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Abstract

Aims Risk changes with the progression of disease and the impact of treatment. We developed a dynamic risk stratification
Markov chain model using artificial intelligence in patients with chronic heart failure (CHF).
Methods and results We described the pattern of behaviour among 7496 consecutive patients assessed for suspected HF.
The following mutually exclusive health states were defined and assessed every 4 months: death, hospitalization, outpatient
visit, no event, and leaving the service altogether (defined as no event at any point following assessment). The observed
figures at the first transition (4 months) weres 427 (6%), 1559 (21%), 2254 (30%), 1414 (19%), and 1842 (25%), respectively.
The probabilities derived from the first two transitions (i.e. from baseline to 4 months and from 4 to 8 months) were used
to construct the model. An example of the model’s prediction is that at cycle 4, the cumulative probability of death was
14%; leaving the system, 37%; being hospitalized between 12 and 16 months, 10%; having an outpatient visit, 8%; and having
no event, 31%. The corresponding observed figures were 14%, 41%, 10%, 15%, and 21%, respectively. The model predicted
that during the first 2 years, a patient had a probability of dying of 0.19, and the observed value was 0.18.
Conclusions A model derived from the first 8 months of follow-up is strongly predictive of future events in a population of
patients with chronic heart failure. The course of CHF is more linear than is commonly supposed, and thus more predictable.
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Introduction

Chronic heart failure (CHF) is very common and consumes a
lot of health care resource.1–3 Patients with CHF have a high
mortality and are admitted to hospital frequently.4 The
greatest contributor to the cost of treatment for CHF is
hospitalization.5 The magnitude of the problem of CHF is dif-
ficult to assess with precision since there is no gold standard
for the diagnosis of heart failure.6 Most modelling at the mo-
ment tends to be at the level of applying scoring systems to
individual patients to assess the risk of death, which might
be helpful for that patient, but does not describe patterns
of disease behaviour at a population level.7,8

For patients with CHF, the clinical interest lies not only in
the final outcome but in the dynamics of the progress of

the disease, particularly the need for hospitalization.8–10 Elec-
tronic data offers a way of trying to describe the trajectory of
the disease course in many groups of patients.10–12 It might
be helpful to construct a model which could describe how a
group of patients might progress after an assessment for
possible heart failure.13–15 A successful model might allow
prediction at the level of the individual patient, and also
would allow estimates to be made of need for health care
resources to match patient need.

We therefore used Markov chains to model the progres-
sion of CHF in a well-characterized cohort of patients referred
for assessment of possible heart failure, based on a finite
number of mutually exclusive and exhaustive distinct states.
Markov models are applied extensively by the National
Institute for Health and Care Excellence (NICE) in health
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economics appraisals16 of healthcare interventions. We take
their ideas one stage further. We were particularly concerned
to see if we could use events at an early stage in an individ-
ual’s journey as a patient to predict what was likely to hap-
pen to them during subsequent follow-up. This might im-
prove understanding of the journey of the patient with CHF
and allow more rational service planning and disposition of
resources.

Methods

Ethics approval

The investigation conformed to the principles outlined in the
Declaration of Helsinki. It was approved by the Hull and East
Yorkshire Research Ethics Committee (Heart Care Study ELSY
2642). All subjects gave written informed consent.

Setting

Hull is a geographically isolated area of the United Kingdom
with a stable population of about 600 000 people. In this
region, our hospital is the sole provider of acute medical
care. In 2000, the Hull LifeLab database was established as
a systematic approach to the assessment and management
of people with suspected heart failure referred by physicians
in primary or secondary care. Accordingly, the population in-
cludes a mixture of patients, including some who do not
have heart failure by any criterion, some who have heart
failure by only some criteria, as well as those with definitive
evidence of heart failure. The cohort is relatively immune to
further changes in diagnostic criteria for heart failure, since it
does not exclude patients for whom there is diagnostic un-
certainty. Patients are systematically reviewed and examined
by a doctor who is a heart failure specialist. Patients are
followed up at regular intervals, usually at consecutive four
monthly periods. We used data from the period 2000 to
2017. The database contains information on demography,
symptoms and signs, haematology and biochemistry profile
(including amino-terminal pro-brain natriuretic peptide [NT-
proBNP]) and echocardiograms. Data are linked to the Office
for National Statistic (ONS) mortality data to get the date
and cause of death. We used the hospital episode statistics
(HES) to determine hospital admissions at each 4-month
interval.

