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Abstract 31 

Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia and associated 32 
with multiple organ systems complications. The incidence and prevalence of diabetes are 33 
increasing in an epidemic proportion worldwide. In addition to environmental factors, some 34 
epigenetic and post-translational modifications have critical roles in the pathogenesis of diabetes 35 
and its complications. Reversible covalent modification such as SUMOylation by SUMO (Small 36 
Ubiquitin-like Modifier) has emerged as a new mechanism that affects the dynamic regulation of 37 
proteins. In this review, we initially focus on the function of SUMO and SUMOylation. 38 
Subsequently, we assess the potential effects of this process in the pathogenesis of type 1 and 2 39 
diabetes mellitus.     40 
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1. Introduction 59 

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia due to an 60 
absolute or relative insulin deficiency. Based on pathogenesis, there are two main types of diabetes. 61 
In type 1 diabetes (T1DM), there is autoimmune destruction of insulin-producing beta-cells in 62 
islets of the pancreas resulting in absolute loss of endogenous insulin. In contrast, type 2 diabetes 63 
(T2DM) is a heterogeneous metabolic disorder characterized mainly by hyperglycemia, insulin 64 
resistance, and impairment in insulin secretion in various degrees (1-5).  65 

The incidence of diabetes and its associated complications increases worldwide and is projected 66 
to double by 2030. The American Diabetes Association estimated that 1.7 million diagnoses of 67 
diabetes occur in America annually, and it is the fifth leading cause of death (3). In addition to the 68 
environmental factors such as obesity, age, sedentary lifestyle, and lack of exercise that are 69 
associated with diabetes (6, 7), genome-wide associated studies (GWAS) have shown that immune 70 
responses genes are associated with susceptibility to diabetes; however, the effector mechanisms 71 
are unknown (8). Mutations and sequence alterations in DNA are not sufficient to explain the 72 
variable manifestations of this disease.  73 

There is growing evidence of epigenetic changes which can affect the severity of diabetes (9). 74 
Epigenetics is the study of heritable changes in gene function without any changes in nucleotides 75 
sequences (10). This includes dynamic addition or removal of functional groups or proteins by 76 
specific enzymes, which can cause changes in the structure and function of various targets. Post 77 
Translational Modifications (PTMs) are a diverse mechanism used by cells to control and regulate 78 
their biological functions (11). Small Ubiquitin-like Modifier (SUMO) is an essential PTM that 79 
modulates many protein functions and plays essential roles in various cellular processes (12).  80 

SUMO with approximately 12KDa is a highly conserved protein produced as an inactive precursor 81 
and needs to be cleaved by SUMO-specific protease 1 (SENP1) to become the active form (13). 82 
A schematic presentation of the SUMO cycle is shown in Figure 2. SUMOylation and 83 
deSUMOylation are covalent conjugation and de-conjugation of SUMO family members (14). 84 
There are more than one SUMO isoforms in the SUMO system, including SUMO1, SUMO2/3, 85 
and recently described SUMO4 and SUMO5 (15, 16). It is worth noting that SUMO4 was 86 
identified while studying the association of single nucleotide polymorphisms (SNPs) with type I 87 
diabetes; however, it is currently considered an intron-less pseudogene (12).  88 

Moreover, there is abundant evidence to show that the aberrance of SUMO regulation is highly 89 
associated with various diseases, including cardiac disease (17), autoimmune diseases (18), 90 
neurodegenerative disease (19), and cancers (20). Therefore, we discuss the role of SUMO and 91 
SUMOyaltion in different types of diabetes mellitus, including T1DM and T2DM.  92 

2. SUMO and diabetes mellitus 93 



4 
 

Unlike differences in the pathogenesis of T1DM and T2DM, epidemiologic data shows that both 94 
of these disorders manifest in familial clusters. This suggests a common genetic basis for them, 95 
and SUMO is one of the common susceptibility genes in both types (21-23). 96 

