 106 spins
respectively. The high spatial and temporal resolution of the
demagnetizing field calculation are in some sense a worst case
scenario as these are probably not needed for most problems,
and so for these simulations, calculation of the demagnetizing
fields dominates the run time. Nevertheless, the scaling of
the code remains very good, showing the effectiveness of
the parallelization of the demagnetizing field calculation. For
small system sizes the scaling breaks down as the number
of macrocells approaches the number of processors. Here
the scaling is limited by the time required to update all of
the cell magnetizations and the time required to calculate the
contributions of the reduced number of local macrocells. For
all problem sizes scaling begins to reduce somewhat due to
limitations in the network bandwidth.
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For the long-ranged exchange interactions shown in
figure 17(b) the scaling is only good within a single node
(up to 8 processors). Above that, the larger the system the
worse the scaling. This arises due to the large amount of
data which has to be shared between processors. For the
long-ranged exchange interaction, each atom to be simulated
must know the spin configurations of over 1000 neighbouring
atoms. In a parallel simulation these spin directions must
be passed between processors twice per time step, which is
a bandwidth intensive operation. Thus, the reduced scaling,
particularly with larger system size, is due to saturation of the
network link. Due to the long range nature of the exchange
interaction, memory use also becomes an issue in terms of
storing the neighbour list. For the largest simulation size
of around 1.6× 106 atoms, 33GB of RAM is required to
store all the interactions. However, due to the parallel system
generation this divides nicely between all of the processors,
so the memory required per processor is quite reasonable for
larger numbers of processors.
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J. Phys.: Condens. Matter. 394204

[27] Fal T J, Plumer M L, Whitehead J P, Mercer J I, van Ek J and
Srinivasan K 2013 Appl. Phys. Lett. 102 202404

[28] Victora R H and Huang P-W 2013 IEEE Trans. Magn.
49 751

[29] Mryasov O, Nowak U, Guslienko K and Chantrell R W 2005
Europhys. Lett. 69 805

[30] Szunyogh L, Udvardi L, Jackson J, Nowak U and
Chantrell R W 2011 Phys. Rev. B 83

[31] Szunyogh L, Lazarovits B, Udvardi L, Jackson J and
Nowak U 2009 Phys. Rev. B 79

[32] Sandratskii L M and Mavropoulos P 2011 Phys. Rev. B
83 174408

[33] Kazantseva N, Hinzke D, Nowak U, Chantrell R, Atxitia U
and Chubykalo-Fesenko O 2008 Phys. Rev. B 77 184428

[34] Atxitia U, Hinzke D, Chubykalo-Fesenko O, Nowak U,
Kachkachi H, Mryasov O, Evans R F L and Chantrell R W
2010 Phys. Rev. B 82 134440

[35] Jourdan T, Marty A and Lançon F 2008 Phys. Rev. B
77 224428

[36] Garcia Sanchez F, Chubykalo-Fesenko O, Mryasov O and
Chantrell R W 2006 Physica B 372 328

[37] http:/math.nist.gov/oommf
[38] Scholz W, Fidler J, Schrefl T, Suess D, Dittrich R, Forster H

and Tsiantos V 2003 Comput. Mater. Sci. 28 366
[39] Fischbacher T, Franchin M, Bordignon G and Fangohr H

2007 IEEE Trans. Magn. 43 2896
[40] Mistral Q, van Kampen M, Hrkac G, Kim J-V, Devolder T,

Crozat P, Chappert C, Lagae L and Schrefl T 2008 Phys.
Rev. Lett. 100 257201

[41] Dobin A Y and Richter H J Appl. Phys. Lett. 89 062512
[42] Schrefl T, Fidler J, Kirk K J and Chapman J N 1997 J. Magn.

Magn. Mater. 175 193
[43] Kryder M H, Gage E C, McDaniel T W, Challener W A,

Rottmayer R E, Ju G, Hsia Y-T and Erden M F 2008
Proc. IEEE 96 1810

[44] Beaurepaire E, Merle J C, Daunois A and Bigot J Y 1996
Phys. Rev. Lett. 76 4250

[45] Stanciu C, Tsukamoto A, Kimel A, Hansteen F, Kirilyuk A,
Itoh A and Rasing T 2007 Phys. Rev. Lett. 99 217204

[46] O’Grady K, Fernandez-Outon L E and Vallejo-Fernandez G
2010 J. Magn. Magn. Mater. 322 883

[47] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D,
Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H
2010 Nature Mater. 9 721

[48] Jamet M, Wernsdorfer W, Thirion C, Mailly D, Dupuis V,
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[84] Ležaić M, Mavropoulos P, Bihlmayer G and Blügel S 2013
Phys. Rev. B 88 134403

[85] Uhl M and Siberchicot B 1999 J. Phys.: Condens. Matter.
7 4227

[86] Skubic B, Peil O, Hellsvik J, Nordblad P, Nordström L and
Eriksson O 2009 Phys. Rev. B 79 024411

[87] Aas C J, Hasnip P, Cuadrado R, Plotnikova E, Szunyogh L,
Udvardi L and Chantrell R W 2013 Phys. Rev. B
88 174409

[88] Sato K et al 2010 Rev. Mod. Phys. 82 1633
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