Diagnostic categories and definitions

CHF was defined as the presence of signs and symptoms of
the syndrome with either moderate or worse left ventricular
systolic dysfunction (LVSD) (LVEF ≤40% - HF with reduced

ejection fraction [HeFREF]), or no or mild LVSD (LVEF
>40%) and raised levels of NT-proBNP (HF with preserved
ejection fraction [HeFPEF]). NT-proBNP ≥125 ng. L is the
diagnostic threshold specified in the European Society for
Cardiology (ESC)17 guidelines. However, the National Institute
for Clinical Excellence (NICE)16 guidance recommends a
cut-off of NT-proBNP ≥400 ng. L. Therefore, the population
was classified into different cohorts as follows.

1. HeFREF – those with LVEF ≤40%.
2. HeFPEF – those with LVEF >40% and NT-proBNP:

a. ≥400 ng/L
b. 125–399 ng/L

3. Controls – patients who did not fulfil criteria for cardiac
dysfunction (i.e. those with LVEF >40% and NT-proBNP
<125 ng/L)

4. No NT-proBNP – the diagnosis of HF of this group of pa-
tients was uncertain (i.e. those with LVEF >40% and no
NT-proBNP).

NT-proBNP was not available for all patients as it was only
introduced as a clinical assay during the course of the study.
‘Controls’ are referred to in inverted commas patients are
not normal despite having normal cardiac investigations: a re-
ferring clinician thought heart failure was a possible diagno-
sis. Patients whose LVEF was not available at baseline (BL)
have been excluded from this analysis (n = 143; Supporting
Information, Figure S1).

Data transformation and state definition

The states of patients were determined at consecutive four
monthly intervals (cycles) after baseline. We defined the
following possible states:

1. Dead½ � - death (any cause).
2. Left½ � - patients who left the system and had no further

interaction with the service (but had not died or used
the service for the remaining period of study).

3. Hosp½ � - any heart failure hospitalization during the
4 month cycle (with or without a clinic visit).

4. OPD½ � - attendance for a heart failure out-patient visit dur-
ing the cycle (without either admission or death).

5. [No event ] - a patient did not attend the service during
that 4 month period, but did have a subsequent event,
and so is not in the Left½ � category.

[Left] and [No event] were treated as ‘non-clinical’ states
and were used to represent periods when the HF service
was not used (Figure 1).
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Markov models and chains

Markov models are designed to model prognosis for clinical
problems with ongoing risk after a particular event – such
as hospitalization with HF.12,18–20 The changes in a patient’s
health condition can be described through various distinct
states (s) (see above). Movement between n states is defined
by n2—transition probabilities—which determine the likeli-
hood of patient moving from one health state within a spec-
ified time period (referred to as a ‘cycle’). The transition prob-
abilities of each cycle can be represented by an n� nmatrix,
P; as shown in equation a:

p1; 1 p1; 2 ⋯ p1; n

p2; 1 p2; 2 ⋯ p2; n

⋮ ⋮ ⋱ ⋮
pn; 1 pn; 2 ⋯ pn; n

2
66664

3
77775
¼ P (a)

where pi; j is the probability (p) of transition from i (starting

state) to j (next consecutive state). For example, in
equation a p1; 2 represents the probability of transitioning

from state s1 to state s2 . Similarly, the probability of
transitioning from s2 to s1 is given by p2; 1. Note that p1; 2 is

not necessarily the same as p2; 1.