2.1. SUMO and regulation of insulin secretion 97 

Several studies have shown that SUMOylation has critical roles in the maintenance of pancreatic 98 
beta-cell functions through regulating transcriptional activities (24), ion channel activities (25), 99 
oxidative stress (26), and insulin exocytosis (27). Moreover, the incretin pathway has important 100 
pancreatic and extra-pancreatic roles, and this pathway is impaired in patients with T2DM (28-101 
32). Increased SUMO expression is associated with glucose- and incretin hormone-stimulated 102 
insulin secretion. Other proteins in beta cells can be regulated via the same pathway. For example, 103 
it has been shown that SUMO protein can inhibit the  Kv2.1 voltage-dependent K channel and 104 
widening the action potential and reducing the firing frequency of beta-cells, but Kv2.1 inhibition 105 
can promote insulin secretion in mice beta cells (33). 106 

SUMO1 can inhibit glucose-dependent insulin secretion via attachment to synaptotagmin VII and 107 
exocytosis impedance (34). SUMO1 could also cause intracellular retention of GLP-1R that is 108 
associated with a decrease in receptor density in the cell membrane. Although the role of SUMO 109 
in nucleoplasmic trafficking is established (35), how SUMO can help forward trafficking in the 110 
plasma membrane is not well recognized. One presumption is that SUMO can inhibit GLP-1R 111 
oligomerization. Receptor oligomerization is a crucial mechanism for forwarding trafficking of 112 
BG protein-coupled class of secretion receptors family, and GLP-1R is one of them. Hence 113 
increased SUMO modifications can increase the solubility of proteins such as vaccinia virus 114 
protein (36), and oligomerization of GLP-1R, which is regulated by SUMO modification, can 115 
change its solubility binding capacity (29). 116 

One of the pathological features of T2DM is normal glucose-stimulated insulin secretion (GSIS) 117 
from pancreatic beta cells. Numerous studies showed that SUMOylation regulates vesicle 118 
trafficking, such as insulin secretion. Therefore, it has been suggested that SUMOylation may play 119 
an inhibitory role in regulating insulin exocytosis. Recently, it has been shown that inhibition of 120 
syntaxin1A (a member of the syntaxin superfamily and an essential protein in synaptic exocytosis) 121 
significantly promotes the GSIS (37). 122 

Hepatocyte nuclear factor-1α (HNF-1A) is a crucial transcription factor in normal pancreas/liver 123 
development and function (38). HNF-1A, along with other transcription factors including 124 
pancreatic duodenal homeobox-1 (PDX-1), the hepatocyte nuclear factor-4 alpha (HNF-4A), and-125 
1 beta (HNF-1B), participate in the regulation of glucose-induced insulin secretion (38, 39). Rare 126 
variants in the HNF-1A gene contribute to the development of monogenic diabetes, and common 127 
HNF-1A variants increase susceptibility to T2DM (40-42). A recent study demonstrated that 128 
SUMO3 mediated the HNF-1A SUMOylation in two lysine (K) residues (K) (K205 and K273). In 129 
addition, overexpression of PIASγ suppressed the transcriptional activity of HNF-1A. Thus, the 130 



5 
 

interaction of HNF-1A with SUMO3 and PIASγ revealed potential new targets for drug 131 
development in HNF-1A-associated diabetes (43). 132 

Proinsulin disulfide maturation requires protein disulfide isomerase family members (PDIs) in the 133 
endoplasmic reticulum (ER) lumen (44). On the other hand, accumulation of misfolded proinsulin 134 
has been detected in patients with diabetes, implying that impaired proinsulin disulfide maturation 135 
could play an essential role in the pathogenesis of diabetes (45-47). Recently, SUMOylation of 136 
protein disulfide isomerase a3 (Pdia3) has exacerbated the proinsulin misfolding and ER stress in 137 
pancreatic beta cells (48). 138 

Protein inhibitor of activated STAT (PIASy) is a member of the PIAS family of SUMO E3 ligases, 139 
affecting insulin gene transcription, but its mechanism is not well understood. In one study, Onishi 140 
et al. demonstrated that PIASy negatively regulates the promoter of the insulin gene via a 141 
SUMOylation-independent mechanism (49). 142 

Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of growth factor signaling and 143 
cell proliferation by dephosphorylating receptor tyrosine kinases, such as the insulin receptor. 144 
SUMOylation of PTP1B by PIAS1 reduced its activity and suppressed PTP1B adverse effects on 145 
insulin receptor signaling (50). 146 

