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Secondary lymphedema is a debilitating condition, and genetic factors predisposing to its development remain
largely unknown. Adrenomedullin (AM) is peptide encoded, together with proadrenomedullin N-terminal
peptide (PAMP), by the Adm gene (adrenomedullin gene). AM and its putative receptor calcitonin receptor–like
receptor (CLR) are implicated in angiogenesis and lymphangiogenesis during embryogenesis and wound
healing, suggesting their possible involvement in secondary lymphedema. To investigate whether AM deficiency
predisposes to secondary lymphedema, we used heterozygous adult mice with Adm gene-knockin stop
mutation, which selectively abrogated AM, but preserved PAMP, expression (AdmAMþ /D animals). After hind
limb skin incision, Adm messenger RNA expression was upregulated in wounded tissue of both AdmAMþ /þ and
AdmAMþ /D mice. However, only AdmAMþ /D animals developed limb swelling and histopathological lymphede-
matous changes, including epidermal thickening, elevated collagen fiber density, and increased microvessel
diameter. Secondary lymphedema was prevented when circulating AM levels in AdmAMþ /D mice were restored by
systemic peptide delivery. In human skin, CLR was expressed in tissue components affected by lymphedema,
including epidermis, lymphatics, and blood vessels. Our study identified a previously unrecognized role for
endogenous AM as a key factor in secondary lymphedema pathogenesis and provided experimental in vivo
evidence of an underlying germ-line genetic predisposition to developing this disorder.
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INTRODUCTION
Lymphedema is a debilitating condition and a major cause of
morbidity following radiotherapy, cancer, surgery, and other
injuries (Rockson, 2008a; Tammela and Alitalo, 2010).
Lymphedema develops as a result of localized fluid retention
and subsequent swelling (edema). This is owing to
insufficiency of the lymphatic system, which occurs as a
consequence of abnormal structure and/or compromised
function of lymphatic vessels (Rockson, 2008a; Tammela

and Alitalo, 2010). It was proposed that the first abnormality
during the development of breast cancer–related lymphedema
is not lymphatic obstruction, but high fluid filtration that
overwhelms vulnerable lymphatics (Stanton et al., 2009a).
Blood vessels are therefore also implicated in the pathogenesis
of lymphedema, and the edema arising from venous
insufficiency, when untreated, can progress into a combined
venous/lymphatic disorder (Rockson, 2008a).

Lymphedema often affects the skin. The structural and
functional abnormalities in lymphedematous skin reflect a
multicellular response to impaired extracellular fluid mobili-
zation and can be distinguished from other mechanisms that
lead to interstitial edema (Rockson, 2008a). The presence of
epidermal thickening is pathognomonic of lymphedema
(Wilson et al., 2004; Tabibiazar et al., 2006; Rockson,
2008a). Lymphedema predisposes to collagen and lipid
deposition, cutaneous hypercellularity, progressive fibrosis,
and susceptibility to infections (Rockson, 2001; Rutkowski
et al., 2010; Wu et al., 2011).

Lymphedema is a heterogeneous condition that is either
hereditary or acquired (primary or secondary disorder, respec-
tively) (Rockson, 2008a). Although many genes having a role
in lymphatic development have been identified, they are
mostly associated with primary lymphedema pathogenesis.
For example, mutations in VEGFR3, GATA2, or FOXC2 are
the underlying causes of either congenital (Milroy disease or
Emberger syndrome) or late-onset (distichiasis syndrome)
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lymphedema (Tammela and Alitalo, 2010; Wang and
Oliver, 2010; Ostergaard et al., 2011). In contrast, little is
known about the genetic susceptibility to the risk of
developing secondary lymphedema following trauma,
malignancy, radiation, or other tissue insults (Rockson,
2008a, b). It remains unknown why lymphedema develops
in some individuals following sentinel node removal, yet not
in others after axillary clearance for breast cancer (Stanton
et al., 2009b). Genetic variation could confer relative risk for
or, conversely, protection from the development of secondary
lymphedema (Stanton et al., 2009a). Recent association
studies support the hypothesis that genetic susceptibility
could be an important risk factor for developing secondary
lymphedema (Finegold et al., 2008, 2012). However, there
is no experimental evidence demonstrating an in vivo role
for any gene in the pathogenesis of this disorder, and
the underlying mechanisms remain to be delineated. In
particular, the molecular and physiological relationships
between lymphatic and blood vessels and the surrounding
tissue microenvironment, which underlie this complex
disorder, remain largely uncharacterized (Rockson, 2009).
Therefore, therapeutic strategies to prevent or treat
lymphedema are limited (Rockson, 2008a; Tammela and
Alitalo, 2010).