Some states, such as death, are ‘absorbing states’; a state
from which it is impossible to transition. Thus the probability

of moving to any other state is 0, and the probability of re-
maining in the state is always 1:21,22 Non-absorbing states
are called transient states. By including absorbing states to
the regular Markov chain, the model becomes an absorbing
Markov chain (AMC).23–26 The transition probability matrix
(equation b) for the absorbing Markov chain is an extended
version of the regular chain:

Here, the matrix can be partitioned into four separate
blocks. Absorbing states (i.e. [Dead] and [Left]) precede the
transient states (e.g. [Hosp], [OPD] and [No event]). A repre-
sents the absorbing states, N the transient states, I is an iden-
tity matrix and 0 is a zero matrix. R is a non-zero N-by-A ma-
trix and Q is a N-by-N matrix. Supporting Information,
Appendix S2 provides further detail.

An AMC allows an estimate to be made of the number of
cycles a patient might remain in each of the transient states;
and how many cycles a patient might remain in the system

Figure 1 Illustrates some possible transitions for patients up to five cycles after BL (four monthly intervals). D = [Dead], L = [Left], H = [Hosp], O [OPD]
and N = [No event]. 4 M = 4 month, 8 M = 8 month, 12 M = 12 month, 16 M = 16 month and 20 M = 20 month, BL = Baseline. An oval shaped circle is
drawn to show that a patient who transited to either D or L state will remain in this states for the rest of cycles or until a process ends.

(b)
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before reaching an absorbing state. The expected proportions
or probabilities of patients entering each of the absorbing
states can also be obtained. The details can be seen in
Supporting Information, Appendix S1.

Statistical analysis

Data are presented as median and interquartile range (IQR).
Categorical data are presented as numbers and percentages.
Differences between diagnostic groups of continuous data
were tested using the independent t-test. After the data
transformation into health states, the distribution of patients
in each state is presented in tables. All analyses were per-
formed using R (2022.02.1), Stata software and Excel. A 2-
sided P-value <0.05 was considered statistically significant.

Data structure and time-to-event representation
in a model

The Markov model predicts the likelihood of patient being in
particular states as time passes. For example, if a patient is
hospitalized, what is the probability of repeated hospitaliza-
tion or transition to any other state subsequently? Transition
matrices* were constructed for each of the first two transi-
tions [between (i) baseline and end of 1st cycle (4 months),
and (ii) 1st cycle and end of 2nd cycle (4 months to 8 months),
respectively]. These two matrices were used to predict
short-term clinical trajectory [one-step transition probabili-
ties up to the 6th cycle (i.e. 24 months)] and the longer term
behaviour of the system to a maximum of 4 years.

The underlying five state models for examining disease
progression is shown in Figure 2. The arrow indicates the di-
rections in which instantaneous transitions occurred. The
transitions between transient states are bidirectional, but
once an absorbing state has been reached, no further transi-
tions can be made.

Having derived a model from the observed frequencies of
state transitions during the first two cycles, we applied the
model to the original dataset in order to predict subsequent
outcomes. We compared the probabilities of the modelled
transitions with the observed transitions to see how closely
the model predicted actual outcome. For the long-term be-
haviour in the model as a whole, we used the modelled data
to calculate a fundamental matrix and a limiting matrix. A
fundamental matrix shows the proportion of time that an in-
dividual might spend in each of the transient states and gives
an estimate of the number of cycles before a patient reaches
one of the absorbing states within the lifetime of the model.
A limiting matrix gives the expected proportions or probabil-

ity of patients reaching each of the absorbing states. Details
are given in appendix.

Results

Baseline demographics

There were 7496 patients in the study: 2620 (34%) had
HeFREF, 2163 (28%) had HeFPEF (NT-proBNP ≥400 ng/L),
1065 (14%) had HeFPEF (NT-proBNP between 125 &
399 ng/L), 861 (11%) did not fulfil criteria for HF (‘controls’),
leaving 787 (10%) with diagnostic uncertainty (normal LV sys-
tolic function but no NT-proBNP result, ‘No NT-proBNP’)
(Supporting Information, Figure S1). Demographic and clinical
characteristics of patients in each diagnostic category are
shown in Table 1.