2.2. SUMO and diabetic nephropathy 147 

Fifteen-thirty years after the onset of diabetes, 30-40% of patients with T1DM and 20-30% of 148 
patients with T2DM develop diabetic nephropathy (DN) (51, 52). This is one of the most severe 149 
microvascular complications in diabetes, leading to end-stage renal disease and renal failure in the 150 
Western population. Recent studies showed that inflammation is a critical link in DN development 151 
(53). Defects in glucose metabolism and abnormal hemodynamics trigger inflammation, 152 
macrophage infiltration, and secretion of excessive inflammatory factors that are detectable in 153 
renal tissue during early stages, which leads to accelerated renal fibrosis. NFκB is the critical 154 
pathway in DN inflammation, and SUMO-1 modification on inhibitor of nuclear factor kappa B 155 
(IκBα) is the most important regulator of canonical NFκB dimers, which suppresses the 156 
inflammation (54, 55). NFκB activation via cytokines in the hyperglycemic condition is a potential 157 
mechanism for developing diabetes complications. Renal expression of tumor necrosis factor-158 
alpha (TNF-α), NFκB (p65), IκBα, and SUMO-4 were significantly increased in GK diabetic rats, 159 
and SUMO-4 has a crucial role in the regulation of the NFκB pathway in the glomerular cells. 160 
Studies showed that SUMO-1 and SUMO-2/3 expressions were significantly upregulated by 161 
glucose. High levels of glucose are associated with IκBα destruction and NFκB activation. IκBα 162 
modification by SUMO-2/3 occurs in high glucose conditions (56). 163 

Glomerular sclerosis and interstitial fibrosis are the significant pathologic changes in progressive 164 
diabetes nephropathy, and TGF-β is a critical factor in DN renal fibrosis (57). High glucose, 165 
angiostatin II (Ang II), and other pro-fibrotic factors are essential in the TGF-β activation pathway. 166 
This cytokine plays an essential role in DN fibrosis and induces tubular and glomerular cells 167 
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hypertrophy, extracellular accumulation, glomerular sclerosis progression, and renal interstitial 168 
fibrosis (56). Smad is an essential signaling molecule that negatively regulates TGF-β downstream 169 
pathway. Recently studies report that SUMO can affect TGF-β signaling, and Smad SUMOylation 170 
suppresses its transcription activity where TGF receptor SUMOylation leads to increasing affinity 171 
to its ligand. Smad3 and Smad4 have a critical role in TGF-β signaling and are associated with 172 
different cell proliferation and differentiation responses. PIASγ can interact with Smad3 173 
SUMOylation and inhibits TGF-β signaling. In addition, Smad4 SUMOylation is the regulator of 174 
its stability and co-expression with PIASγ and SUMO-1 export nuclease stimulate Smad3. 175 
Mutation in SUMOylation sides of Smad4 or co-transfection with SuPr-1 significantly increases 176 
its transcriptional activity. Also, a direct fusion of SUMO-1 to mutant Smad4 potentially inhibits 177 
its transcriptional activity (58, 59). These results proposed that PIASγ can regulate TGF-β/Smad3-178 
mediated signaling via stimulating SUMOylation and Smad3 nuclease export (56). Also, Zhou et 179 
al. identified that Smad4 SUMOylation by SUMO2/3 activated the TGF-β/Smad signaling in 180 
mesangial cell culture in high glucose conditions (60). 181 

2.3. SUMO and insulin resistance (IR) 182 

Insulin resistance (IR) is characterized by an inability of insulin to activate its signaling pathway 183 
and induce subsequent cellular metabolic processes. IR is widely recognized in peripheral tissues, 184 
including the liver, fat, skeletal muscle, and vascular endothelium. In addition, IR has a significant 185 
effect on the cardiovascular system and results in vascular dysfunction and atherosclerosis. (61). 186 

Peroxisome proliferator‐activated receptor γ (PPARγ) is a superfamily member of nuclear 187 
transcription factors. Both activation and overexpression of PPARγ improve the endothelium IR 188 
through transrepression of the NFκB pathway (62-64). Also, it is well known that SUMOylation 189 
of PPARγ in two sites (lysine 77 (K77) and K365 (murine), or K367 (human)) contributes to the 190 
transpressive effect on NFκB (65). In one study, Lan et al. investigated the effect of high glucose 191 
and palmitic acid (PA) on PPARγ sumoylation and ROS generation in human umbilical vascular 192 
endothelial cells (HUVECs). The assay results revealed that the PPARγ SUMOylation and ROS 193 
level was notably increased compared to control. Other results also demonstrated that the PIAS1-194 
reactive oxygen species (ROS)-IκB kinase (IKK) pathway play a crucial role in SUMOylation of 195 
PPARγ and results in IR in vascular endothelium via PPARγ-NcoR (nuclear corepressors) 196 
complex stabilization. Moreover, downregulation of PIAS1 with PIAS1-specific shRNA 197 
significantly resulted in the reversal of endothelium IR induced by high glucose and PA (66).  198 