Adrenomedullin (AM) is a 52-amino-acid vasoactive
peptide (Kitamura et al., 1993a; Nikitenko et al., 2002;
Brain and Grant, 2004). Together with proadrenomedullin
N-terminal peptide (PAMP), AM is encoded by the ADM
gene (adrenomedullin gene) (Kitamura et al., 1993b). In vitro,
AM acts through the calcitonin receptor–like receptor (CLR),
which is encoded by the CALCRL (gene encoding CLR) gene
(Poyner et al., 2002). CLR forms heterodimeric receptors with
one of the receptor activity–modifying proteins (receptor
activity–modifying proteins (RAMPs) 1, 2, or 3). Co-expression
of RAMP2 or RAMP3 with CLR in cultured cells leads to AM
receptor formation (Poyner et al., 2002).

AM and its receptors are implicated in angiogenesis and
lymphangiogenesis during embryonic development, wound
healing, and cancer. The role for Adm, Calcrl, and Ramp2
during embryogenesis has been defined in knockout mice
studies. These revealed close correlation among phenotypes
for these genes, supporting the view that in vivo AM effects are
mediated through CLR/RAMP heterodimers (Brain and Grant,
2004; Nikitenko et al., 2006c). The complete loss of Adm
expression (that affects both AM and PAMP) in homozygous
knockout mice leads to embryonic death at E13.5–14.5 owing
to generalized edema or hemorrhage (Caron and Smithies,
2001; Shindo et al., 2001). This is phenocopied in
homozygous Calcrl- and Ramp2-knockout mice with
embryonic lethality and edema occurring at E12.5–13.5
(Fritz-Six et al., 2008; Ichikawa-Shindo et al., 2008). The
development of edema in these embryos is attributed to blood
vessel fragility and leakage, or to jugular lymphatic sac
hypoplasia accompanied by structurally unaffected regional
lymphatic vessels (Kahn, 2008). AM also has a role in tumor
neovascularization (Nikitenko et al., 2006c). Its exogenous
administration in wild-type mice ameliorates severe injury-
induced swelling (Jin et al., 2008), stimulates wound healing

of pressure ulcers (Harada et al., 2011), and induces
angiogenesis and lymphangiogenesis. In human endometrial
tissue, CLR localizes to blood and lymphatic microvessels
(Maybin et al., 2011). In cultured microvascular endothelial
cells (ECs), CLR interacts with AM (Nikitenko et al., 2006a).
Primary human blood and lymphatic ECs express CALCRL
and RAMPs messenger RNAs (mRNAs), supplemented AM
promotes their proliferation in vitro and reduces endothelium
monolayer hyperpermeability induced by inflammatory
mediators (Hippenstiel et al., 2002; Vart et al., 2007; Fritz-
Six et al., 2008). These findings suggest that in developing
embryos and reproductive tissues endogenous AM signaling
through CLR might be essential in both blood vessels and
lymphatics. However, whether it is relevant to mature animals
and human pathology, including secondary lymphedema,
remains unclear (Kahn, 2008).

Here, we tested the hypothesis that endogenously
produced AM affects the development of secondary lymphe-
dema. To our knowledge, the present study identified
a previously unrecognized role for Adm in the patho-
genesis of this disorder and provided previously unreported
experimental in vivo evidence of a genetic susceptibility
or predisposition to the risk of developing secondary
lymphedema.

