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Abstract
Chronic cough is the most common complaint in respiratory clinics. Most of them have identifiable causes and some may 
respond to common disease-modifying therapies. However, there are many patients whose cough lacks effective aetiologi-
cally targeted treatments or remains unexplained after thorough assessments, which have been described as refractory chronic 
cough. Current treatments for refractory chronic cough are limited and often accompanied by intolerable side effects such as 
sedation. In recent years, various in-depth researches into the pathogenesis of chronic cough have led to an explosion in the 
development of drugs for the treatment of refractory chronic cough. There has been considerable progress in the underly-
ing mechanisms of chronic cough targeting ATP, and ongoing or completed clinical studies have confirmed the promising 
antitussive efficacy of P2X3 antagonists for refractory cough. Herein, we review the foundation on which ATP target was 
developed as potential antitussive medications and provide an update on current clinical progresses.
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Introduction

Cough is an important physiological protective reflex to avoid 
aspiration into the airways and to maintain airway patency. 
However, in some individuals excessive, dry or minimally 
productive cough becomes problematic leading to decrement 
in quality of life [1]. The commonly adopted definition of 
chronic cough (CC) in adults is a cough lasting for at least 
8 weeks [2]. Following the current cough guidelines, the 
majority of patients with chronic cough can have identifiable 
causes and some may respond to common disease-modifying 
therapies. However, there are many patients whose cough 
lacks effective aetiologically targeted treatments or remains 
unexplained after thorough assessments. A variety of terms 
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have been used to describe this condition which is referred to 
(synonymously) as refractory chronic cough (RCC) or unex-
plained chronic cough (UCC) in recent literature [3, 4].

RCC has been reported as a common clinical problem, 
with a worldwide prevalence of approximately 10% [5]. In 
specialist cough clinics, the prevalence may be up to 59.1% 
[6]. These patients often share a common feature in that their 
troublesome cough is often triggered by levels of stimuli such 
as perfumes and change in temperature which ordinarily 
would not cause cough in healthy people. This is character-
ized as allotussia to innocuous stimuli, abnormal sensations 
in the throat (laryngeal paresthesia), and increased response 
to tussive stimuli (hypertussia). Collectively, this is known as 
cough hypersensitivity syndrome (CHS) [7, 8]. This common 
clinical presentation is thought be due to dysregulation of 
neuronal pathways arising from the airways. Dysregulation 
may include both peripheral and central pathways. This latter 
provides the foundation for the importance of neuromodula-
tors in treating RCC, such as currently used gabapentin and 
baclofen [9]. At present, it is unclear whether these medica-
tions are likely to have a non-specific antitussive effect in 
RCC by inhibiting the sensitized central cough pathways. 
Their efficacy is poor being only around 50% even in uncon-
trolled studies, and with prominent drug-related adverse 
events such as sedation [10, 11]. A single agent, low-dose 
morphine, has been shown in a placebo-controlled RCT to be 
efficacious in about a third of patients with RCC [12].

A significant body of evidence has indicated the periph-
eral mechanisms are of importance in cough hypersensitiv-
ity. Inhalation challenge studies have demonstrated increased 
cough reflex cough sensitivity from peripheral stimulation. 
Inhalation of capsaicin, cinnamaldehyde, allyl-isothio-
cyanate indicates that peripheral sensor receptors such as 
transient receptor potential vanilloid 1 (TRPV1), transient 
receptor potential vanilloid 4 (TRPV4), and transient recep-
tor potential ankyrin 1 (TRPA1) receptors have an important 
role in upregulating the cough sensitivity. However, their 
antagonists did not show efficacy in RCC clinical trials 
[13–17]. RCC patients are thus bereft of effective treatments 
and undergo significant physical, psychological, and socio-
economic stress, with consequent serious negative impacts 
on the quality of life (QoL) [4, 18]. The treatment of RCC 
is currently a therapeutic black hole and there is an urgent 
need for safe, effective, non-sedating medications for the 
treatment of this common condition.

Recently, knowledge of neural pathways in RCC has been 
advanced through focus on adenosine triphosphate (ATP) 
activating purinergic P2X3 receptors (Fig. 1). Great pro-
gress has been made in the exploration of P2X3 antagonists 
as potential antitussive medications. Herein, we review the 
foundation on which ATP target was developed as potential 
antitussive medications and provide an update on current 
clinical progresses.

ATP as a key modulator of the cough reflex

ATP was long known as an intracellular energy source 
involved in metabolic processes of all cells. When released 
extracellularly, it is hydrolyzed to AMP and then adenosine 
by extracellular nucleotidases. In 1972, Geoffery Burnstock 
proposed that ATP and related nucleotides could be neuro-
transmitters co-released with noradrenaline, which subse-
quently acted on non-adrenergic and non-cholinergic nerves 
[19, 20]. This new concept was not widely accepted initially, 
but gradually evidence accumulated suggesting a role for 
the purinergic signalling. The role of ATP was confirmed 
20 years later when the first P2X subtype was cloned [21]. In 
recent years, many studies have focused on the role of extra-
cellular signalling by ATP released in response to cell dam-
age—the so-called alarmin concept. The demonstration of 
P2X receptors on the peripheral afferent nerves supports the 
role of ATP as a short-term signalling molecule in disorders 
in multiple different systems, such as visceral pain, bladder 
incontinence, hypertension, and chronic cough [22, 23].