Endothelium IR is also characterized by reducing endothelium-derived nitric oxide (NO) as well 199 
as elevating angiotensin II (AngII), which subsequently leads to dysregulation of vascular integrity 200 
(67). The hypothesis is that hyperglycemia induces ROS generation. Eventually, these processes 201 
interfere with the interaction of IRS1 to PI3K and prevent eNOS-NO pathway signaling, therefore 202 
leading to the endothelial IR induction (68). One study demonstrated that over-SUMOylation of 203 
PPARγ induces an endogenous SUMOylation cascade and results in IR and vascular endothelium 204 
dysfunction through negative regulation of eNOS-NO signaling in rat's aorta (69). 205 
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 206 

2.4. SUMO and regulation of GLUT4 in muscles 207 

Most of the insulin-stimulated glucose uptake in humans is by skeletal muscles. Glucose primarily 208 
enters the muscle cells via diffusion and glucose transporter carrier proteins.  GLUT4 protein is 209 
the most important glucose transporter protein in muscles. Glucose uptake via GLUT4 is regulated 210 
by insulin (70). When insulin binds to the receptor, it stimulates an intracellular signaling cascade, 211 
leading to phosphorylation of TBC1D1 and AS160 (TBC1D1) as Rab-GTPase-activating proteins. 212 
Phosphorylation in key residues of TBC1D1 and AS160 results in GLUT4 translocation to the cell 213 
surface. Then GLUT4 recycles to intracellular vesicles or becomes targets for lysosomal 214 
destruction (71, 72). 215 

Ubiquitin-conjugating enzyme E2 (Ubc9) can regulate this process by controlling SUMO 216 
attachment and destroying GLUT4 in L6 muscle cells (73). Similar results were discovered in 3T3-217 
L1 adipocytes where Ubc9 overexpression accelerates GLUT4 accumulation, while depletion of 218 
Ubc9 with specific RNAi leads to GLUT4 selective loss (74). Furthermore, Kampmann et al. 219 
evaluated the expression of UBC9 and GLUT4 in type 2 diabetic patients with severe IR compared 220 
to age-matched type 2 diabetic patients who did not become dependent on insulin administration 221 
and with an age-matched healthy group. In skeletal muscles, the expression of GLUT4 was 222 
significantly reduced, which was related to reduced levels of UBC9 protein. Nevertheless, the 223 
protein expression of GLUT1, AS160, and TBC1D1 was not notably altered between groups. 224 
Collectively, downregulation of GLUT4 may partially describe the severe IR and poor control of 225 
blood glucose in subjects with type 2 diabetes mellitus who suffered from IR.(70). 226 

Recently, Carmichael et al. manipulated the rate of cellular SUMOylation in L6 myocytes using a 227 
lentiviral transduction system and evaluated the effect on insulin-dependent surface expression of 228 
GLUT4. Treatment of L6 myocytes with insulin substantially reduced whole cellular SUMO1-229 
ylation rate but not other types of SUMO, including SUMO2/3. Surprisingly, no evidence has been 230 
identified that changes in SUMOylation rate had any potential effect on GLUT4 expression in L6 231 
rat myocytes. Although SUMOylation plays a vital role in the insulin signaling pathway, based on 232 
these results, SUMOylation is not a suitable target for the treatment of IR (75).  233 

