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ABSTRACT Intelligent question-answering (QA) systems have witnessed increased interest in recent
years, particularly in their ability to facilitate information access, data interpretation or decision support.
The wind energy sector is one of the most promising sources of renewable energy, yet turbines regularly
suffer from failures and operational inconsistencies, leading to downtimes and significant maintenance
costs. Addressing these issues requires rapid interpretation of complex and dynamic data patterns under
time-critical conditions. In this article, we present a novel approach that leverages interactive, natural
language-based decision support for operations & maintenance (O&M) of wind turbines. The proposed
interactive QA system allows engineers to pose domain-specific questions in natural language, and provides
answers (in natural language) based on the automated retrieval of information on turbine sub-components,
their properties and interactions, from a bespoke domain-specific knowledge graph. As data for specific faults
is often sparse, we propose the use of paraphrase generation as a way to augment the existing dataset. Our QA
system leverages encoder-decoder models to generate Cypher queries to obtain domain-specific facts from
the KG database in response to user-posed natural language questions. Experiments with an attention-based
sequence-to-sequence (Seq2Seq) model and a transformer show that the transformer accurately predicts up
to 89.75% of responses to input questions, outperforming the Seq2Seq model marginally by 0.76%, though
being 9.46 times more computationally efficient. The proposed QA system can help support engineers and
technicians during O&M to reduce turbine downtime and operational costs, thus improving the reliability of
wind energy as a source of renewable energy.

INDEX TERMS Decision support, artificial intelligence, interactive systems, wind energy, question-
answering, knowledge graphs, formal language generation, deep learning.

I. INTRODUCTION
Question-answering (QA) systems [1], [2], [3] provide intel-
ligence analysts and other users of information systems
with the ability to pose questions to a system in natu-
ral language (semantic queries), and obtain the relevant
answers (assistance) they may require to better perform their
tasks [4], [5], [6], [7]. QA systems have historically been
successfully utilised for information retrieval in domains like
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e-commerce [8], education [9], tourism [10] and safety-
critical applications like healthcare [11], [12], [13] etc.

QA systems leverage either pre-structured databases or
a collection of domain-specific natural language documents
for information retrieval [14]. In the last decade, there has
been a particularly growing interest in leveraging knowledge
graphs (KGs) for QA [15], wherein, various real-world enti-
ties like concepts, events, objects etc. are represented as nodes
in the graph and these are interlinked via graph edges that
serve as a predicate [16]. KGs can either be open-domain or
domain-specific–open-domainKGs (e.g. Google KG) consist
of a large collection of coarse-grained facts without being
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restricted to a specific domain, whereas, domain-specific
KGs (e.g. in healthcare) consist of facts dedicated to specific
application domains and are generally smaller in size [17].
While there has been a significant emphasis on QA in open-
domain tasks, there has been limited focus on leveraging
domain-specific KGs in applications aimed at AI for social
good, especially pertaining to tackling climate change.

Present-day electricity systems contribute to around a
quarter of human-caused greenhouse gas emissions each
year [18]. To combat such emissions, there has been a
growing emphasis on utilising renewable energy sources,
particularly wind energy as a viable low-carbon energy
resource [19], [20]. Despite their promise, wind turbines
regularly suffer from operational inconsistencies that affect
their reliability and availability [21], leading to significant
downtimes. This ultimately affects society as turbines are not
able to generate electricity at their optimal capacity, and the
unreliable nature of wind energy makes many organisations
reluctant to switch to low-carbon energy. Operations and
maintenance (O&M) is key to prevent such inconsistencies
and fix/avert failures in turbines. A key aspect of O&M is
Condition-based monitoring (CBM) [20], wherein, opera-
tional changes in the turbines and their sub-components are
regularly monitored for any impending faults. Traditionally,
CBM has relied on signal processing and vibration anal-
ysis and more recently, AI models have been applied for
data-driven decision support by leveraging the Supervisory
Control & Acquisition (SCADA) data1 generated from tur-
bines at regular intervals [22], [23]. The wind industry has
leveraged conventional machine learning (ML) models [20]
as well as deep learners [24], [25] for CBM, achieving high
levels of accuracy particularly in anomaly prediction and
wind power forecasting.

Despite demonstrating promising applications of AI for
the wind industry, existing studies fail to provide an ambient
interface for automated reasoning during CBM. As decision
making time is a critical factor for O&M activities, an auto-
mated reasoning system can provide immediate answers to
engineers on why a fault occurs for instance, and how to
fix/avert the failure by planning for appropriate manage-
ment of SCADA parameters, alarms and condition of sub-
components etc., leading to significant savings in O&M
costs and reduction of downtimes and operational incon-
sistencies. To accomplish this objective, we propose QA
over KGs, wherein, natural language questions posed by the
engineers e.g. ‘‘What are the predictive activities for the
power cabinet of wind turbines?’’ can be effectively answered
by appropriate retrieval of facts pertaining to the relevant
entities–which in this case would describe the ‘‘Predictive
Activities’’ property for the entity ‘‘Power Cabinet’’. Note
that due to the immense complexity and scale of O&M infor-
mation in case of complex engineering systems like wind

1SCADA data from wind turbines includes continuous measurements
of vital operational parameters from sensors (such as wind speed, pitch
angle, active power etc.) and historical logs of alarms with natural language
descriptions of their causes.

turbines, it is practically infeasible for engineers to remember
the ‘‘detailed’’ technical facts for each and every fault type,
SCADA parameters, turbine sub-component etc., which our
interactive QA system can help provide through automated
information retrieval from relevant domain-specific sources.

Combining language models with KGs for facilitating
automated QA has historically been a highly challenging
task in the NLP domain. [26]. This is particularly because:
given a natural language question–(a) informative knowledge
needs to be retrieved from domain-specific (often large) KG
databases (b) nuances of the question and the structure of the
KG need to be effectively captured to provide joint reasoning
over these disparate sources of information [27]. There has
been a significant research focus on training AI models for
QA over KG databases across multiple application areas,
particularly for open-domain tasks [17], [28], [29] by util-
ising natural language questions and answers that are either
human-annotated or (semi)-automatically generated. Most
existing studies have focused on directly generating answers
in natural language itself, rather than the code which can
be used to retrieve the answer from a KG. While this is an
important research avenue in its own right, when applying
QA to O&M of renewable energy sources in a safety-critical
application (such as wind turbine maintenance), we have a
need to be exact as errors in response/answer generation can
have serious consequences.

While few existing studies [30], [31], [32] have demon-
strated the promise of utilising KGs for systematically struc-
turing conceptual information in the wind industry, they only
serve as an end point [33] providing information for consulta-
tion without the ability to further reason over the data. More-
over, these ontologies need to be queried manually through
specialised graph query languages to extract relevant and
meaningful information, which may not be easily accessible
to turbine engineers & technicians. To the best of our knowl-
edge, there is no existing study which has focused on the
development and utilisation of domain-specific KG databases
in the wind industry wherein, KG elements are mapped to
natural language questions, which can provide an easy-to-
use ambient and intuitive interface for interactive decision
support through automated QA. Additionally, we believe
that the optimal utility of KGs for decision support in the
wind industry can only be realised by integrating conceptual
information on O&M with other heterogeneous data, such
as SCADA parameters from sensors, alarm types, preven-
tive/predictive/corrective maintenance action strategies for
turbine sub-components etc. and their associated relation-
ships.

We therefore opt for an approach that generates KG queries
instead of direct natural language. This avoids accounting for
the variability of natural language and reduces the required
vocabulary (including the presence of special symbols, num-
bers and variables etc.). In this regard, our approach is related
to work in code [34], [35], [36], [37] and formal language
generation [38], [39], [40]. The retrieved answers in our study
are related to look-up of information from specialised domain
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FIGURE 1. Proposed framework for graph query language generation in the wind industry, wherein, an encoder-decoder model is used to predict formal
language (Cypher queries) based on domain-specific natural language english questions to facilitate automated information retrieval of O&M
information. A pre-trained T5 transformer model is utilised for data augmentation through paraphrasing to tackle the sparse nature of data for specific
faults in the wind industry.

resources such as user manuals for wind turbine maintenance.
The proposed approach also helps the QA system to incor-
porate multimodal information like images of turbine sub-
components, SCADA features etc. in the responses, instead
of learning to generate such entities themselves.

In this article, we propose a novel solution to multimodal
decision support using a transformer model [41]. We utilise
a domain-specific KG [42], [43] that we developed from
human-authored maintenance manuals in the wind industry
to ensure high-quality outputs. We also employ paraphrase
generation for data augmentation to account for the potential
variability in natural language input queries and the sparse
nature of data for specific faults in the wind industry. Figure 1
depicts a conceptual overview of our proposed framework,
wherein, an encoder-decoder model facilitates prediction of
formal language (Cypher queries) that are utilised to auto-
matically retrieve domain-specific O&M information based
on natural language English questions. Experiments with an
attention-based sequence-to-sequence (Seq2Seq) recurrent
neural network model and a transformer for graph query
language generation for information retrieval from the KG
show that the transformermodel predicts queries (and thereby
the responses to natural language questions) with an accuracy
of up to 89.75%.

In summary, we make the following key contributions in
this paper:-

1) A novel framework for graph query language gener-
ation is proposed in a real-world application of intel-
ligent QA systems for interactive decision support in

O&M of wind turbines. The joint framework com-
bines cross-domain NLP techniques for automatic for-
mal language generation from varied and potentially
noisy natural language inputs, and facilitates retrieval
of domain-specific multimodal outputs including text,
images and device measurements.

2) We develop a domain-specific dataset of natural lan-
guage questions and Cypher queries for QA over a
publicly available domain-specific Neo4j KG database
in the wind industry. All our data is made publicly
available on GitHub.2

3) We explore the role of pre-trained large lan-
guage models for performing data augmentation of
domain-specific information in the wind industry
through paraphrase generation. This helps tackle the
sparse nature of data for specific faults in the wind
energy sector.