RESULTS
We used mice with Adm-knockin stop mutation that
selectively abrogates AM, but not PAMP, expression
(AdmAM-knockin animals) (Figure 1a; (Shimosawa et al.,
2002)). Although the homozygous mutation (AdmAMD/D) in
mice was lethal, heterozygous (AdmAMþ /D) fetuses were
viable and adult mice (also termed here as AdmAM

haploinsufficient animals) were fertile, with their plasma AM
levels approximately half (B53%) of those of wild-type
animals, whereas PAMP levels remained unaffected
(Supplementary Table S1 online).

Primary congenital or adult-onset lymphedema is absent in
adult AdmAM haploinsufficient mice

Under physiological, i.e., unchallenged, conditions, adult
AdmAMþ /þand AdmAMþ /D mice showed no apparent
abnormality in the skin, dermal microvessels, and function
of lymphatic vessels (Supplementary Material online,
Additional Results and Supplementary Figure S1 online). On
the basis of these findings, we concluded that AdmAM

haploinsufficiency by itself did not significantly affect (lym-
ph)angiogenesis during embryonic development and caused
no symptoms or signs of congenital or adulthood-onset
primary lymphedema.

Secondary lymphedema is a phenotypic feature of adult AdmAM

haploinsufficient mice, and it is reversible upon exogenous AM
supplementation

To evaluate a role for endogenously produced AM in
secondary lymphedema development, we used an established
experimental model of hind limb skin incision surgery
(Kanter et al., 1990). Adm mRNA expression in the skin was
increased after surgery in both AdmAMþ /þ and AdmAMþ /D
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mice (Supplementary Figure S2 online), suggesting a func-
tional role for AM during tissue injury. We used osmotic
minipump (effective in the range 10�8 to 10� 6 mol/l)
(Shimosawa et al., 2003) to restore circulating AM levels in
AdmAMþ /D mice (Figure 1b).

Following hind limb skin incision, adult AdmAMþ /D but not
AdmAMþ /þmice developed symptoms and functional changes
associated with lymphedema. First, AdmAMþ /D mice showed
impaired ability to move, swelling of the limb, and pitting (or
non-pitting in severe cases) edema (Figure 2a and b;

Supplementary Figure S3a and b online and Supplementary
Table S2 online). These changes in the AdmAMþ /D mice were
accompanied by decreased accumulation of Evans blue in
inguinal lymph nodes after intradermal injection of the dye
into the hindlimb footpads (Figure 2c and d), suggesting
that edema was accompanied by aberrant lymph flow and
fluid uptake by regional lymphatics. All acquired changes
were partially, but significantly, prevented upon AM supple-
mentation (Figure 2).

Second, histopathological features characteristic of lymphe-
dema (thickening and hyperplasia of the epidermis, dermal
hypercellularity, and increased collagen fiber density) were
found in the hind limb skin of AdmAMþ /D mice after injury
(Figure 3a and b; Supplementary Figure S3c and d online).
After injury, we also detected an increased deposition of
fibrin, used as a marker of plasma filtration and vascular
leakage (Chen et al., 2005) in AdmAMþ /þand AdmAMþ /D

mice (Supplementary Figure S4a online), compared with that
before surgery (Supplementary Figure S1h online). Fibrin
accumulation was more pronounced in the skin of AdmAMþ /þ

animals compared with AdmAMþ /D animals (Supplementary
Figure S4a online). Furthermore, Evans blue accumulation in
the dermis after its intravenous injection was elevated in
AdmAMþ /þ compared with AdmAMþ /D mice (Supplementary
Figure S4b online). These findings were in accordance with
our observation of changes in skin collagen density in
AdmAMþ /D animals (Figure 3a and c). All histopathological
alterations in the skin of the adult AdmAMþ /D mice were
partially, but significantly, prevented by AM supplementation
(Figure 3; Supplementary Figures S3 and S4 online).