2.5.SUMO and regulation of inflammatory mediators 234 

It has been reported that NFκB is one of the main targets of SUMOylation and SUMOylated IκBα 235 
inhibits the NFκB transcriptional activity. Subsequently, NFκB activation triggers the transcription 236 
of three groups of genes, including auto-regulatory genes (p50 and p65), immune response genes, 237 
and activators (e.g., IL-1, IL-2, IL-6, IL-12, TNFα, and IL-2Rα), and negative feedback regulators 238 
(e.g., IκBα) (76-78). A study revealed that overexpression of mice SUMO2 (mSUMO2) 239 
significantly reduced IL-12 and NFκB activity in DCs. Although, SUMO2 overexpression did not 240 
alter the expression of MHC-II, B7, IL-1, IL-6, and IL-7. Therefore, NFκB and SUMOylation may 241 
contribute to the development of autoimmune diabetes (79). 242 
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Adipocyte dysfunction promotes the pathogenesis of autoimmune-mediated diabetes. SUMO-243 
dependent deletion of SENP-1 protease resulted in more severe T1DM-related complications such 244 
as glucose intolerance, insufficient insulin secretion, and hyperglycemia. In a SENP1-deficient 245 
experimental model, increased expression of NFκB and CCL5 chemokine by peri-pancreatic 246 
adipocytes resulted in more significant inflammation and destruction of pancreatic islets. SENP-1 247 
deletion in adipocytes induced hyper-SUMOylation of the nuclear factor-κB essential modulator 248 
(NEMO), an NFκB activating factor. NFκB suppression in SENP1-deficient mice impairs the 249 
development of T1DM. This suggests that reduced inflammation of pancreatic islets and T1DM-250 
mediated pathology results from SENP1-dependent deSUMOylation of NEMO (80) 251 

2.6. The other roles of SUMO in diabetes 252 

Cardiovascular disease (CVD) is a life-threatening complication in patients with diabetes (81, 82). 253 
In addition, the underlying mechanisms of CVD may be partially distinct in T1DM versus T2DM 254 
(83). Several studies revealed that ER stress plays a vital role in developing and progression of 255 
diabetic cardiomyopathy (DCM) (84, 85). Recently, it was demonstrated that SUMOylation was 256 
enhanced by chronic diabetic milieu and therefore disrupted nuclear translocation of X-box- 257 
binding proteins (XBP1s) in diabetic mice (86). XBP1 is one of the essential factors in unfolded 258 
protein response (UPR) signaling during ER stress and plays an essential role in maintaining ER 259 
homeostasis (87). Moreover, treatment with U0126 (ERK1/2 inhibitor) significantly suppressed 260 
the XBP1's phosphorylation on serine residue S348 and SUMOylation on lysine residue K276, 261 
leading to accelerating nuclear translocation of XBP1. Thus, U0126 could be a suitable target for 262 
ameliorating the DCM complications (86). 263 

Diabetic cataract (DC) is considered a significant cause of visual impairment in patients with 264 
T1DM. High glucose concentration in blood can promote the development and progression of age-265 
related cataracts in patients with T2DM (88, 89). Previously, it was identified that oxidative stress 266 
could provoke various PTM, such as SUMOylation (90, 91) and deacetylation (92, 93). Also, 267 
NFκB plays a crucial role in regulating oxidative stress, which contributes to DC (94-96). Han et 268 
al. showed that IκB SUMOylation and NFκB p65 deacetylation could enhance NFκB p65 activity 269 
in human lens epithelial cells (HLECs) in high glucose media. Therefore, it would play an essential 270 
role in controlling DC (97). 271 

Immune-mediated islet inflammation (insulitis), the pathologic hallmark of T1DM, is 272 
characterized by infiltration of the immune cell around and within the islets, resulting in 273 
progressive destruction of islet beta cells and eventually lifelong insulin requirement (98). 274 
Recently, it has been demonstrated that M2 macrophages are involved in insulitis and T1DM (99), 275 
and subsequently, adoptive transfer of these macrophages attenuates insulitis progression (100, 276 
101). In addition, dysregulation of Ubc9-mediated Nrf2 SUMOylation in beta cells is associated 277 
with oxidative stress and beta cells apoptosis (26). Wang et al. revealed that impaired 278 
SUMOylation in Ubc9 knockout (KO) mice resulted in higher diabetes incidence than WT controls 279 
and a higher insulitis severity. Mechanistically, SUMOylation of IRF4 promotes its stability, 280 
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thereby transcribing IL-4 and arginase 1 (Arg1) to induce the polarization of M2 macrophages 281 
(102).  282 

Another clinical concern in patients with diabetes is the management of the wound. Several studies 283 
revealed delayed or impaired wound healing in diabetes (103). In a recent study, Astragaloside IV 284 
(the main active ingredient in astragalus) promoted angiogenesis and improved wound healing in 285 
vitro and in vivo in diabetic rats through SUMOthe -dependent pathway (104). 286 