4) Our approach provides a complete QA system for
engineers & technicians in the wind industry to auto-
matically query domain-specific information in natural
language, without requiring any specialised skills and
understanding of KGs. This can potentially help reduce
operational inconsistencies by assisting engineers to
fix/avert failures in wind turbines in a timely manner,
thereby helping make wind energy sources more reli-
able en-route to combat climate change.

2Datasets: https://github.com/joyjitchatterjee/
WindTurbine-QAKG
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The paper is organised as follows: Section II reviews past
literature in question-answering and formal language genera-
tion. Section III describes the proposed framework for graph
query language generation to facilitate automated QA for
decision support in the wind industry. Section IV describes
the datasets used in this study, alongside the steps used for
their pre-processing. Section V provides an overview of the
architecture of the Seq2Seq and transformer learning models
which are utilised in this study. Section VI discusses the
experiments conducted with the proposed learning models.
Section VII demonstrates the experimental results obtained
in generating Cypher queries with the Seq2Seq and trans-
former models. In Section VIII, the key takeaways from
the experiments conducted in this paper and their potential
utility and limitations for the wind industry are discussed.
Finally, Section IX concludes the paper, enunciating the main
contributions and limitations of this study and provides a path
for future work.

II. RELATED WORK
In this section, we would review related work in
question-answering for open and closed domains and also
in the area of formal language generation. This section also
discusses the limitations of existing studies and highlights
the novelty of the proposed approach compared to the past
literature in this domain.

A. QUESTION-ANSWER GENERATION
Domain-specific QA tasks have witnessed extensive
research interest over the years, particularly in the last
decade [44], [45], [46], [47], [48]. Most existing studies in
this area have utilised a static lexicon to map the surface
forms of the relevant entities to their logical forms [49],
which makes scaling up such lexicons (that often consist of
thousands of entities) challenging and inefficient. To tackle
these challenges, KGs have been utilised for QA through
development of natural language interfaces to knowledge
bases (NLIKB) [39], [50], [51], [52], [53]. Existing studies
performing QA over KGs have focused on utilising either
general or neural network-based approaches [54].

The general QA approaches have mainly focused on lever-
aging information retrieval methods and semantic parsing.
Information retrieval-based approaches [28], [55] analyse the
dependency of words in questions to construct a candidate set
consisting of possible answers retrieved from the KG, from
which the most appropriate information is selected based on
a quality or relevance evaluation [54]. In contrast, the studies
that leverage semantic parsing [56], [57], [58], [59], [60]
map natural language questions to their logical forms
based on either a combinatory grammar mechanism or
dependency-based compositional semantics [54]. These log-
ical queries are then finally translated into structured queries
for extracting relevant answers from the KGs [61]. Note
that such structured queries (e.g. SPARQL, Cypher etc.)
are essentially domain-specific code, which are executable
by computers for retrieval of relevant information from the

KG databases. The task of generating these queries during
data-driven semantic parsing thereby pertains to domain-
specific language (DSL)3 generation, wherein, formalisms of
the appropriate schema and syntax of code are to be learnt
from the data. While the general QA approaches are simple to
apply, they generally witness low evaluation scores and have
mostly been outperformed by neural approaches in recent
years, particularly when complex multi-hop reasoning over
KGs is required.

There has been a rapidly growing interest in leveraging
deep learning models for QA, particularly for open-domain
tasks. This progress can be attributed to the release of large
knowledge bases that consist of consolidated knowledge
extracted from various sources e.g. free-form text, tables
etc. (such as Freebase) or annotated by humans (such as
SimpleQuestions,WebQuestions etc.) [28]. In a notable study
in this domain [28], Memory Networks (MemNNs) have
been utilised to achieve state-of-the-art performance in sim-
ple QA4 on the WebQuestions database. MemNNs contain a
memory component which can be read from or written to,
along with a trainable neural network which can be used
to query the memory (that can be incorporated with facts
from KG databases) for appropriate information retrieval.
The authors utilised the Freebase database as the underlying
KG for the MemNN model. The paper also proposed a new
SimpleQuestions structured KG database, and demonstrated
that the model can facilitate transfer learning–therebymaking
high-quality predictions in a new domain (with the Reverb
database) without needing to be re-trained.

There have been some other popular studies in this domain
that apply various types of neural network architectures for
QA: a character-level encoder-decoder model with atten-
tion [29] has been used to learn higher level semantic con-
cepts towards answering natural language questions from
KG databases. The paper demonstrated that the model,
which leverages attention-based long short-term memory
networks (LSTMs) for encoding and decoding, facilitates
joint learning of question embeddings, entities and predicates
which enables it to better generalise to unseen entities. The
proposed model significantly improves the state-of-the-art
performance on the SimpleQuestions database, while utilising
significantly less data for training in comparison to previous
work. Some studies [63] have utilised recurrent neural net-
works (RNNs) in an end-to-end manner for simple QA tasks.
These studies have shown that RNNs are able to effectively
model the sequential nature of the natural language questions
and answers in KG databases by transforming the inputs into
vectors using word or character level embeddings [17]. How-
ever, the process of modelling large amounts of sequential

3Domain-specific languages have code which is easy and intuitive for
utilisation in a specific application domain e.g. HTML for web development,
SQL for querying relational databases etc. DSLs have high-level abstractions
to reduce focus on overcoming low-level challenges in programming [62].

4In simple QA tasks, a specific fact from the KG database would answer
the user’s question without requiring multi-hop reasoning over multiple facts
in the KG.

VOLUME 10, 2022 84713



J. Chatterjee, N. Dethlefs: Automated QA for Interactive Decision Support in O&M of Wind Turbines

data significantly increases the training time in such models,
and additionally, these models are less efficient in learning
long sequences in comparison to more recent neural archi-
tectures like transformers.

Attention-based convolution neural networks (CNNs) have
also been explored for a similar task in answering factual
questions [64], wherein, the authors show that stacking
an attentive max-pooling layer over the regular convolu-
tion layers in the CNN can help to model relationships
between predicates and question patterns more effectively.
More recently, transformer-based models have been shown
to outperform conventional end-to-end neural architectures
in QA tasks [65], [66], [67], [68]. As transformers eliminate
recurrence prevalent in vanilla recurrent neural networks and
utilise a self-attention mechanism instead, they are generally
able to learn more effectively over longer and more complex
sequences of text (questions and answers) while also being
computationally more efficient due to their parallelization
capabilities. In Sections II-B and II-C, we would discuss
past literature pertaining to a specific vein of research that
leverages automatic code and formal language generation
from natural language–this area provides the backbone of our
proposed approach in facilitating automated QA with nat-
ural language questions through information retrieval from
domain-specific KG in the wind industry.

B. AUTOMATIC CODE GENERATION
Recently, there has been a growing interest in applying
deep learning to the automatic generation of high-level gen-
eral purpose programming languages (such as Python, Java
etc.) [34], [35], [36], [37] as a means to automatically find
programs that satisfy certain criteria such as efficiency, opti-
mality, correctness, hardware compatibility etc. This has led
to a number of investigations that combine the traditionally
separate fields of programming languages and natural lan-
guage processing. While some studies aim to generate code
directly from language (or vice versa), others make use of a
formal intermediary representation, such as an abstract syn-
tax tree (AST). Interestingly, the previous work on applying
natural language processing techniques to programming code
has mostly focused on the generation of small descriptions
of code fragments, summaries and annotations, see e.g. the
study byHaiduc et al. [69] for an early approach to code sum-
marisation. Another approach to the same task [70] utilises
an LSTM sequence-to-sequence model to learn questions
that describe code segments from a corpus collected from
StackOverflow. The authors attempt to learn a direct mapping
from inputs to outputs without any intermediate representa-
tions and report low similarity with a human comparison.
Hu et al. [71] replicate Iyer et al. [70]’s study and show that
using an AST as input to their sequence-to-sequence learner
can improve performance. Related to code summary gener-
ation, Allamanis et al. [72] generate method names for code
snippets by learning a mapping from long input sequences to
short output sequences. The authors use an LSTM and extend

it with a convolutional layer that acts as a domain-invariant
attention mechanism.

In terms of generating code itself, Yin and Neubig [36]
trained a neural network to generate source code from nat-
ural language inputs by treating it as a semantic parsing
problem. The authors demonstrate the benefit of modelling
syntax explicitly and outperform previous work by 9-11%.
In a related study, Ling et al. [73] applied latent predictor
networks to generate code for a computer card game. Another
study in this domain [74] utilises a hierarchical approach for
neural semantic parsing across multiple tasks for generating
Python source code and SQL queries. The authors generated
intermediate logical forms by omitting low-level information
in the code (e.g. variable names and arguments) and filling in
the missing details by conditioning on the meaning represen-
tations of natural language questions. They utilised these for
constructing the final logical forms using a simple encoder-
decoder model.

More recent studies have focused on utilising transformers
for generating code snippets from natural language descrip-
tions. Kusupati and Ailavarapu [35] have utilised transform-
ers for Python code snippets generation with the CoNaLa
dataset, wherein, the authors utilised a modified form of back
translation and cycle consistent losses to train the model in an
end-to-end manner. They demonstrated that the self-attention
based transformer architecture outperforms LSTM based
encoder-decoder models significantly. Large pre-trained lan-
guage models have also been utilised for code generation
with promising results. Feng et al. [34] proposed a Bidirec-
tional Encoder Representations from Transformers (BERT)
based model (Code-BERT) for generating code in 6 program-
ming languages (like Python, Java etc.). The authors also
explored zero-shot learning and demonstrated that the model
achieves state-of-the-art performance in generating the most
semantically related code corresponding to natural language
questions on the CodeSearchNet corpus, while also achieving
promising performance in other downstream NLP tasks like
code-documentation generation.