Third, these lymphedematous changes were accompanied
by a significant increase in average cross-sectional areas of
both lymphatic and blood dermal microvessels in AdmAMþ /D

mice (Figure 4). The number of blood, but not lymphatic,
microvessels was decreased in AdmAMþ /þ , but not in
AdmAMþ /D, mice. Upon AM supplementation, the observed
changes were partially prevented in the blood and to a lesser
extent in lymphatic microvessels (Figure 4). Epidermal thick-
ening and hyperplasia in lymphedema are frequently accom-
panied by lymphatic vessel dilation, and this frequently occurs
as a result of lymphatic endothelium hyperproliferation,
especially when infection is an underlying cause or when
inflammatory tissue response is involved (Baluk et al., 2005;
Tabibiazar et al., 2006; Kajiya et al., 2009). Dilation of the
microlymphatics in AdmAMþ /D mice after surgery was not
accompanied by alterations in their numbers (Figure 4e),
their hyperplasia, and increased proliferation or number of
lymphatic ECs (Supplementary Figure S5 online), suggesting
that lymphangiogenesis was grossly unaffected. Incision
wounding–onset lymphedema in AdmAMþ /D mice was asso-
ciated with elevated dermal blood/lymphatic microvessel
number ratio, whereas in AdmAMþ /þmice this parameter
was markedly decreased, when compared with animals before
the surgery (Supplementary Figure S6 online).

A summary of the impact of endogenous and exogenous/
supplemented AM on acute secondary lymphedema develop-
ment (3 days after surgery) is presented in Supplementary
Table S2 online and Supplementary Figure S7 online.
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Figure 1. Scheme of targeted knockin stop mutation in Adm gene (modified

from Shimosawa et al., 2002). (a) Wild-type Adm locus, resulting Adm

messenger RNA (mRNA), preproAM, AM, and PAMP peptide products (top).

Targeting vector, mutation-containing locus AdmDAM, resulting knockin

stop mutant AdmDAM mRNA, preproAM (DpreproAM), and PAMP peptide

products (bottom). Solid boxes, exons; solid triangles, lox-P sequences.

Knockin stop mutation (Stop) at the beginning of the AM-coding region

(exon 4) preserves PAMP but not AM translation from the DAdm mRNA.

(b) AM was measured (7–9 mice in each experimental group) and compared

(Welch two-sample t-test) in plasma from wild-type (AdmAMþ /þ ) and AdmAM

haploinsufficient mice without (AdmAMþ /D) or with exogenous AM supplement

(AdmAMþ /D suppl). aa, amino acid.
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CLR is expressed in lymphatic and blood vessels in human skin
tissue

Finally, to investigate the potential targets of endogenously
produced AM in the skin, we analyzed CALCRL/CLR expres-
sion in tissue samples and primary cells by using immunos-
taining, GeneChip expression array analysis, immunoblotting,
and deglycosylation (Figure 5; Supplementary Figures S8–S10
online). In human skin, CLR was expressed in microvascular
lymphatic and blood vessel ECs (MVLEC and MVBEC, respec-
tively), as well as in the epidermis and vascular smooth
muscle cells (Figure 5a; Supplementary Figure S8a online).
In other human tissues, e.g., myometrium, CLR was also
localized in both lymphatic and blood endothelium
(Supplementary Figure S8b online). Primary cultured human
dermal MVLECs and MVBECs both expressed CALCRL and
RAMPs 2 and 3 mRNAs (Figure 5b; Supplementary Figure S9
online), which is in accordance with previous reports on the
predominant expression of CALCRL/CLR in ECs (Nikitenko
et al., 2003, 2006a). In cultured MVLECs, CLR generated
functional AM receptors (Supplementary Material online;
Additional Results and Supplementary Figure S10 online).