The distribution and proportion of patients following the
first transition (between baseline and end of 1st cycle) are
shown in table 2. Table 4a of the Supporting Information,
Appendix S2 provides the observed frequencies following
the second transition (between 1st and end of 2nd cycle)
and the corresponding transition probabilities are shown in
Table 4b of the Supporting Information, Appendix S2.

Model

The corresponding transition probabilities (Pobs) seen in Table
4b of the Supporting Information, Appendix S2 can be repre-
sented with four block matrices, I, 0, R and Q:

*Strictly, the first transition is a vector: matrices have equal numbers of
rows and columns. In the current model, all subjects enter in the [OPD]
state, and thus, the first transition is a single line only.

Figure 2 Underlying five state models for examining the disease progres-
sion among heart failure patients. The arrow indicates the directions in
which instantaneous transitions are permitted. Transitions between tran-
sient states ([Hosp], [OPD] and [No Event]) are potentially bidirectional,
but once an absorbing state (either [Dead] or [Left]) has been reached,
no further transitions are possible.
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I ¼
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0 0 1
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3
75; 0 ¼
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2
64

3
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¼
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0:05 0

2
64

3
75 and Q ¼
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2
64

3
75 (c)

F ¼

H½ � O½ � N½ �
H½ �
½O�
½N�

2:65 1:24 4:56

1:82 2:55 5:66

2 1:53 7:02

2
664

3
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¼

Total cycles

8:45

10:03

10:55

2
6664

3
7775

(d)

From the block matrices, the fundamental matrix Fð Þ was ob-
tained. D = [Dead], L = [Left], H = [Hosp], O [OPD] and N = [No
event]

The F matrix (equation d) gives the expected number of
visits to each non-absorbing states before absorption. For ex-
ample, the first row indicates that if the patient is in the Hosp½ �
(H) state after their initial transition, then on average he/she
will be in this state for approximately three cycles, in the
OPD½ � (O) state for one cycle and will not require HF services
for five cycles (prior to reaching an absorbing state). Similarly,
the second row of the matrix shows that if the patient is in the
OPD½ �(O) state after their initial transition, then on average he/
she will be expected to spend two, three, and six cycles in the
Hosp½ �(H), OPD½ � (O) and No Event½ �(N) states, respectively. The
F matrix also gives an indication of the number of cycles be-
fore a patient reaches an absorbing state, obtained by sum-
ming each row of F, shown as the final column in equation d.

The limiting matrix (P) (equation e) shows the probabilities
of patients reaching one of the two absorbing states (death
or the end of the model) as a function of the state reached
after the end of the first cycle. D = [Dead], L = [Left], H =
[Hosp], O [OPD] and N = [No event].Ta
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). Table 2 The first transition cycle (observed from the data)

1st cycle
(N at baseline
7496)

Absorbing states Transient states

[Dead] [Left] [Hosp] [OPD] [No Event]

Initial Distribution 427 1842 1559 2254 1414
Probability 0.06 0.25 0.21 0.3 0.19

The distribution and proportion of patients following the first tran-
sition (between baseline and end of 1st cycle): Patients all started
in the [OPD] state, and then over the subsequent 4 months
transitioned through the five possible states with the distribution
and probabilities given: 427 (6%) had died, 1842 (25%) had left
the service, 1559 (21%) were admitted to hospital, 2254 (30%)
had attended the out-patient clinic, and 1414 (19%) had not
accessed the service.
N, total number of patients; [Hosp], hospitalized; [OPD],
out-patient clinic visit.
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P ¼

D½ � L½ � H½ � O½ � N½ �
D½ �
L½ �
H½ �
O½ �
N½ �

1 0 0 0 0

0 1 0 0 0

0:43 0:57 0 0 0

0:46 0:54 0 0 0

0:51 0:49 0 0 0

2
666666664

3
777777775

(e)

Equations d and e need to be read together: an example of
how to interpret the information is to say that the model pre-
dicts that a patient who has been hospitalized after the first
cycle has a probability of dying (D) of 0.43 within (approxi-
mately) eight cycles (where eight cycles is equivalent to an
additional six cycles after the first two used the generate
the model—in other words, an additional 24 months). Note
that by definition, every patient has to reach an absorbing
state within the timeframe of the model.