Overall, we observe that code generation is of growing
interest to multiple communities. Current work in natural lan-
guage processing focuses mostly on the analysis of code and
generation of annotations rather than of code itself. Output
sequences are mostly short and evaluation scores still low.
The programming languages community has started to adopt
neural nets but still relies mostly on engineered algorithms
with a learnable component rather than fully learnt systems.
In comparison to generating code in high-level programming
languages, there has been limited research in generating
graph query languages for querying knowledge bases.

C. FORMAL LANGUAGE GENERATION
Most early approaches to graph query language genera-
tion [38], [39] have leveraged rule-based, pattern-based
or grammar-based approaches to translate natural language
questions to formal queries in DSLs like SQL etc. [40].
In a notable study focusing on graph query language
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generation [40], an ensemble approach has been utilised
wherein, a random forest model was used for phrase mapping
to identify the question types and a tree-structured LSTM
model was used for SPARQL query generation. The LSTM
takes into account the syntatic and semantic structure of
the input questions and the tree representation of all pos-
sible candidate queries for ranking the generated queries,
thereby providing the queries which are most appropriate
to the questions. The method significantly outperforms the
state-of-the-art QA systems on the 7th Question Answering
over Linked Data Challenge (QALD-7) and the Large-Scale
Complex Question Answering (LC-QuAD) databases. Some
other recent studies in the area of formal language generation
and KGs have explored ontology reasoning to train deep
neural network models for effectively performing logical
reasoning [75], generation of textual summaries from KG
triples [76], learning language errors in real-word software
programs [77] etc.

While there has been particularly significant research in
generating SQL code from natural language questions, there
is very limited research in generating Cypher queries for
information retrieval in Neo4j database systems. In possibly
the only study in this area, a simple yet promising approach
has been presented to transform English language questions
to Cypher queries for an open-domain dataset used for a
university project [78]. The authors performed tokenization
of the natural language string queries for assigning language
tags, which were further used to perform systematic pattern
matching in extracting relevant labels and variables towards
generating Cypher queries. While the approach shows that
a useful interface can be built to provide QA over knowl-
edge graphs without utilising AI models by leveraging the
expressive power of Cypher queries, it cannot generate more
complex query patterns and understand the context of user’s
intentions, which are integral in real-world industrial appli-
cations. A common challenge with most existing studies is
the prevalence of small datasets for QA, making it difficult
to train AI models. To tackle this problem, synthetic data
generation models have been explored for instance in [79],
wherein, the authors utilised a fine-tuned BERT model to
generate synthetic question & answer pairs. Their study
demonstrated that pre-training on synthetic data helps to sig-
nificantly improve the performance of the QA system on the
SQuAD2 and NQ datasets. Some studies [80], [81], [82], [83]
have utilised paraphrasing for data augmentation to gen-
erate synthetic data for QA. In a notable study in this
domain [83], the authors experimented with different models
(RNN, transformer and CNN) for generating multiple para-
phrase responses for the same questions in the DBpedia KG
database. The study showed that paraphrase generation can
significantly improve the performance of ML models in QA
over KGs, providing a more expressive QA experience. There
has been rather limited application of paraphrase generation
in safety-critical applications beyond existing open-domain
databases, with a notable exception being [80], wherein, the
authors utilised an attention-based bidirectional RNN model

for clinical paraphrase generation with promising results.
Additionally, the domain-specific KG databases which have
previously been developed in thewind industry have also seen
limited application in facilitating automatic QA.

1) LIMITATIONS OF EXISTING STUDIES
Clearly, most existing studies in generating graph query lan-
guages have focused on generating relatively simple queries
for open-domain tasks, rather than for real-world safety-
critical applications which generally require complex rea-
soning and often witness long sequences of queries with
significant lexical and syntactic variations. This is particu-
larly owed to the fact that the previous studies focusing on
generating Cypher queries have not leveraged more recent
advances in AI, particularly models like transformers which
have shown success in other domains of automated code
generation in high-level programming languages as we have
discussed before.

We also observe that there is very limited research in lever-
aging data augmentation techniques such as paraphrasing in
real-world applications, particularly for tasks wherein avail-
ability of large-scale domain-specific QA corpora is a major
challenge, as in the wind industry. Thereby, we aim to lever-
age a small corpus of annotated data we have developed con-
sisting of natural language questions and Cypher query pairs
for fine-tuning a large pre-trained language model, and utilise
the augmented data in conjunction with our domain-specific
KG database to develop an automated QA system for the
wind industry. We would discuss various methods for data
augmentation through paraphrase generation in Section IV-C
of this paper.

2) NOVELTY OF THE PROPOSED APPROACH
Note that while our proposed approach utilises existing AI
models such as transformers for generating Cypher queries
corresponding to natural language questions–we make a
novel contribution in extending the architecture of the trans-
former and Seq2Seq(Att) models for performing graph query
language generation, given natural language questions con-
sisting of domain-specific data (such as SCADA features,
turbine alarm records etc.) in the wind industry. This is inte-
gral for our problem–as unlike in traditional neural machine
translation tasks wherein subtle inconsistencies during trans-
lation (such as while translating between languages e.g.
Chinese-English) [84] do not generally affect the end retrieval
of information (as despite any grammatical errors etc., the
models would still generate human-intelligible information
in natural language), our QC pairs are significantly com-
plex and any major inconsistencies/errors in the generated
Cypher queries can affect the ability of our proposed model
to accurately retrieve relevant information from the KG (as
for even minor errors in syntax/composition of the generated
queries, the models would fail to retrieve any responses to
natural language questions). Additionally, we also integrate
the traditionally independent models with a KG database for
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automated information retrieval during interactive decision
support.

To the best of our knowledge, encoder-decoder models
such as transformers have not been utilised for automatic
QAby integrating themwithmultimodal domain-specificKG
databases (consisting of O&M strategies towards assisting
engineers & technicians) in the past in a real-world indus-
trial context in developing expert and intelligent systems,
particularly within the wind industry, as also discussed in
Section II. Another novel contribution of this paper is in the
data augmentation methodology we have utilised to tackle
the challenge of limited data availability in the wind industry
(which is also a major challenge in many other real-world
application domains) by leveraging large pre-trained lan-
guage models. Our research is relevant to multiple fields
e.g. NLG/paraphrase generation, question-answering and
interactive systems.

III. FRAMEWORK FOR INFORMATION RETRIEVAL
DURING QA THROUGH GRAPH QUERY LANGUAGE
GENERATION
We utilise our domain-specific KG for facilitating automated
reasoning by providing engineers and technicians with a
natural language interface to query the KG in Neo4j5 (which
is the world’s leading open source NoSQL graph database
management system widely utilised in industry) through
Cypher queries (Neo4j’s native graph query language) [85].
Given a natural language question, our goal is to generate
the appropriate Cypher query to facilitate direct informa-
tion retrieval of appropriate O&M strategies from the KG
database in a fully automatic fashion. The answers in our
QA system would be retrieved from the KG by mapping the
Cypher queries to the corresponding details of the nodes and
properties. While we specifically generate Cypher queries in
this study, our approach is programming language-agnostic
and can potentially be extended to other graph query lan-
guages such as SPARQL. Figure 2 shows the binned power
curve [22] reflecting the operational states for an operational
wind turbine rated at 7MW. As can be seen, when an anomaly
occurs in the turbine’s sub-components, an alarm is raised (in
this example, we have labelled a pitch system alarm which
causes shutdown of the turbine operation). The engineers /
technicians need to take instantaneous actions to fix the alarm
in a timely manner to avoid continued downtimes due to
no energy production. Here, the natural language questions
posed by the engineers are converted into equivalent Cypher
representations with an encoder-decoder model (like trans-
former). These are then directly used for querying high-
quality O&M actions and insights from the Neo4j Graph
Database Server by leveraging the domain-specific KG that
we utilise in this study.

IV. DATASET DEVELOPMENT AND PRE-PROCESSING
In this section, we describe the datasets utilised for devel-
oping the QA system. We utilise a domain-specific KG for

5Neo4j graph database management system: https://neo4j.com

the wind industry domain that we have previously devel-
oped from scratch based on real-world operational wind
farm data and maintenance manuals [42]6 as the primary
source of knowledge for information retrieval during QA.
This domain-specific ontology contains 537 nodes and 1,059
relationships (of 9 distinct types), and includes various types
of heterogeneous information such as descriptions of alarms,
SCADA parameters, preventive/predictive/corrective O&M
strategies, images of turbine sub-components etc. Note that
this KG, while being a valuable source of O&M informa-
tion cannot be directly utilised for QA as it does not have
any labelled templates or relationships for automated reason-
ing based on natural language questions. To facilitate QA,
we develop a specialised domain-specific corpus of natu-
ral language questions and Cypher query pairs as described
below.

A. CREATION OF NATURAL LANGUAGE QUESTIONS -
CYPHER QUERY PAIRS OF DOMAIN-SPECIFIC TEMPLATES
Initially, we manually created 93 pairs of domain-specific
natural language questions in English and the corresponding
Cypher queries required to extract the relevant answers from
the Neo4j KG database. These templates are generic i.e. they
do not represent the O&M actions etc. for any particular sub-
component, fault type etc., but the same query can represent
the relevant answers for different types of cases. As the data
fromwind turbines consist of several (often hundreds) of sub-
components, SCADA features, alarms etc., it can be highly
complex and time-consuming to manually create such natural
language question-Cypher query (QC) pairs for each of the
cases–thereby, we used wildcards containing specific tags
(e.g.<fevent-details> for details of all fault types), which can
later be automatically replaced with the corresponding names
of the sub-components, details of the faults etc. present in the
KG to develop unique QC pairs for each case. Note that in
some cases, these tags were not created wherein, the QC pairs
are unique and do not change across different node labels or
their properties in the KG. For instance, for the questionWhat
are the main components of the system of the wind turbine?,
there is only one unique Cypher query:-

MATCH(n:System)-[:CONTAINS]-(p) RETURN p

Table 1 describes some example tags which were created
for the development of natural language template questions,
alongside their descriptions. Example questions along with
the relevant Cypher queries are also shown. More details on
all other tags are provided in Table 2.