DISCUSSION
Secondary lymphedema occurs after surgery or trauma, but
risk factors and molecular mechanisms underlying resistance
or predisposition to its development remain largely unknown.
Therefore, pharmacological strategies to prevent or treat this
disorder are limited. Here, we show that endogenously
produced AM prevents, and that its deficiency predisposes
to, the development of secondary lymphedema in adult mice.
Importantly, such genetic predisposition could be corrected
through AM supplement therapy. Therefore, to our knowl-
edge, this study provides previously unreported experimental
in vivo evidence of a genetic susceptibility to the risk of
developing secondary lymphedema.

The mechanisms of lymphedema development after wound
infliction are largely unknown and yet to be delineated in our,
as well as in other, in vivo models (Tabibiazar et al., 2006;
Tammela et al., 2007; Rutkowski et al., 2010). It is proposed
that genetic features, which are not accompanied by easily
detectable morphological abnormalities, can predispose
lymphatic and blood vessels to dysfunction/insufficiency that
underlies secondary lymphedema only when coupled with a
sufficient initiating stimulus (Rockson, 2008a). However, such
genetic factors have not yet been identified. The Adm locus
has an essential role in regulating vascular integrity and
permeability during embryogenesis. Either the deletion of the
protein-coding region, resulting in abrogated expression of
both AM and PAMP (Caron and Smithies, 2001; Shindo et al.,
2001), or the introduction of a knockin stop mutation resulting
in functional inactivation of AM expression only (Shimosawa
et al., 2002) led to embryonic lethality in homozygous
mice, and this was attributed to generalized edema or
hemorrhage in the first two models. Previous studies showed
that upon exogenous administration AM has a role in
lymphatic EC biology in vitro and in wound healing in vivo.
However, the role for endogenous AM in the pathogenesis
of secondary lymphedema remained unknown. We found
that AdmAM haploinsufficiency did not cause primary
lymphedema, but that Adm expression was upregulated
upon skin surgery. We hypothesized that lymphatic and/or
blood microvessels in AdmAMþ /D mice could be affected by
interventions that cause secondary lymphedema. After skin
incision, we detected macroscopic (tissue swelling), functional
(aberrant fluid uptake), and histopathological (epidermal
thickening, increased collagen deposition, and dilated blood/
lymphatic vessels) features, which are pathognomonic of
secondary lymphedema, in AdmAMþ /D but not in AdmAMþ /þ

mice. These findings support the view that both lymphatic
and blood vessels are involved in the pathogenesis of
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Figure 2. Edema and aberrant fluid uptake in the skin of the adult AdmAM haploinsufficient mice after hind limb skin incision wounding surgery. Wild-type

(AdmAMþ /þ ) and AdmAM haploinsufficient mice without (AdmAMþ /D) or with exogenous AM supplement (AdmAMþ /D suppl) were used for surgery. (a) The incision
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secondary lymphedema. It is possible that upon tissue
wounding the high fluid filtration overwhelmed fragile blood
vessels and/or vulnerable lymphatics in AdmAMþ /Dmice,
subsequently leading to impaired fluid uptake and edema, as
suggested in breast cancer patients (Stanton et al., 2009a).
Such alterations within skin tissue could have ultimately
led to lymph stagnation and elevated collagen fiber density,
subsequently exerting further effects on grossly morpholo-
gically intact but possibly functionally impaired lymphatics
and/or blood vessels and contributed to their constitutive
dilation/dysfunction. How vascular and lymphatic
insufficiencies are coordinated to predispose to secondary
lymphedema and whether lymphedematous changes in
AM-deficient mice develop in part owing to non-lymphatic
vessel–dependent mechanisms remain to be defined. Never-
theless, our data reveal that aberrant expression of a single
gene is sufficient to affect both lymphatic and blood vessels
and predispose to the development of secondary lymphe-
dema, thus suggesting a crucial, possibly even ‘‘gatekeeping’’,
role for AM in this disorder, at least upon wounding. In
addition, our study uncovers a previously unrecognized
spectrum of potential AM targets in human skin by demon-
strating that CLR is expressed in both lymphatic and blood
vessel endothelium, as well as in the epidermis, which are all
affected in lymphedematous organs (Wilson et al., 2004;

Tabibiazar et al., 2006; Rockson, 2008a; Nakamura
et al., 2009).