In nonobese diabetic mice (NOD mice), the SUMO1 protein induces immune deviation and 287 
suppresses Th2 cells by inhibiting the IL-4 promoter in a C-maf-dependent manner. C-maf is a 288 
critical transcription factor necessary for effective IL-4 transcriptional activity and a normal Th2 289 
response. However, due to unknown reasons, Th2 activity is impaired during T1DM. One study 290 
showed that SUMO1 modification in the C-maf protein might exacerbate the inflammatory 291 
response associated with T1DM due to an imbalance in Th1/Th2 response (105).  292 

Another study demonstrated that age-dependent attenuation of C-maf SUMOylation could 293 
positively regulate IL-21-dependent diabetogenesis. Also, this study identified that C-maf 294 
SUMOylation has more significant effects on the pathogenesis of T1DM than it does on the 295 
expression of C-maf (106). 296 

2.7. SUMO genes polymorphisms in the pathogenesis of diabetes 297 

Recent studies showed that the NFκB signaling pathway is associated with the pathogenesis of 298 
T1DM and T2DM (107-110). SUMO4 can act as an antioxidant agent by inhibiting the NFκB 299 
pathway, which results in the induction of survival and inhibition of beta-cell destruction (110). 300 
Although in Chinese populations and Japanese patients, this SUMO4 M55V SNP is associated 301 
with susceptibility to T2DM (4, 21, 107), the exact relation is under debate. It seems to be due to 302 
differences in the genetic background of racial groups (111). It has been shown that SUMO c.163 303 
G>A polymorphism is associated with susceptibility to diabetic nephropathy in north Indian 304 
T2DM patients (112), and this polymorphism is associated with the severity of diabetic 305 
nephropathy (70). In contrast, Fallah et al. identified no association between the SUMO4 M55V 306 
variants and susceptibility to T2DM in Iranian subjects (113). 307 

In addition, SUMO4 is associated with the pathogenesis of T1DM, mainly due to its increased 308 
renal expression (110, 114, 115). Cells derived from liver carcinoma (HepG2 cells) transfected 309 
with SUMO4M-containing vectors express heat shock protein transcription factors (HSFs) and 310 
NFκB to a much greater extent than cells transfected with SUMO4V-containing vectors. 311 
SUMO4M (the methionine-containing variant) may be more closely related to the inflammatory 312 
responses known to occur in the pathogenesis of T1DM (116). It has been shown that NFκB 313 
activity can be enhanced via SUMO4 M55V polymorphism by inhibiting the binding of IκBα to 314 
SUMO4 and subsequently increasing the expression of NFκB and IL-1β (110). 315 
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According to various case/control studies on SUMO4 M55V SNP, the G allele (valine 55) 316 
prevalence is higher in American patients with T1DM (110, 114). A similar study in the United 317 
Kingdom showed that the prevalence of the A allele (methionine 55) is more significant (117, 318 
118). SUMO4 M55V SNP and T1DM association have also been confirmed in Korean and Asian 319 
patients (119, 120). Consequently, SUMO4 M55V SNP is directly involved in the pathogenesis of 320 
T1DM in Chinese infants (121). In addition, a meta-analysis confirmed the association between 321 
SUMO4 M55V SNP and the development of T1DM in Asians and Europeans (122). In contrast, 322 
It was found that SUMO4 M55V SNP had no significant correlation with the risk of T1DM in 323 
Swedish and Latvian patients (123, 124). In a study by Caputo et al. in Argentina, there was no 324 
significant association between SUMO4 163A/G SNP and autoimmune diabetes in patients with 325 
T1DM, and patients with latent autoimmune diabetes in adults (LADA), and healthy controls 326 
(125).  Also, in Indians, there was no association between SUMO4 A163G SNP and the risk of 327 
T1DM diabetes (126). 328 

Autoimmune-based diabetes mellitus is highly associated with microvascular complications such 329 
as retinopathy, nephropathy, and neuropathy. Furthermore, it has been reported that in Swedish 330 
patients, the SUMO4 M55V functional polymorphism (both in homozygote and heterozygote 331 
genotypes) and diabetes-modulated retinopathy are directly dependent. Thus, it may be that post-332 
translational modification by SUMO4 in diabetes causes ocular damage like retinopathy (127). 333 