B. CONVERTING THE GENERIC TEMPLATES TO SPECIFIC
QC PAIRS
Next, the wildcard tags in the 93 generic templates were
replaced with the corresponding node labels or their attribute
details, both in the natural language questions as well as the

6XAI4Wind Knowledge Graph: http://github.com/
joyjitchatterjee/XAI4Wind
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FIGURE 2. Framework for information retrieval during anomalies in turbine operation (outlined in the turbine’s binned power curve). The
Neo4j graph database management system is leveraged for automatically mapping natural language questions to equivalent Cypher
representations generated by an encoder-decoder model (such as transformer)–facilitating automated retrieval of O&M information from
the domain-specific KG.

TABLE 1. Details of some generic wildcard tags used in developing specific QC templates, along with example QC pairs–note that the tags were used to
develop domain-specific natural language question templates (Q) and corresponding Cypher queries (C) to facilitate automated question-answering.

Cypher queries. This was done automatically based on the
available details in the KG database, wherein e.g. <subsys-
name> in the QA pairs was replaced with the names of all
subsystems in the turbine,<scadadescription>was replaced
with the detailed description of all SCADA features etc.
as previously discussed in Table 1. This led us to a total of
2,361 unique QC pairs, wherein, for each natural language
question, there is an associated Cypher query which extracts
the relevant answers from the KG to facilitate decision sup-
port. Table 3 describes some examples of the obtained QC
pairs after the replacement of the wildcard tags in the nat-
ural language question templates, along with the extracted
answers from the KG.

C. DATA AUGMENTATION THROUGH PARAPHRASING
QA tasks are generally challenging due to the fact that
there are various ways in which different natural language
questions can express the same information need, given that
there can be a large variety of surface forms pertaining to

semantically equivalent expressions [81]. For instance, it is
integral for a QA system in the wind industry to recog-
nise that the natural language questions ‘‘What are some
important details for the power cabinet subsystem of the
wind turbine?’’ and ‘‘What are the fundamental features of
power cabinet subsystem of wind turbine?’’ are completely
similar in meaning despite the subtle lexical variations in
these expressions. As using only a small dataset of 2,361 QC
pairs described in Section IV-B for developing the QA system
would significantly hamper the generalizability [86] and the
system’s ability to consider wider contextual information in
the questions [81], it is integral to perform data augmentation
towards generating a larger dataset.

A popular technique for data augmentation in developing
QA systems is paraphrase7 generation [88], [87], [86], [89],
[90], wherein, texts with identical meanings are expressed in

7Paraphrases are defined as sentences which convey the same meaning,
but have different surface realization [87].
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TABLE 2. Comprehensive details of various wildcard tags used in developing QC templates, along with example QC pairs–note that the tags were used to
develop domain-specific natural language question templates (Q) and corresponding Cypher queries (C) to facilitate automated question-answering.

TABLE 3. Examples of specific natural language questions (Q) and Cypher queries (C) obtained after replacement of generic wildcard tags, along with
extracted answers from the KG. These QC pairs would eventually be used to train the encoder-decoder model for automated QA.

different ways for creating variations in queries [91]. This
helps to narrow down the gap prevailing between the natural
language questions queried by the user and the system com-
prehension, increasing the likelihood of finding answers to
the user’s questions [91], [92].

Traditionally, paraphrase generation has mostly utilised
rule based techniques [88], which perform lexical sub-
stitutions of content words [87] by leveraging resources
like WordNet [93], [94]. More recently, such techniques
have been significantly outperformed by neural models
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utilised for paraphrase generation like Sequence-to-Sequence
(Seq2Seq) [82] and transformers, which have the ability to
learn long-range dependencies in the input sequences [89].
In particular, the presence of individual attention heads within
transformers mimics the behaviour pertaining to the semantic
and syntatic structure of sentences [41], [89], which is a
key factor for paraphrase generation. There have been some
other recent approaches for paraphrase generation that com-
bine existing neural models with deep reinforcement learning
techniques [90], wherein, Seq2Seq models are used as gen-
erators for producing paraphrases for given sentences, and
another deep learning model is used as evaluator for judging
whether two sentences are appropriate paraphrases of each
other, based onwhich rewards are assigned for fine-tuning the
generator through reinforcement learning. Other promising
approaches to paraphrase generation include, for instance
hybrid transformer-Seq2Seq models [89], Seq2Seq models
equipped with Latent Bag of Words [87] for performing
differentiable content planning and surface realization etc.
However, such models generally require large amounts of
training data containing original sentences alongside mul-
tiple annotated paraphrased sentences, which make them
challenging to utilise when such resources are either lim-
ited or not available at all, as is the case in the wind
industry.

There has been a rising interest in leveraging trans-
fer learning techniques for tackling this problem–wherein,
specialised types of large-scale pre-trained autoregressive
transformer models based on the architecture of traditional
neural machine translation models are used for paraphrase
generation [95]. Some of the popular models which have
shown success in paraphrase generation include Bidirectional
and Auto-Regressive Transformer (BART), Generative Pre-
trained Transformer 2 (GPT-2), XLNet, Text-To-Text Trans-
fer Transformer (T5) etc. [96]. We chose to utilise the
T5 model for our problem in generating paraphrases for
our domain-specific dataset in the wind energy domain,
inspired by its simplicity and the state-of-the-art performance
the model has achieved in various Natural Language Pro-
cessing (NLP) tasks, including paraphrase generation [97].
It should be noted that while data augmentation for tackling
the challenges posed by limited data is a standard approach
in many other domains, the uniqueness of our approach
lies in its application to domain-specific data in the wind
industry.

1) DESCRIPTION OF THE TEXT-TO-TEXT TRANSFER
TRANSFORMER (T5) MODEL
The Text-To-Text Transfer Transformer (T5) [97] is a
large-scale language model that adopts a unified approach
in restricting the inputs and outputs to text, making it suit-
able for a variety of NLP tasks like document summari-
sation, question-answering, machine translation, sentiment
classification etc., and has recently been adapted for para-
phrase generation. The T5 model architecture is identi-
cal to the original transformer architecture, which consists

of an encoder-decoder block with self-attention. However,
an exception is that the T5 model removes the Layer Norm
bias prevalent in original transformers, places layer nor-
malisation outside the residual path and utilises a different
positional embedding technique. The model is inspired by
BERT’s masked language modelling (MLM) objective. How-
ever, the T5 replaces multiple consecutive tokens in input
sequences with a single predicted mask token, unlike BERT
which utilises specific predicted mask tokens for individual
words in the sequences.

The T5 model has been pre-trained on the Colossal Clean
CrawledCorpus (C4) dataset, which is a large corpus (approx.
750 GB) containing clean English text that was scraped by
the authors from the web. The model trained on this dataset
has achieved state-of-the-art results in multiple benchmarks
including text classification, summarization, QA etc. The key
advantage of the model is that it treats every NLP problem
as a text-to-text task, taking a text sequence as input and
producing amodified text sequence as output. Note that while
the original model has been shown to achieve promising
results in open-domain applications, it is essential to fine-tune
the model on domain-specific (or closely related) datasets
depending on the downstream NLP tasks to optimally lever-
age transfer learning to enable the model to perform similarly
(when fed with similar types of data) in these circumstances.
This would eliminate the requirements of training the model
from scratch, which is particularly integral in our domain
of wind turbine O&M, wherein, the paraphrase generation
task to be performed on our human-authored small domain-
specific corpus of QC pairs significantly differs from the T5
model’s original C4 corpus.

Given that the T5 model can be utilised for a variety of
tasks, a prefix is incorporated in the original input sentences
being fed to the model to specify the exact task which the
model should perform (e.g. translate:< OriginalSentence >
can be used to specify the model should translate from one
language to another etc.).

2) UTILISING THE T5 MODEL FOR PARAPHRASE
GENERATION
As our problem focuses on developing a QA system,
we utilised a specialised version of the T5 model8 which has
been fine-tuned on the Quora Question Pairs dataset9 which
was originally released by Quora as a part of a 2017 Kaggle
competition on recognising semantic equivalence in ques-
tions. The Quora dataset contains 404k pairs of historically
marked duplicate questions, which serves the goal of obtain-
ing paraphrases for original questions. Some recent stud-
ies have also utilised this dataset for various tasks towards
natural language understanding [98], including as a part

8T5 model fine-tuned on the Quora Question Pairs dataset:
https://github.com/ramsrigouthamg/Paraphrase-any-
question-with-T5-Text-To-Text-Transfer-
Transformer-

92017 Kaggle Competition–Quora Question Pairs dataset: https://
www.kaggle.com/c/quora-question-pairs
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of the General Language Understanding Evaluation bench-
mark (GLUE) in the original BERT paper [99]. Note that we
opted for this dataset after a careful analysis and consider-
ation of all openly available datasets (with none presently
existing in the wind industry), which showed that this was the
closest match to our problem task (humans asking questions
and receiving human-authored answers) towards generating
diverse, human-like paraphrases.

This model has previously been successfully leveraged
for data augmentation through paraphrase generation in a
real-world application pertaining to the development of a
human-robot interaction framework [100]. We also explored
an alternative T5 model fine-tuned on the Google PAWS
dataset for this task, but it was not utilised asmost paraphrases
generated were completely duplicate repetitions of the origi-
nal questions.