Applying the model

Table 3 shows observed and predicted probabilities of transi-
tions up to the 6th transition (2 years) for all patients. Note
that the predicted probabilities derive from the model using
only the data observed for the first two transitions. The table
also shows the degree to which the model diverges from the
reality of the observed data. The agreement for the first two
cycles is necessarily identical. However, the agreement for
the important clinical states, death and hospitalization, re-
mains very strong up to 2 years from the initial assessment.

Prediction based on demographics

To assess whether there is a difference in the progression of
patents of different sex and age-groups [≥65,<65 (years)], an

AMC was developed for each sub-group. The model contin-
ued to predict death and hospitalization with precision. The
fundamental and limiting matrices (long-term prediction)
for the subgroups are shown in Supporting Information,
Appendix S2 (equation i to iv ); women spend fewer cycles
in the transient states than men, and are less likely to die
than men. Similarly, younger patients had a better prognosis.
Observed and predicted probabilities of transitions up to the
6th transition (2 years) for sub-groups are shown in Tables
5a–d in the Supporting Information, Appendix S2.

The probability of survival over nine cycles is illustrated in
Figure 3. The figure shows not only overall survival, but also
survival in the different subgroups. The young and women
had better survival at each cycle.

Discussion

Dynamic risk stratification gives a different view from tradi-
tional models of disease progression by treating the clinical
trajectory of patients as a group rather than by trying to pre-
dict individual survival.12 For example, current palliative per-
formance scales (PPS) might be applied to individual patients
to assess their risk of death within a particular timeframe
(which might be helpful for that patient), but does not de-
scribe patterns of disease behaviour at a population level. Dy-
namic risk stratification using absorbing Markov chains in un-
selected patients attending a community heart failure clinic is
complex and ambitious. Technically complex because it re-
quires rigid categorization of patient’s progression into a fi-
nite number of mutually exclusive and exhaustive disease
states. Ambitious because it has to include two consider-
ations. Firstly, there is no gold standard for the diagnosis of
HF; secondly, the present HF scoring systems do not describe
patterns of disease at a population level.

Table 3 Predicted and observed probabilities up to the 6th cycle (2 years) for overall population

From

Prediction (model) Observed (from data) Error (E) between prediction

Cycle [Dead] [Left] [Hosp] [OPD] [NE] [Dead] [Left] [Hosp] [OPD] [NE] [Dead] [Left] [Hosp] [OPD] [NE]

BL 1 - - - - - 0.06 0.25 0.21 0.30 0.19 - - - - -

2 - - - - - 0.09 0.31 0.12 0.12 0.36 - - - - -

3 0.12 0.34 0.11 0.09 0.34 0.11 0.34 0.11 0.26 0.18 0.00 0.00 0.00 �0.17 0.16
4 0.14 0.37 0.10 0.08 0.31 0.14 0.41 0.10 0.15 0.21 0.01 �0.04 0.01 �0.07 0.10

5 0.16 0.39 0.09 0.07 0.28 0.16 0.47 0.10 0.07 0.20 0.00 �0.08 0.00 0.00 0.07

6 0.19 0.41 0.08 0.07 0.25 0.18 0.54 0.08 0.19 0.00 0.00 �0.13 0.00 �0.13 0.25

The predicted probabilities derive from the model using only the observed data for the first two cycles. Note that because the model is
constructed from the first two cycles, it makes no prediction for those cycles. The left-hand columns show the predicted probabilities
of the model, the columns at the centre represent the observed probabilities, and right-hand columns show the error (E) between two.
For example, at cycle 4, the model predicts 14% patients will be dead, 37% have discharged, 10% patient will be hospitalized, 08% will
be attended out-patient and 31% will not be required any HF service. Colour coding (heat map), as the difference increase changes from
green to red. Negative signs indicate underestimation vice versa for positive sign. Probabilities were rounded to 2 decimal points.
Hosp, hospitalized; OPD, out-patient clinic visit; NE, No event; BL, Baseline.
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We have used a large, epidemiologically representative,
database to develop a dynamic risk stratification model for
patients referred for the assessment of possible heart fail-
ure to a specialist community clinic. The most striking find-
ing is that the events which occurred during the first two
cycles (i.e. over the first 8 months of follow up) allowed
us to construct a model predicting future events which
corresponded extremely closely to the actual, observed,
events. This was particularly true for the most important
clinical events we considered, namely heart failure hospital-
ization and death.