Ways to prevent or treat lymphedema are limited and
mainly palliative (Rockson, 2008a; Tammela and Alitalo,
2010; Wang and Oliver, 2010). The development of an
experimental model for the commonest form of
lymphedema will lead to further insight into the underlying
molecular mechanisms, and potentially effective therapies
(Shin and Rockson, 2008). AdmAM haploinsufficient mice
represent an example of a new, to our knowledge previously
unreported, type of an in vivo model for studying secondary
lymphedema occurring as a result of an underlying germ-line
genetic alteration. Certain strategies (e.g., VEGF-C or non-
steroidal anti-inflammatory drugs) have been tested to
treat postsurgery-onset lymphedema in experimental
models (Tammela et al., 2007; Nakamura et al., 2009).
Here, we report partial but significant prevention of
secondary lymphedema in AdmAMþ /D mice by postsurgical
and systemic AM supplementation, which attained circulating
peptide levels comparable to those in AdmAMþ /þ mice. These
findings suggest that circulating vasoactive factors could have
a role in secondary lymphedema and that vascular treatments
could potentially be used to alleviate its development. In our
in vivo model, Adm expression in injured tissue was
upregulated, as previously reported for VEGF-C or VEGFR-3

AdmAM+/+ AdmAM+/� Adm AM+/�suppl

AdmAM+/+ AdmAM+/� Adm AM+/�suppl

4

3

2

1

0

100

80

60

40

20

0

P<0.0001 P=0.0037P =0.0021

E
pi

de
rm

al
th

ic
ke

ni
ng

 s
co

re

Adm AM+/+ AdmAM+/� AdmAM+/�
suppl

AdmAM+/+ AdmAM+/� AdmAM+/�
suppl

*
*

C
ol

la
ge

n,
 %

 a
re

a

Figure 3. Histopathological features characteristic of lymphedema in the skin of the adult AdmAM haploinsufficient mice after hind limb skin incision

wounding surgery. (a) Azan staining. The representative images from six to eight mice in each group are shown. Lower panels (bar¼50mm) are magnified images

from the same group as on the upper panel (bar¼ 100mm). Note thickened epidermis (white asterisks) and increase in collagen fiber (blue color, white
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(Nakamura et al., 2009), suggesting that AM levels could be
higher locally and that the systemic supplementation was
probably not sufficient to completely prevent lymphedema
development. Therapeutic approaches using AM have already
been developed for the treatment of vascular disease, and this
peptide could be delivered topically or systemically to reverse
vascular damage associated with pulmonary hypertension or
response to tissue injury (Kawai et al., 2004; Nagaya et al.,
2004; Tokunaga et al., 2004; Harada et al., 2011). Therefore,
similar AM topical application strategies together with
systemic delivery could be explored as combinatorial
therapies with VEGF-C (Tammela et al., 2007) or other
factors (Kajiya et al., 2005), to prevent or treat lymphedema.

Experimental models of acute postsurgical lymphedema
(including our model of genetically predisposed secondary
lymphedema) are useful in studying mechanisms of human

lymphedema, which represents chronic unremitting condition,
because they are associated with lymphatic insufficiency and
share characteristic lymphedematous changes in affected
tissues/organs (Tabibiazar et al., 2006; Shin and Rockson,
2008). Studies investigating whether AdmAM haploinsufficie-
ncy also predisposes to long-lasting secondary lymphedema
and whether there is a potential for AM treatment in
ameliorating or reversing complex changes associated with
chronic lymphedema will be necessary in the future. The
detection of AM receptor CLR expression in those cell types
that are affected in lymphedematous tissues prompts further
studies using complex genetic and physiological approaches
to dissect underlying mechanisms. For example, animal
models using lymphatic/blood vessel EC–specific conditional
knockdown technologies (Bazigou et al., 2011) might provide
further insight into the lymphatic/vascular insufficiency
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effects of genotype (genotype, i.e., AdmAMþ /þor AdmAMþ /D) and incision wounding (surgery) independently; where it was suggested by the plots and

data, the possible interactions between these factors (i.e., whether the effect of genotype was different after surgery to before; genotype/surgery) were also tested

(P-values are shown in upper left corner), followed by Welch two-sample t-test for the groups 4 and 5 (AdmAM haploinsufficient mice with or without AM; P-value

is shown in the upper right corner).