Conclusions 334 

In recent years, in vitro and in vivo studies on the SUMO system provide new insights into the 335 
mechanisms which lead to the regulation of several factors involved in the pathogenesis of diabetes 336 
mellitus. SUMOylation, directly and indirectly, affects insulin secretion, diabetes nephropathy, 337 
regulation of GLUT4 in muscles, and genes involved in inflammation (Table 1). Therefore, 338 
dysregulation of SUMO function could potentially contribute to the progression of diabetes and 339 
its associated complications. With the development of the latest research tools, it is now possible 340 
to improve our understanding of SUMOylation in these processes. Potential novel therapeutic 341 
strategies could be developed for diabetes since SUMO has a crucial role in modulating the 342 
immune system, protein modification, and biological pathways. As an essential modulator in the 343 
pathogenesis of diabetes, SUMO will provide us with potential targets for the design of novel 344 
therapeutic agents in the future.  345 
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 361 

Table 1. Characteristics of studies on SUMO and SUMOylation effects on Diabetes Mellitus. 362 

SUMO 
finding/pattern 

Species Results Ref. 

SUMO4 M55V 
polymorphism 

Latvian Autoimmune 
diabetes patients 

No significant association between 
SUMO4 M55V and T1D susceptibility 

(124) 

SUMO4 M55V 
polymorphism 

Asian-Indians 
autoimmune T1D 
patients  

No significant association between 
SUMO4 M55V and T1D susceptibility 

(126) 

SUMO4 M55V 
polymorphism 

Chinese children with 
T1D 

Significantly association between the 
SNP and susceptibility to T1D 
SUMO4 163G allele and 163GG 
genotype were significantly increased in 
T1D patients. 

(121) 

SUMO4 M55V 
polymorphism 

Experimental model 
and diabetic patients 

An M55V Polymorphism in SUMO-4 
differentially activates heat shock 
transcription factors and increases 
susceptibility to T1D. HepG2 cell line 
transfected with SUMO4-expressing 
vectors showed suppression of NF-κB 
and activation of heat shock factor 
transcription factors. 

(116) 

SUMO1 and Ubc9 Non-obese diabetic 
mice model (NOD) 

SUMO1/Ubc9 conjugation with c-Maf 
leads to IL4 promoter down-regulation 
and reduced Th2 response in the NOD 
mice model 

(105) 

Not mentioned SENP1-deficient mice SENP1-mediated NEMO 
deSUMOylation in adipocytes limits 
inflammatory responses and T1D 
progression.  

(80) 
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SUMO3 and PIASγ Mouse MIN6 cells SUMOylation of HNF-1A by SUMO3 
and its interaction with PIASγ leads to  
HNF1α repression and Pancreatic 
dysfunction/diabetes progression  

(43) 

PIASγ and MafA Mouse insulinoma-
derived MIN6 cell line 

PIASy negatively regulates the promoter 
of insulin gene via the SUMOylation-
independent mechanism 

(49) 

PIAS1 and PPARγ HUVECs PIAS1-ROS- IKK pathway plays a 
crucial role in SUMOylation of PPARγ 
and results in IR 

(66) 

SUMO1 HUVECs and diabetic 
rats 

Astragaloside IV promoted the 
angiogenesis and improved the wound 
healing in vitro and in vivo in diabetic 
rats through a SUMO-dependent 
pathway 

(104) 

Not mentioned Diabetic model of 
C57/BL6 mice 

treatment with U0126 significantly 
suppressed the XBP1's phosphorylation 
and SUMOylation, leading to 
accelerating nuclear translocation of 
XBP1 

(86) 

SUMO1 HLECs IκB SUMOylation and NFκB p65 
deacetylation could enhance NFκB p65 
activity in high glucose media 

(97) 

SUMO1 Isolated islets from 
NOD/ShiltJ and 
C57BL/6J mic 

SUMOylation of Pdia3 exacerbates the 
proinsulin misfolding and ER stress in 
pancreatic beta cells 

(48) 

SUMO1 and 
SUMO2/3 

Diabetic mice and 
BMDMs 

SUMOylation of IRF4 promotes its 
stability, thereby transcribing IL-4 and 
arginase 1 (Arg1) to induce the 
polarization of M2 macrophages 

(102) 

SUMO1 INS-1E cell line SUMOylation may play an inhibitory 
role in the regulation of insulin 
exocytosis 