CHF disease management generally focuses on high-risk
patients. Such an approach can lead to reductions in hospital-
izations and mortality by targeting interventions on those
most at risk.28 However, the effectiveness of such programs
over time for lower-risk patients is uncertain. Improving the
management of patients with CHF across the spectrum of risk
could yield significant health gains in the longer term. Our
findings are consistent with Krajewska et al.14 who reported
that patients who were hospitalized in the initial 4 months
will be expected to spend more cycles in the hospital when
compared with other patients. Krajewska et al.14 and Zhang
et al.15 emphasize that re-evaluating risk is an important as-
pect of care as risk changes with time. The most recent state
is a better predictor of future states than is an initial state at
some remote time. Our results are subtly different in empha-
sis: we have found that a model derived from the first two

transitions, when applied at each subsequent transition, con-
tinues accurately to predict outcome. Although risk changes
as a consequence of the present state the patient happens
to be in, the consequences of being in a particular state re-
main constant. The system has no memory—the risk is de-
pendent upon the present state only, and not how that state
was reached.

Our Markov model provides a more convenient and less
computationally complex strategy than complex scoring sys-
tems to estimate the probability of transitions to and from
particular states. However, as is the case in all data driven ap-
proaches, pre-processing of the data based on (i) a knowl-
edge of the likely clinical course and (ii) appropriately defined
states is essential. Only then will the output from the model
allow an understanding of transitions, and, potentially, better
management of patients.

We have outlined the potential value of a model that
provides a prediction of a complex problem with low com-
putational overhead. It might be helpful not only in
predicting risk states for patients but also in the allocation
of resources. We studied patients across the whole spec-
trum of risk, which makes our study more epidemiologically
representative than many multicentre studies that enrol pa-
tients in a selective and non-consecutive fashion. The ap-
proach we have taken is practically validated by Chan
et al.28 We need to verify whether the same model can
be used for other datasets without training and learning.
The model might then be developed further to personalize
predictions.

Limitations

The data used is from a single centre with a population of
people who were referred for assessment of possible heart
failure. Whilst our results indicates that AMC modelling is ap-
plicable to patients in Hull LifeLab, we cannot know if the re-
sults are more generally applicable. Importantly, the same
methodology can be applied to other populations of people
with heart failure. There could be errors in the coding of data.
However, the errors in our predictive model were low. We
have only considered a limited number of subgroups (age
and sex) and not others based on other clinical variables such
as NT-proBNP.

Conclusions

Our finding, which events early in the course of follow up al-
low a very strong prediction of subsequent outcomes, have
important implications for understanding the trajectory of
heart failure. Heart failure is often thought of as a disease
with a steady downward course, punctuated by essentially
unpredictable hospitalization and with an ever-present risk

Figure 3 Illustrates the estimated survival probabilities for patients in the
study over nine cycles. The figure shows not only survival of overall pa-
tients but also those of different age and sex subgroups. Young and
women had a better survival at each cycle, however, the survival of both,
the male and older patients (aged ≥ 65) sub-groups show similar trend
up-to the 3

rd
cycle (i.e. 12 months). It is only after this that the two

sub-groups diverge, with male have marginally better survival rate. Ab-
breviations: n, number of patients in each state; FU, Follow-up; [Hosp],
hospitalized; [OPD], out- patient clinic visit.
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of sudden death.27 However, our findings strongly suggest
that the true course of heart failure is more linear than is
commonly supposed, and thus much more predictable.
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