LL Nikitenko et al.
Adrenomedullin and Lymphedema

www.jidonline.org 1773

http://www.jidonline.org


underlying secondary lymphedema development upon
aberrant AM signaling through CLR.

Apart from previously identified genetic factors, e.g., muta-
tions in VEGFR3 or GATA2, it is likely that additional
predisposition mutations contribute to the development of
primary and secondary lymphedema (Finegold et al., 2008).
Genome-wide data identified a significant association
between the ADM locus and predisposition to the
development of cardiovascular disease (Ehret et al., 2011).
Similar studies will be required to address its potential
association with secondary lymphedema in humans. Similar
to AdmAM haploinsufficient mice, individuals with AM
deficiency might not have overt symptoms of vascular or
lymphatic insufficiency under physiological conditions, and
lymphatic or blood vessel abnormalities may therefore remain
undetected unless injury occurs. Whether mutations and
polymorphisms in ADM, CALCRL, or RAMPs have a role in
the pathogenesis of secondary lymphedema in humans
remains to be investigated.

In summary, we identify AM as a key regulator in the
pathogenesis of secondary lymphedema in adult mice. Our
data suggest that circulating vasoactive factors, blood, and
lymphatic vessels are intimately involved in this disorder.
Although it remains to be shown that AM deficiency in
humans is associated with this disorder, our experimental

model provides previously unreported in vivo evidence that
germ-line genetic factors predispose to the development of
secondary lymphedema.

MATERIALS AND METHODS
Please see details of the following methods in Supplementary

Information online: lymphangiography, Evans blue accumulation,

and deglycosylation assays; GeneChip Human Genome array analy-

sis; histology, immunostaining, immunoblotting, and image analysis.

Animals

AM-knockin mice were generated as previously reported (Shimosawa

et al., 2002). As the homozygote (AdmAMD/D) animals are embryonic

lethal, in the present study we used heterozygotes (AdmAMþ /D),

which were back-crossed with C57/B6crj mice for more than 20

generations, and C57/B6crj was used as a wild-type (AdmAMþ /þ )

control. Animals were handled in accredited facility in accordance

with the institutional animal care policies, and all research protocols

have been approved and conformed to the guiding principles for

animal experimentation, as outlined by the Ethics Committee on

Animal Research of the University of Tokyo, Faculty of Medicine.

AM measurement

AM and PAMP concentrations were measured in the plasma as

described previously (Shimosawa et al., 2002).
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Figure 5. CLR protein and CALCRL messenger RNA (mRNA) expression in human skin and primary dermal endothelium. (a) CLR, LYVE-1, and CD31

immunofluorescence and DAPI (DNA) staining (bar¼ 75mm). Lymphatic (CD31-positive/LYVE-1-positive; white arrows) and blood (CD31-positive/LYVE-1-

negative; white arrowheads) vessel endothelium, and epidermis (white asterisk). (b) CALCRL, RAMP2, and RAMP3 mRNA expression in primary human dermal

microvascular blood and lymphatic ECs (MVBEC and MVLEC) was determined using GeneChip Human Genome array data (E-MEXP-66) from 12 isolates as

described in detail in Supplementary Methods online. Heatmap reflects relative changes in gene expression. Color scale—units of SD from the mean values of