Below, we describe the process utilised in generating para-
phrases for our data:-

1) For the paraphrase generation task, the model takes as
input a natural language question Q = (i1, i2, . . . , in),
and outputs a paraphrased version of the original ques-
tion as PQ = (o1, o2, . . . , ok) | ∃ym /∈ Q. Here, there
would be a maximum of k words in the generated para-
phrase PQ, which together convey a similar meaning
as the source question Q. Note that the Cypher queries
corresponding to the paraphrases would be exactly the
same as in the original questions–it is only the natural
language questions for which the paraphrases are gen-
erated in our task.

2) In line with the T5 model’s requirements, a string
prefix ‘‘paraphrase:’’ is appended at the beginning
of the input questions to the model, to indicate the
paraphrase generation task to be performed. Besides,
an end token < /s > is appended after the input
question. An example input to our model is thereby
of the form–‘‘paraphrase: What are general corrective
activities for the Electric, Sensor & Control subsystem
of the wind turbine? < /s >’’. Note that each of
the natural language questions in our original dataset
contains the words ‘‘wind turbine’’ to ensure that the
paraphrases generated by the model are specific to the
wind industry.

3) We used the following model parameters–a maxi-
mum length for paraphrases generated (max_length)
as 256 characters, a combination of top-p and top-k
sampling with top_k = 120 and top_p = 0.98. a maxi-
mum of 50 independently sampled outputs (signifying
the maximum number of paraphrases generated per
input question) and early stopping to ensure that the
generation terminates when the end of sentence (EOS)
token < /s > is reached.

With this process, we obtained a large, augmented dataset
consisting of 73,105 QC pairs. As some paraphrases can be
completely identical (in situations wherein the model could
not generate a unique paraphrased output), we eliminated
repeated versions of paraphrases, finally obtaining 72,057QC

pairs which contain only unique paraphrases.10 The average
number of paraphrases generated by the model per input
question was 30.518. Figure 3 describes some key statistical
metrics and linguistic features11 (such as the various parts-of-
speech, composition of unique words and symbols etc.) in the
datasets before and after paraphrasing. Clearly, it can be seen
that the augmented dataset obtained after paraphrasing has
more variation (larger number of unique words, verbs, adjec-
tives etc.). It is also interesting to note that interjections were
not present in the original data, but are incorporated through
paraphrasing. These variations in linguistic features thereby
help account for the diverse nature of human language [87],
which we wanted to instil into our QA system for the wind
industry.

3) QUALITATIVE EVALUATION OF GENERATED
PARAPHRASES
Besides the quantitative analysis above, we also performed
a qualitative evaluation of the generated paraphrases by
utilising Amazon Mechanical Turk (AMT).12 In this study,
humans were shown the original questions (before paraphras-
ing) alongside the corresponding generated paraphrases and
were asked to assign ratings on a 1-5 Likert scale for semantic
similarity, wherein, 1 means completely different meaning
and 5 means they express the same meaning. From the larger
augmented dataset obtained after paraphrasing, we randomly
selected 10% of the original dataset samples before para-
phrasing (236 natural language questions). For each of these
236 samples, 15 generated paraphrases were selected.

We asked 33 unique human judges to assign ratings for
semantic similarity between the generated paraphrase and
the original natural language question. It was also ensured
that for each of the cases, two ratings are obtained from
two different (unique) human judges, which led to a total of
236 ∗ 15 ∗ 2 = 7, 080 ratings overall. The average rating
was obtained as 4.223, with a standard deviation of 1.015.
Figure 4 summarises the total counts of ratings obtained
across different categories on the 1-5 Likert scale. As can
clearly be seen, the ratings 5 (Exactly similar meaning) and
4 together account for 80% of the total ratings. Also, only
2.6% of the ratings were for 1 (completely different meaning).
These metrics clearly signify the high quality of the generated
paraphrases according to human judgement.

Table 4 shows some examples of generated paraphrases
obtained using the T5model corresponding to original natural
language questions before paraphrasing. As can clearly be
inferred, most of the generated paraphrases are highly seman-
tically similar to the original natural language questions (in
terms of their meaning), grammatical and coherent. Addi-
tionally, clearly, there is natural variation in the generated
paraphrases, reflected by the change in linguistic features and

10Note that in some instances, the generated paraphrases can have varying
surface realizations in the form of different character cases.

11Obtained through the Natural Language Toolkit (NLTK) [101].
12https://www.mturk.com
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FIGURE 3. Visualisation of some key statistical metrics and linguistic features in the
datasets before (original data) and after paraphrasing (augmented data)–the significant rise
in the number of parameters for such metrics after paraphrasing is clearly visible, outlining
the significantly increased diversity of natural language questions facilitated by paraphrase
generation.

FIGURE 4. Donut chart outlining the composition of assigned human
ratings in AMT on the 1-5 Likert scale for semantic similarity, based on
the original questions and their generated paraphrases. Mean rating is
4.223 with standard deviation of 1.015–signifying the high quality of
generated paraphrases in the augmented data based on human
judgement.

surface forms (which in some cases also includes variation
in the text case). However, for some instances, the generated
paraphrases contain additional information which is out of
context e.g. in case (b) ‘‘in the FPGA 5M Series wind tur-
bine VVT configuration’’ is not related to the turbine under

consideration for our study (7 MW Levenmouth Demon-
stration Turbine), but pertains to a different wind turbine
model. However, it clearly does not affect the meaning in
terms of the domain-specific context for the question, as for
any wind turbine, the context of retrieving corrective actions
pertaining to an anomaly in its pitch angle would be similar.
For case (d), there is unexpected information pertaining to
‘‘Brake Circuit low pressure will take 4-6 hours’’, which is
redundant and does not make sense based on the question’s
context. However, it is interesting to note that this is likely an
answer to the query which is outputted within the generated
paraphrase itself, and given that the original question is also
present within the complete paraphrase, it does not affect
the meaning and context of retrieving corrective activities for
low pressure in the brake circuit of the turbine. In another
instance e.g. in case (e), the word ‘‘power’’ is unexpected,
as the model should have ideally generated the word ‘‘wind’’
instead to signifywind turbine. However, again, the context of
the question remains unchanged, as it clearly enunciates the
query pertaining to fault states which occur due to SCADA
feature 52.

Thereby, it is clear that while there are subtle inconsis-
tencies and errors in the generated paraphrases, as would
normally be expected from a large-scale language model
leveraging transfer learning on a dataset from a different
domain (the Quora database), the overall nature of the gener-
ated paraphrases is promising, as our key goal is to maintain
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TABLE 4. Examples of original natural language questions alongside the corresponding generated paraphrases with the T5 transformer model–note the
variations in the order of words, types of linguistic features and character cases in the paraphrased questions/sentences which convey the same
meaning. Any errors/inconsistencies which would not be expected based on our domain knowledge are highlighted.

the meaning of the questions within the context of the wind
industry. Moreover, we observed that such major inconsisten-
cies only occur in around 5% (3,603 cases) of the total dataset
samples, which is a very minor proportion of our overall
data with 72,057 samples. Additionally, some inconsistencies
can actually prove worthwhile for our QA tasks, in cases
wherein engineers & technicians may unknowingly input
corrupted/incomplete details in the questions (e.g. incomplete
alarm names, redundant information for fault events when
querying corrective actions etc.). Thereby, we would utilise
this augmented dataset for our further experiments in train-
ing learning models for the QA system in the forthcoming
sections.

V. LEARNING MODELS
In this section, we discuss the basic architecture of the
Seq2Seq and transformer learning models that are utilised in
this paper. First, the concept of sequence-to-sequence code
generation in encoder-decoder models is introduced. Then,
we describe the principle of extending our Seq2Seq(Att)
model’s sequential learning process and developing the trans-
former model based on these descriptions. Note that while
our primary learning model is a transformer, we utilise the
Seq2Seq(Att) model in this paper as a baseline model for
comparison of performance metrics.

A. ATTENTION-BASED SEQUENCE-TO-SEQUENCE MODEL
Wepropose to develop our baselinemodel towards generating
Cypher queries as an attention-based sequence-to-sequence
encoder-decoder RNN [102], [103], which would learn to
condition a sequence of Cypher query fragments on the
sequence of words present in a natural language question.
The basic idea behind the sequence-to-sequence (Seq2Seq)
model relies on leveraging a RNN for learning hidden repre-
sentations h for an input sequence x = (x1, . . . , xN ), which
it accomplishes by learning increasingly abstract encodings
for the input sequences [104]. The model generates an output
sequence y = (y1, . . . , yM ), which can be reconstructed
based on the hidden representations h, and h can be estimated
based on updates computed at time step t , ht = f (ht−1, xt).
Note that f here represents a nonlinear activation function
(such as ReLU, tangent, sigmoid etc.). The ultimate goal in
the learning process is to compress the input sequence into a
single vector s:

s = q({h1, . . . , hTx }), (1)

where, q represents an activation function that is applied to the
hidden representations for the input sequence

{
h1, . . . , hTx

}
,

in order to compute the vector s which represents the com-
plete input sequence transformed into a suitable range of
values for the model’s learning process.
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During training, the aim is to minimise the loss L preva-
lent between the RNN’s input and the desired output by
computing a loss function in the Seq2Seq model’s encoder-
decoder architecture. Note that while multiple loss functions
(such as cross entropy loss, Chebyshev loss, L1 and L2 loss,
square log loss etc.) can be utilised for training deep learning
models [105], [106], [107], we opted for the cross entropy
loss (also referred to as negative log likelihood/loss) in line
with the common practice of adopting this loss function in
RNNs (which is at the core of the Seq2Seq encoder-decoder
model) in the AI community [108], [103], [109], [110]. This
is generally regarded as a suitable loss function, particularly
in multi-class classification tasks (analogous to sequence
classification in our case–wherein, for each natural language
question, we aim to generate a distinct answer from a large
set of various possibilities). This helps to better optimise
the learning model’s weights during training, unlike other
loss functions like Mean Squared Error (MSE), which are
generally considered to be more suitable for regression prob-
lems [111]. The cross entropy loss is computed as follows:

L(x, y) = −
1
N

∑
n∈N

xn log yn, (2)

where, N denotes the total number of training samples in
the dataset, yn represents the probability distribution for
the predicted output sequence and Xn denotes the proba-
bility distribution of the original input sequence. As can
be seen, log loss is used to penalise/reward the probabili-
ties in the model’s objective function based on the differ-
ences/similarities between the predicted sequence and the
input sequence. These values are averaged over all N training
samples in the dataset to finally compute the loss function
representing the error value prevalent between the input and
the predicted output sequence–L(x, y). The end goal is to
maximise the probability of the model predicting individual
values (representing distinct words) in the output sequence
correctly.