(37) 

SUMO1 Myc-GLUT4 
expressing L6 
myocytes 

Identified no evidence that changes in 
SUMOylation levels had any effect on 
GLUT4 trafficking to the cell surface in 
L6 myocytes 

(75) 

SUMO1 Endothelial IR model 
and adenovirus 
infection in rats 

Over-SUMOylation of PPARγ induces 
an endogenous SUMOylation cascade 
and leading to IR and dysfunction of 
vascular endothelium through negative 
regulation of eNOS-NO signaling  

(69) 

Not mentioned CD4+ T-cells of NOD 
mice   

Attenuation of c-Maf SUMOylation in 
CD4+ T-cells is positively correlated 
with the IL-21–mediated diabetogenesis 
in NOD mice. 

(106) 

SUMO4 M55V 
polymorphism 

TID patients and 
HEK293, COS7, and 
3T3 cell lines 

The SNP resulted in 5.5 times more 
significant NFκB transcriptional activity 
and ∼2 times greater expression of IL-
12B as an NFκB-dependent gene. 

(110) 

SUMO4 M55V 
polymorphism 

Latent autoimmune 
diabetes in adults 
(LADA) and T1D 

No association between SUMO4 163 
AG polymorphism with autoimmune 
diabetes 

(125) 

SUMO4 M55V 
polymorphism 

Asian T1D patients Significantly association between the 
SNP and susceptibility 

(120) 
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SUMO4 Asian T1D patients Association between the SUMO4 gene 
with susceptibility to T1D 

(115) 

SUMO4 M55V 
polymorphism 

Patients with T1D No effect of the polymorphism on 
diabetic neuropathy or diabetic 
nephropathy 
Markedly reduced prevalence of diabetic 
retinopathy in heterozygous or 
homozygous patients for the SNP 
 

(127) 

SUMO4 M55V 
polymorphism 

Iranian T2D patients No association between the SUMO4 
M55V variants and susceptibility to 
T2D 

(113) 

SUMO4 c.163 G>A 
polymorphism 

North Indian subjects 
with T2D 

Association between the polymorphism 
and susceptibility to diabetic 
nephropathy 

(112) 

SUMO4 M55V 
polymorphism 

Patients with T2D Association between the polymorphism 
and severity of diabetic nephropathy 

(70) 

SUMO4 M55V 
polymorphism 

Japanese T2D Association between the SUMO4 gene 
with susceptibility to T2D 

(4) 

Abbreviation: SUMO, Small Ubiquitin Modifier; Ubc9, SUMO-conjugating enzyme; PIAS3, 363 
Protein Inhibitor of Activated STAT 3; T1D, Type-1 Diabetes; T2D, T2D; SNP, Single Nucleotide 364 
Polymorphism; NOD, Non-Obese Diabetic mouse; NEMO, NF-kappa-B Essential Modulator; 365 
HNF-1A, Hepatocyte Nuclear Factor-1alpha; HUVECs, Human Umbilical Vascular Endothelial 366 
Cells; HLECs, Human Lens epithelial cells; Pdia3, Protein Disulfide Isomerase a3; BMDMs, 367 
Bone Marrow-Derived Macrophages; PPARγ, Peroxisome Proliferator‐Activated Receptor γ; IR, 368 
Insulin Resistant; XBP1, X-box- Binding Proteins  369 

 370 

  371 
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 686 

Figure 1. A graphical abstract of SUMO/SUMOylation in diabetes mellitus which provides us 687 
potential targets for designing the novel therapeutic agents in the future. 688 
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 689 

Figure 2. Schematic presentation of SUMO cycle. SUMO proteases, SENPs, maturate inactive 690 
precursors of SUMO to expose their di-glycine C-terminus motif and then activate by E1 activating 691 
enzyme that is a heterodimer of SAE1/SAE2 subunits. Activated SUMO binds to E2 Ubc9 via 692 
trans-strification for facilitating SUMO protein binding to a lysine residue of the target protein by 693 
E3 ligating enzyme. SUMO E3 ligase is an adaptor between SUMO-Ubc9 and the substrate. It 694 
plays a key role in the efficient and targeted SUMO modification of the substrate. SENP proteases 695 
cause DeSUMOylation of the substrate to use SUMO for another SUMOylation pathway (128).  696 