‘‘rma’’ log2 expression units across all samples. Red, gene expression is significantly upregulated; blue, significantly downregulated; white, no significant change. A

difference in CALCRL expression between MVBEC and MVLEC is also presented as dot plots (left) alongside the mean and SEM (right; Welch

two-sample t-test).
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Skin incision wounding model. Skin incision wounding model
(Kanter et al., 1990) was performed in both AdmAMþ /þand
AdmAMþ /D eight-week-old male mice. Mice were anesthetized
by pentobarbital (1 g kg� 1 body weight, intraperitoneal), and after
shaving the operated area hind limb skin at an achilles tendon
was incised. The following modifications were introduced: the
Evans blue dye was not injected and inguinal lymph node was not
excised. Next, AdmAMþ /D mice were randomized for treatment
with vehicle or synthetic murine AM (Peptid Institute, Osaka,
Japan). AM was administered intraperitoneally at a dose of
300 ng kg� 1 per hour by ALZET osmotic pump 1002 (Durect,
Cupertino, CA) (Shimosawa et al., 2003), which was implanted
straight after incision. Three days after operation, animals were
anesthetized with pentobarbital and the swelling of the limbs
was scored (edema score) in a blind manner from 0 to 5: 0—no
edema; 1—edema at cutting edge; 2—edema 1/3 of the hind limb;
3—edema 2/3 of the hind limb; 4—edema in the whole hind limb;
and 5—edema above the knee. Skin samples were fixed in
phosphate-buffered saline containing 4% paraformaldehyde for
6–12 hours at 4 1C, dehydrated, and embedded in paraffin.

Human skin tissue samples. Human skin tissue samples were
obtained from the Royal National Orthopaedic Hospital Muscu-
loskeletal BioBank (Stanmore, UK), snap-frozen, and stored in
liquid nitrogen. The Cambridgeshire Research Ethics Committee
has approved their use for this study.

Histology, immunostaining, and image analysis
Paraffin-embedded or frozen sections of mouse skin and human

tissues were prepared as previously described (Shimosawa et al.,

2002; Nikitenko et al., 2006a, b) and stained either with hematoxylin

and eosin or Azan or processed for immunostaining.

Histopathological analysis was performed by scoring epidermal

thickening in the skin. A severity scale from 0 to 4 was used

(0, normal; 0.5, focal and rare; 1, focal and mild; 2, diffuse and

mild; 3, diffuse and moderate; and 4, diffuse and severe). The tissue

area occupied by the collagen fibers, as a measure of fibrotic changes

(Chen et al., 2005), was quantified using the Scion Image Software

(Scion, Frederick, MD). Immunohistochemistry and immuno-

fluorescence were performed using previously described methods

(Nikitenko et al., 2006a, b).

Blood and lymphatic vessel number and density (occupied tissue

area) in mouse skin tissue were analyzed as described elsewhere (Kajiya

et al., 2009), based on endomucin (blood vessel endothelium marker;

(Kuhn et al., 2002)) and Lyve-1 (lymphatic endothelium marker;

(Tammela and Alitalo, 2010)) immunostaining and quantified using

the ImageJ or Scion Image Software, according to approaches adapted

by others (Kajiya et al., 2009). Lymphatic/blood microvessel number

ratio was calculated based on obtained numbers for each vessel type.

Statistical analysis

Four independent sets of skin incision wounding experiments were

performed in this study, and the phenotype was reproduced. All

obtained values and quantitative data for each experimental group

were analyzed using R and GraphPad Prism (GraphPad Prism,

La Jolla, CA) software programs and presented as dot plots (left)

shown alongside means±SEM (right). The comparisons among the

groups were done using either Wilcoxon rank test or two-way

ANOVA testing for effects of genotype and surgery independently,

and where it was suggested by the plots and data, we also tested

possible interactions between these factors (i.e., whether the effect of

genotype was different after surgery to before), followed by Welch

two-sample t-test for the AdmAMþ /D mice with or without AM

supplement, with a two-tailed significance set at the 0.05 levels

and marginal significance set at the 0.1 level. We reported the actual

P-value for each test.
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