To generate Cypher queries, we let the input sequence
x correspond to a natural language question posed by the
engineers during O&M. We assume that the output sequence
y corresponds to a sequence of code fragments that together
form a valid Cypher query, which can retrieve the most
appropriate O&M responses for x from our domain-specific
KG. An alignment vector α = (α1, . . . , αN ) focuses on
the encoder’s outputs and has the same length as the source
sequence, based on which the decoder then predicts an output
sequence representing a complete Cypher query that is con-
ditioned on the context vector s and all previously predicted
code fragments {y1, . . . , yt−1}:

p(yt |{y1, . . . , yt−1}, s) = g(yt−1,ht, s), (3)

where g is a nonlinear function as before.

1) GATED RECURRENT UNIT AND ATTENTION
To address common problems of vanishing or exploding gra-
dients [112], we will use a Gated Recurrent Unit (GRU) [113]

for implementation of our model. A GRU computes h under
consideration of two gates which play an integral role in con-
trolling themodel’s loss and incorporation of information: the
‘‘update gate’’ zt and ‘‘reset gate’’ rt, leading to an updated
computation of h at time t as:

zt = σ
(
Wz ·

[
ht−1, xt

])
(4)

rt = σ
(
Wr ·

[
ht−1, xt

])
(5)

h̃t = tanh
(
W ·

[
rt ∗ ht−1, xt

])
(6)

ht = (1− zt) ∗ ht−1 + zt ∗ ht (7)

Here, σ denotes the logistic sigmoid function.
Finally, we integrate an attention mechanism [114], [115]

which allows the decoder to access the input sequence during
decoding, leading to an updated decoder:

p(yt |{y1, . . . , yt−1}, x) = g(yt−1,ht, st), (8)

where ht is the hidden state at each time step t . In this
way, each output decision is conditioned on a distinct context
vector st, which is specific to the decision, not the entire
input sequence. Additionally, the attention mechanism pro-
vides added transparency by identifying the specific words
in the input and output sequences which are important for
the model’s prediction. Figure 5 shows the basic structure
of the Seq2Seq(Att) model utilised in our study, wherein,
the GRU-based encoder-decoder architecture converts natu-
ral language questions into corresponding formal language
(Cypher query) representations that can be utilised for infor-
mation retrieval from the domain-specific KG database.

B. TRANSFORMER MODEL
More recently, Transformers [41] have shown prominence as
a dominant architecture utilised for a variety of tasks in the
AI community, outperforming conventional Seq2Seq models
in multiple areas like neural machine translation, natural lan-
guage understanding, question-answering etc. [116]. During
its learning process, the transformer’s key essence is in elim-
inating recurrence and convolutions, and instead computing
attention weights over input sequences by utilisation of posi-
tional embeddings. The conventional attention mechanism
which recurrent models utilise (wherein, the model’s output
sequences attend to the corresponding inputs) is extended via
self-attention, which enables the inputs and outputs to both
attend to themselves as well as the target sequences attending
to the source [117]. Due to elimination of recurrence, the
computational cost in training the model is also lowered
significantly, which makes transformers highly promising for
use in real-world and real-time domain-specific applications,
including for QA.

Similar to the Seq2Seq model described above, the trans-
former also includes an encoder and a decoder. However,
there are multiple attention heads prevalent in the model
(referred to as multi-head attention), which constitute the
essence of the model’s performance and learning process:-
• Encoder’s self attention, wherein the source sequence
attends to itself.
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FIGURE 5. Basic structure of the Seq2Seq(Att) model utilised for graph query language generation–given a input sequence
of words in a natural language question, the GRU-based encoder-decoder architecture would generate the appropriate
Cypher queries for information retrieval from our domain-specific KG database.

• Decoder’s self attention, wherein the target sequence
attends to itself.

• The target attending to the source sequence (i.e. conven-
tional attention as in the Seq2Seq model).

Below, we discuss the encoding and decoding stages of the
transformer model briefly.

1) ENCODING
The encoder module consists of three stages, wherein, the
first stage projects the input sequence into vector space. Posi-
tional embeddings of the input sequence are incorporated to
record token positions in the input and account for the absence
of a recurrent neural network. Positional embeddings PE are
computed as:

PE(pos,2 i) = sin
(
pos/100002i/dmodel

)
(9)

and

PE(pos,2 i+1) = cos
(
pos/100002i/dmodel

)
, (10)

where dmodel denotes the depth of the transformer.
The multi-head attention stage is directed by three key

parameters–Query Q, denoting the component that pays
attention and represented as a vector of the semantic tokens
corresponding to a specific input word, along with key-value
pairs consisting of all the words in the sequence, represented

as Key K and Value V–which signify all the initial input word
vectors which the model ends up attending to. For encoding,
V corresponds to the same word sequence as Q. The overall
goal is to compute a weighted sum over values, where the
weights assigned to individual values are computed through
a compatibility function of the query with the corresponding
key:

Attention (Q,K ,V ) = softmax
(
QKT
√
dk

)
V , (11)

where
√
dk is a scaling constant equal to the square root of

the dimension of keys. QKT computes a similarity matrix
between queriesQ and keys K , which is applied to the source
sequences during encoding, but Q is drawn from the target
sequences at the decoding stage. A position-wise feedforward
neural network then identifies the input projections which
should be eventually used at the decoder end.

2) DECODING
The decoder module contains five discrete stages, of which
the initial two are the same as in the encoder (with embed-
dings offset by one position). However, masked multi-head
self-attention is used instead which restricts the decoder to
only focus on past words in the sequence and prevents it from
looking ahead. At the third stage, the multi-head attention
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FIGURE 6. Architecture of the transformer model (adapted from [41]) utilised for graph query language generation in our
QA system–the self-attention mechanism facilitates learning of Cypher query representations from natural language
questions in the absence of recurrence prevalent in the conventional Seq2Seq architecture.

block captures past and final hidden representations that are
received from the encoder. The fourth layer is similar to the
encoder’s feedforward network, and finally the softmax layer
is utilised for computing the scores of words to be ultimately
predicted in the target sequence.

In this paper, our goal is to extend the original trans-
former architecture towards the domain-specific application
of QA in the wind industry. We aim to realise this by util-
ising the sequence of words in a natural language question
x = (x1, . . . , xN ) as input to the model, and generating the
appropriate Cypher query y = (y1, . . . , yM ) which is most
appropriate to the context of domain-specific information
requested by the turbine engineers & technicians. Addition-
ally, similar to the Seq2Seq(Att) model, we aim to appropri-
ately leverage the attention weights of the transformer model
to gain insights into the model’s decisions besides making
accurate predictions of Cypher queries. Figure 6 provides
an overview of the transformer architecture that we utilise
in our QA system, wherein, the self-attention mechanism is
utilised to facilitate sequence-aligned learning in absence of
recurrence prevalent in the conventional Seq2Seq model.

VI. EXPERIMENTS
For our experiments, we utilise the data of 72,057 QC pairs
obtained after paraphrasing, as described in Section IV for
training the learning models. Initially, we performed word-
level tokenization of the QC pairs, filtered on whitespace
characters. We did not use lower-casing during tokenization

as Cypher queries are case-sensitive. All numbers, special
symbols and punctuations were retained in the tokenized data
to ensure the generation of valid Cypher queries. Addition-
ally, an [UNK] token was incorporated to account for words
that fall out of vocabulary. A < start > and < stop > token
were also added to the original samples for helping the mod-
els to clearly understand when to start and stop predicting.

We utilised a train-test split ratio of 70-30%, ensuring
that the dataset is split into 50,439 training and 21,618 test
instances. A batch size of 128, 256-dimensional word embed-
dings, input vocabulary size of 26,034 words and target
vocabulary size of 1,181 words were used for training all
models for 50 epochs. All models were trained in TensorFlow
(Python) [118] with Adam optimisation. Table 5 describes
the key experimental parameters and values which were used
for training the Seq2Seq and transformer learning models in
this study. The interested reader is referred to the TensorFlow
documentation 13 for more details on these parameters.
• Seq2Seq(Att): The Seq2Seq model with GRU and Bah-
danu attention, see Section V-A for details. We experi-
mented with 512/1,024 hidden units, 2 hidden layers and
a learning rate of 0.01.

• Transformer: The transformer model with multi-head
attention mechanism, refer to Section V-B for details.
We experimented with model sizes of 128/256, 2/4 total
layers (multi-head attention + feed-forward layers) and

13TensorFlow documentation: https://www.tensorflow.org/
guide
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TABLE 5. Details of key experimental parameters and values utilised for training the Seq2Seq and transformer learning models.

2/4/8 attention heads. The model’s learning rate was
decayed with the WarmupThenDecaySchedule class in
TensorFlow with 5,000 warmup steps.

To retrieve the relevant responses/answers from our
domain-specific KG, we utilised Py2neo,14 a specialised
Python library which facilitates interfacing of the Neo4j KG
database server with Python applications. Given a natural
language question posed by the user, the predicted Cypher
queries are automatically executed in Neo4j and O&M
actions retrieved, which ultimately provides an environment
for automated reasoning in our QA system.

VII. RESULTS
In this section, we discuss the experimental results obtained in
generating Cypher queries with the Seq2Seq(Att) and trans-
formermodels.We also provide a qualitative evaluation of the
generated queries and perform an error and output analysis
for each model. Some example cases of retrieved responses
from the KG based on the Cypher queries predicted by the
models corresponding to natural language questions are also
discussed.

A. OBJECTIVE EVALUATION
Tables 6 and 7 show the performance metrics for objec-
tive evaluation of the Seq2Seq(Att) and transformer models
respectively in terms of the percentage of Cypher queries that
are correctly predicted and computation time. We can clearly
see that the transformer outperforms the Seq2Seq(Att) model
in terms of percentage of Cypher queries correctly predicted,
achieving an accuracy of up to 89.75%. The Seq2Seq(Att)
model attains the highest accuracy of 88.99%, which is 0.76%

14Py2neo InformationHandbook:https://py2neo.org/2020.1/

worse than the transformer model. This is, although a very
minor improvement in the model’s performance.

Another important metric we would like to reflect on is
the computation time. We note that the transformer model is
the fastest, achieving the shortest computation time (20 min
34 sec). On this front, the best-performing Seq2Seq(Att)
model takes 3 hr 14 min 38 sec (946.35% or 9.46 times more
than the best-performing transformer). Note that these com-
putation times were obtained with the NVIDIA Tesla K80
GPU based on Google’s Compute Engine. We also observe
that scaling up the transformer model (including the model
size and number of attention heads) degrades the model’s
performance while leading to increased computation time.
It is likely that more than two attention heads are not integral
for learning good representations of the Cypher queries in
our dataset. Given the mostly common syntax and structure
of Cypher queries (e.g. all queries use common words like
MATCH, WHERE, RETURN etc.), besides learning to gener-
alise to intricacies of the graph query language, the models
only need to learn the unique domain-specific information
(e.g. alarm types, SCADA feature names etc.), rather than a
large-scale vocabulary and long sequences generally preva-
lent in machine translation tasks. This is likely the reason why
the transformer only has an improvement of 0.76% over the
Seq2Seq(Att), clearly indicating that the Bahdanu attention in
our Seq2Seq(Att) model suffices for the learning task if we
ignore the marginal gain in accuracy.

1) CONSIDERING THE ENVIRONMENTAL IMPACT OF OUR
LEARNING MODELS
As we have discussed above, the computation time for the
best-performing Seq2Seq(Att) model (with 1,024 hidden
units) is more than nine times that of the transformer and
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TABLE 6. Performance metrics for Cypher queries predicted by the Seq2Seq(Att) model–average computation time per epoch is shown in brackets. The
best performing model is outlined in bold face. Note that the highest accuracy obtained by the Seq2Seq(Att) model is 88.99% based on number of Cypher
queries in the test data which are correctly predicted.

TABLE 7. Performance metrics for Cypher queries predicted by the transformer model–average computation time per epoch is shown in brackets. The
best performing model is outlined in bold face. Note that the highest accuracy obtained by the transformer model is 89.75% based on number of Cypher
queries in the test data which are correctly predicted.

for the smaller Seq2Seq(Att) model (with 512 hidden units),
the computation time is more than 4.5 times as the trans-
former. More notably, all our transformer model configura-
tions achieve lower computation time than the Seq2Seq(Att)
model, which is in line with the parallellization capabili-
ties of transformers on GPUs. While our models are not
exponentially large given the limited availablility of data at
present in the wind industry, we believe training AI models
with larger datasets in the wind energy sector could make
the computation time scale exponentially, particularly as new
datasets focusing on O&M continue to become available,
newer turbines are deployed and older turbines in operation
record more data every day from their sensors.

Some recent studies [119], [120], [121] have highlighted
the environmental impact of deep learning systems, wherein,
scaling up the model size can have serious negative envi-
ronmental consequences through its resource consumption.
Moreover, these studies highlight the importance of priori-
tising energy efficiency for reducing negative environmental
impact and inequitable access to resources [119]. As our
key goal in this paper is to leverage AI in helping make
wind energy sources more reliable towards tackling climate
change, we echo the importance of considering dangers of
rising carbon emissions over marginal improvements in per-
formance of large language models. Converse to our results,
even if the Seq2Seq(Att) model had achieved a marginal
improvement over the transformer, we believe it would be
the most rational decision to discard the marginally better
Seq2Seq(Att) model in favour of the transformer’s computa-
tional efficiency. As the transformer model meets both these
expectations (best performance as well as lowest computation
time), we believe they are highly promising for utilisation
in the wind industry for real-time decision support when
considering the AI and Society perspective.

B. ERROR AND OUTPUT ANALYSIS
Table 8 shows some examples of Cypher queries pre-
dicted by each of the models alongside the expected queries
corresponding to natural language questions–any errors
in predictions (deviation from expected Cypher queries)
are highlighted, and missing words, symbols or numbers
are denoted with $ symbol. Note that our QA system
is case-insensitive, and any capitalisation of component
names (e.g. Yaw), SCADA feature labels (e.g. Reactive-
Power_kVAr_Max) etc. in the natural language question
examples shown only reflect the test data sample varia-
tions (including in semantic structure, linguistic features and
word-cases) which were introduced during paraphrasing–the
model would work the same way and generate the same
Cypher queries if different case words are passed during
inference.

We discuss some notable cases below for which a qual-
itative analysis of the predictions. Few examples outlining
the visualisation of retrieved O&M information (nodes and
properties) from the KG are also discussed:-
• In case (i) of Table 8, the natural language question
pertains to retrieving corrective O&M activities for a
fault event in the yaw motor. The Seq2Seq(Att) and
transformer models both predict the Cypher queries cor-
rectly in this case. Figure 7 shows the output of executing
the predicted Cypher query in this case pertaining to
the yaw system’s motor fault. As can be seen, given
that the Cypher query is correctly predicted correspond-
ing to the domain-specific natural language question,
the information retrieved from the KG is also accurate.
Additionally, a visual depiction of the relevant nodes
and properties in the KG relevant to the question is
also obtained, facilitating intuitive decision making for
turbine engineers & technicians.
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TABLE 8. Examples of Cypher queries generated by the Seq2Seq(Att) and transformer models –errors in predictions (deviation from expected Cypher
queries) are highlighted, and $ denotes missing words, symbols or numbers in the predicted Cypher query.

• In case (iii) of Table 8, the natural language question
focuses on determining the effect of an alarm event on
the turbine’s yaw system. While the transformer model
correctly predicts the Cypher query in this situation, the
Seq2Seq(Att) model only predicts the query partially,
missing out on the AFFECTS relationship. This a crit-
ical error as the incorrect Cypher query would provide
details of the yaw system of the turbine itself, rather
than the operational inconsistencies/errors which take
precedence due to an alarm in the yaw system. Figure 8
outlines the retrieved O&M actions from the KG in this
case pertaining to the yaw system alarm with the trans-
former model, which can help engineers and technicians
to understand (and fix/avert) the specific fault events and
anomalies which contribute to the alarm.
To inspect and analyse the working of each of the
models during the prediction making process and the
likely cause(s) of any errors, we visualise the attention
weights of the models. Figures 9 and 10 15 show the
attention weights for the Cypher queries predicted by
the Seq2Seq(Att) and transformer models respectively.
Note that the heatmap should be interpreted based on

15Darker colors signify higher attention weights (importance/focus)
placed by the model when making the prediction.

the colors shown–darker colors denote higher attention
weights (showing that the model puts greater focus on
the corresponding keyword for predicting the Cypher
query), while lighter colors represent lower attention
weights (showing that the model places lesser empha-
sis on the corresponding keyword for predicting the
Cypher query). Thereby, a darker color corresponding to
a specific keyword in the heatmap would show that the
corresponding word in the input sequence is considered
more relevant/important for prediction making, while a
lighter color would show that the corresponding word
in the input sequence is less relevant/important to the
predicted fragments in the generated Cypher queries.
As can clearly be seen, the highest weights (activa-
tions) of the Seq2Seq(Att) model are attributed to the
word system for predicting the MATCH fragment of
the node. However, the keyword of alarm (which is
the essence of the question) is focused on the node’s
label n rather than the Yaw itself wherein the alarm
occurs. On the other hand, the transformer has a sig-
nificant attention weight on the word alarm when it
is predicting the MATCH segment of the relationship
correctly that includes theAFFECTS relationship, which
is essential as the query corresponds to retrieving the
inconsistencies/errors which arise out of the yaw system
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FIGURE 7. Output on executing the predicted Cypher query by the Seq2Seq(Att)/transformer models in case
(i) of Table 8–examples of retrieved O&M actions for yaw motor fault event based on identified nodes and
properties in our KG database are also shown. Engineers and technicians can leverage the intuitive
visualisation and summary of O&M actions in this case to fix the yaw motor fault.

FIGURE 8. Output on executing the Cypher query predicted by the transformer model in case (iii) of Table 8–the nodes
shown denote the inconsistencies/errors caused due to yaw system alarm. Engineers and technicians can leverage the
intuitive visualisation of nodes and properties retrieved from the KG in this case to analyse (and tackle) the specific fault
events and anomalies in the turbine which lead to the yaw system alarm.

alarm. Besides, note that when the end of the question is
reached, the transformer places a significant emphasis
on the node’s label n whereas, the Seq2Seq(Att) model
only focuses on the initial MATCH code fragment.

This visualisation further suggests that the Seq2Seq(Att)
model is lacking in its ability to focus on the keywords in
natural language questions (e.g. alarm in this case) when
predicting the code fragments, whereas, the transformer
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FIGURE 9. Heatmap visualisation of attention weights for prediction of Cypher query in
case (iii) of Table 8 by the Seq2Seq(Att) model–note the AFFECTS relationship which the
model misses by failing to focus on the question’s essential keyword alarm when
predicting the initial MATCH fragment.

FIGURE 10. Heatmap visualisation of attention weights for prediction of Cypher query in
case (iii) of Table 8 by the transformer model–note that the model focuses on the keyword
of the question alarm when predicting the MATCH fragment and system when predicting
the appropriate node label n, thereby generating the complete Cypher query correctly.

performs suitably in identifying the keywords, thus lead-
ing to the correctly generated Cypher query.

• In case (vii) outlined in Table 8, the Seq2Seq(Att) model
fails to predict the complete Cypher query pertaining
to identifying SCADA features which cause a blade
positioning error in the turbine. The Seq2Seq(Att) model
incorrectly references the blade positioning error due to
a discrepancy in the generator rotor speed, which has
no relation whatsoever with the turbine’s blade posi-
tion. The transformer is able to predict the complete
valid Cypher query in this case. Figure 13 depicts the
output of execution of the Cypher query, summarising
the details of the SCADA features which contribute
to the blade positioning error fault event, ultimately
affecting the turbine’s pitch system. Such intuitive visu-
alisation of relevant domain-specific information can
be very helpful for engineers and technicians to infer
(and thus fix/avert) the anomaly-causing SCADA fea-
tures in one sub-system (blades) which are indirectly
contributing to a fault in a different sub-system (pitch
system).
To analyse the reasons for the transformer’s valid pre-
diction, it would be useful to visualise the self-attention
weights of the model in this situation. Note that not
all attention visualisations are easily comprehensible by

human engineers as they represent the focus elements of
the model during its prediction making process–thereby,
we try to provide a perspective on the model’s weights
based on our domain knowledge.
Figures 11 and 12 outline the self-attention weights for
the transformer model’s encoder and decoder respec-
tively, describing themodel’s focus during the prediction
when the source and target sequences attend to them-
selves. As can clearly be seen, the encoder places signif-
icant emphasis on the word positioning corresponding to
some, causes and turbine etc.–which is reasonable as the
question pertains to a fault event caused by a blade posi-
tioning error in the turbine. Additionally, note the other
relevant attention weights such as error corresponding
to blade, blade corresponding to in, of corresponding
to SCADA, examples corresponding to of etc., which
clearly signifies that examples of contributing SCADA
features are to be retrieved for a fault which occurs in
the turbine’s blades. Besides, the self-attention weights
at the decoder end of the model also show effective
focus of the transformer on the position keyword cor-
responding to the MATCH fragment–which references
the blade’s anomaly type being in its position. Note the
high attention weights for the RETURN keyword corre-
sponding to multiple other Cypher query fragments such
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FIGURE 11. Heatmap visualisation of self-attention weights for the transformer’s
encoder during prediction of Cypher query in case (vii) of Table 8–the higher (darker)
attention weights on keywords such as positioning corresponding to some, causes to
turbine, error to blade, blade to in, of to SCADA, examples to of etc., highlight the
model’s focus on retrieving SCADA features that lead to the blade positioning fault
event.

FIGURE 12. Heatmap visualisation of self-attention weights for the transformer’s
decoder during prediction of Cypher query in case (vii) of Table 8–the higher (darker)
attention weights on keywords like position corresponding to the MATCH fragment
references the blade’s anomaly type being in its position.

as RELATESTO and the node label q–these are highly
reasonable as the model aims to generate a complete
valid Cypher query that can return multiple SCADA

features from the KG which are relevant to a specific
type of fault event (blade position error) and these thus
relate to the SCADA features with the RELATESTO
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FIGURE 13. Output on executing the Cypher query predicted by the transformer model in case (vii) of Table 8–the
nodes shown represent the SCADA features which contribute to the blade positioning error fault event. Engineers
and technicians can leverage the intuitive visualisation of nodes and properties retrieved from the KG to fix/avert
potential faults in the pitch system which can occur indirectly due to anomaly-causing SCADA features in a different
turbine sub-system (blades).

relationship and are referenced by the n node label,
which the model rightly focuses on.

• For case (viii) of Table 8, both models fail to accu-
rately predict the Cypher query for retrieving predictive
actions required for the turbine’s power cabinet. While
the Seq2Seq(Att) model makes a completely incorrect
prediction of the node’s name–predicting maintenance
actions for the Generator instead of the Power Cab-
inet, the transformer model still accurately infers the
node’s name in this scenario. However, the transformer
predicts the Cypher query towards retrieving associated
nodes based on the ACTION relationship rather than
the PredictiveActivities property of the Power Cabinet
node itself. This is still a relatively less fatal error,
as the incorrect query generated by the Seq2Seq(Att)
would predict activities for the Generator, which is a
specific internal sub-component of the Power Cabinet,
while the Transformer would return specific predictive

activities for the associated events (e.g. SCADA features
and alarms) that affect the Power Cabinet rather than
the generic system itself (reflected by the system’s indi-
vidual property). Thus, the Cypher query generated by
the transformer (despite not being completely accurate)
is still realistic to avert faults by rectifying SCADA
features and alarms (which directly affect the Power
Cabinet) in this scenario.

VIII. DISCUSSION
By mapping natural language questions posed by engineers
& technicians to the appropriate Cypher queries for retriev-
ing domain-specific information, the proposed approach pro-
vides a completely automated QA system for O&M of wind
turbines. The approach is also effective as whenever a Cypher
query representation is correctly predicted for a natural lan-
guage question, the information retrieved would always be
factually correct as it is retrieved from a domain-specific KG
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in the wind industry. However, there are some significant
limitations of this study which are caused due the unavailabil-
ity of large amounts of domain-specific O&M information
openly for research & development. While we have demon-
strated that techniques such as paraphrasing can support data
augmentation and provide a highly effective solution for QA,
there are still some key challenges which our study faces
due to utilisation of the Quora Question Pairs database for
fine-tuning the T5 transformer model towards data augmen-
tation of our original domain-specific corpus in the absence
of any other source of viable information.Moreover, our error
and output analysis has shown that in some (rare) situations,
neither the transformer nor the Seq2Seq(Att) model are able
to correctly predict Cypher queries for information retrieval,
which would mean that the O&M operators would still need
to rely on human feedback and existing documentation (e.g.
maintenance manuals).

We do not claim that our QA system can be directly
utilised in the wind industry in its present state–the system
would still require human engineers to analyse the responses
provided and account for the incorrect decisions which the
AI-based QA system can make, particularly in situations
wherein the questions posed by engineers are significantly
different from the training data, which, despite having signif-
icant amount of variations and diversity introduced by para-
phrasing may still suffer from rarer alarm events and faults
which our models have not witnessed previously. We believe
that the QA system can be improved further in the future
by utilising human inputs for continuously optimising the
trained models and potential avenues for development of
larger amounts of domain-specific O&M information by the
wind farm operators–which continues to become closer to our
vision with data-driven decision support becoming increas-
ingly popular in the wind industry. In future, we plan to
develop such datasets and make them publicly available to
the expert and intelligent systems community, which can
hopefully encourage further research in this direction to help
AI-based interactive decision support systems transition from
academic labs to real-world operational use-cases in the
industry–particularly within the wider context ofAI for Social
Good towards tackling climate change.

IX. CONCLUSION
In this paper, we have presented a novel application
of AI-based intelligent QA systems in a domain-specific
real-world application towards supporting the O&M of wind
turbines. We see our research as a case study in how expert
systems can make interdisciplinary contributions towards
pressing topics such as climate change and support a tran-
sition to renewable energy sources by making them more
reliable usingAI/NLP techniques. Our approach is not unique
to wind energy and is transferable to any complex system
that requires non-trivial decision making. By leveraging a
domain-specific KG for information retrieval of O&M strate-
gies and developing a specialised corpus of natural language
questions-graph query language pairs, we have demonstrated

the promising role of training AI models for automated
reasoning during QA in a domain-specific application for
the wind energy sector. Our proposed approach has utilised
transformers for automatically generating the code for query-
ing the KG during O&M based on natural language ques-
tions posed by engineers & technicians. Experiments with
a Seq2Seq(Att) baseline model and the transformer have
shown that while the transformer only marginally outper-
forms the Seq2Seq(Att) model in terms of accuracy, it takes
one-ninth the time to train in comparison. On considering
the environmental impact of our learning models and the
overall goal of tackling climate change with AI, we have
shown that transformers are highly promising for automated
QA in the wind industry, achieving optimal performance at
the lowest computational cost. We also include a brief video
demonstration of the proposed QA system.16

Despite the promising results, our study has some sig-
nificant limitations–As we utilise the Quora Questions
Pair database for fine-tuning the pre-trained T5 model
for performing data augmentation due to absence of any
domain-specific corpus available in the wind industry,
in some rare circumstances, the model can generate out-
puts which are completely inaccurate (or partially accurate).
In these situations, it would require the domain experts to
decide whether or not to consider the model’s generated
responses. However, we believe that this can possibly be
overcome in future by optimising the model with higher
quantity (and quality) of domain-specific information (such
as maintenance manuals), as it becomes available in the wind
industry. Additionally, reinforcement learning approaches
can potentially be used in the future to continuously improve
and fine-tune the QA system based on interactive human-in-
the-loop feedback from engineers.

We envisage that our QA system can support O&M by
helping provide appropriate O&M strategies to engineers
for fixing/averting faults and operational inconsistencies and
reducing the decision making time. While we do not claim
that the automated QA system proposed in this paper can
directly be utilised in the wind industry in its present form–we
are optimistic that future work in optimising the transformer
model with human feedback from domain experts and incor-
porating wider multimodal information beyond the single
turbine which we focused on in this paper (such as mainte-
nance records, SCADA data and alarm logs from multiple
wind farms) can help the system to potentially transition
to real-world and real-time deployment in operational wind
turbines. We hope that our study can potentially pave the
way to encouraging further research in developing AI-based
QA systems for real-world industrial applications towards
tackling climate change by helping make present-day energy
systems smarter and more reliable.

16Demonstration of the QA system: https://www.youtube.com/
watch?v=Mx9SIW_7FsE
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