That the release of extracellular ATP plays a major role 
in RCC has been now well established. After release from 
non-neuronal cells such as the injured airway epithelium and 
immune cells by cell lysis or through pannexin channels on 
the plasma membrane, ATP can stimulate afferent sensory 
nerves and release other proinflammatory cytokines driving 
further inflammation [24–26]. This can induce acute periph-
eral sensitization, as revealed by the acute cough response 
to ATP inhalation challenge in healthy volunteers (HV). 
Patients with RCC exhibited a greater degree of response 
to ATP inhalation [27, 28]. ATP also showed a more potent 
effect than AMP on inducing cough and bronchoconstriction 
in asthmatic patients [29, 30]. With aerosolized ATP, more 
dyspnea, cough, and throat irritation can also be observed in 
smokers and patients with COPD, when compared to healthy 
subjects [31]. Furthermore, in bronchoalveolar lavage fluid 
(BALF) of chronic smokers and ex-smokers with chronic 
obstructive pulmonary disease (COPD), elevated ATP con-
centrations were detected, indicating ATP could contribute 
to the symptoms and inflammation in the pathogenesis of 
some chronic respiratory diseases [32]. Similar findings can 
be seen in asthmatic humans [33]. Given that cough is a 
major symptom of airway disease, this suggests the likeli-
hood that ATP could directly or indirectly enhance the cough 
reflex in diverse respiratory conditions.

Some animal studies help to verify the plausibility of the 
involvement of ATP in cough. However, the effect of ATP 
appears to manifest a significant species difference. Gener-
ally, most of the peripheral sensory fibres innervating the 
respiratory tract are originated from the vagus, and relay 
through two distinct ganglia referred to as the nodose and 
the jugular ganglia. The peripheral stimuli activate C fibres 
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Fig. 1  Current understanding of the neural processes in the cough 
reflex. Tussive stimuli from various sources can increase the cal-
cium influx, leading to ATP release from the open pannexin-1 chan-
nel. This in turn activates the P2X3 and P2X2/3 receptors on sensory 
neurones within the airway mucosa. Other ion channels (TRPV1, 
TRPA1, TRPV4, TRPM8) on nociceptor terminals originating from 
jugular or nodose ganglia are activated by irritants or inflammatory 
reactions. These processes combine to produce an action potential, 
which is carried along the vagus nerve to cough centre (nTS and 
Pa5) and onwards to the central nervous system to regulate cough 

reflex. This is a gross oversimplification of an extremely complex 
neural pathway. The precise mechanism of cough still remains to be 
elucidated, particularly the mechanism producing the hypersensitiza-
tion seen in patients with chronic cough. Other pathways and recep-
tor systems are likely to be revealed by future work. ATP: adenosine 
triphosphate; nTS: nucleus of the solitary tract; Pa5: paratrigemi-
nal nucleus;  Ca2+: calcium;  Na+: sodium; TRPV: transient recep-
tor potential vanilloid; TRPA: transient receptor potential ankyrin; 
TRPM: transient receptor potential melastatin; NaV: voltage-gated 
sodium channel
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which respond to a wide range of chemical and mechanical 
stimuli, signalling to respiratory central neural circuits [1]. A 
rapid ATP bolus administration into right atrium or pulmo-
nary artery of a canine model could only stimulate the affer-
ent capsaicin-sensitive vagal C fibre terminals and trigger a 
vagal reflex [34]. In mice, ATP can activate both capsaicin-
sensitive and capsaicin-insensitive C fibres [35]. Given the 
difficulty in mimicking cough in models such as mice or rats 
[36], most early cough challenge studies were conducted 
using guinea pigs. In guinea pigs, capsaicin-insensitive 
nodose ganglia neurons, which terminate intrapulmonar-
ily, can be activated by ATP (some specialized Aδ fibres, 
which are commonly named cough receptors, terminate in 
the larger airways and do not have action potential firing in 
respond to ATP); but the jugular ganglia neurons, which 
terminate in the larynx, trachea, and mainstem bronchi, are 
all ATP-insensitive [37–39]. The non-hydrolyzable form of 
ATP, α, β-methylene ATP, was found to have a direct and 
receptor-dependent effect on the rapidly adapting receptors 
(RARs, also called Aβ fibres); however, it failed to evoke 
cough in conscious guinea pigs [37]. Later, Kamei and his 
colleagues confirmed that the extracellular ATP, by itself, 
did not elicit cough, with an acute guinea pig cough model 
in vivo, but caused increased coughing in response to citric 
acid. They also found that the ATP-induced cough sensitiv-
ity to citric acid was not changed by the desensitization of 
C fibres, but capsaicin-induced coughs were reduced. Based 
on the fact that citric acid stimulates both vagal C fibres and 
RARs, whereas capsaicin appears to only act on C fibres, 
they proposed the likelihood that RARs were involved in the 
pathway of ATP action in cough [40].

Cough is usually evoked by stimuli from larynx, trachea, 
and large airways, which have the jugular chemosensitive 
terminals and the specialized nodose Aδ fibre terminals 
(cough receptors). It is puzzling that all these terminals are 
ATP-insensitive. In recent years, jugular airway nociceptors, 
rather than nodose ganglia, were thought to play a critical 
role in the induction and sensitization of cough in non-
human species, which may in part be in agreement with the 
weak tussigenic feature of ATP by itself [41, 42]. However, 
this does not conflict with the theory that ATP sensitizes the 
irritated cough sensor and exacerbates cough.

Taken together, these in vivo animal studies give confus-
ing pictures of the cough reflex pathways in different animal 
species and give little insight into the role of ATP in RCC.

Strength of rationale for P2X3 purinergic 
receptor inhibition

Purinergic receptors are divided into 2 classes—A receptors 
(also termed P1R), whose ligand is adenosine, and P2 recep-
tors (P2R, which primarily recognize nucleotides usually 

AMP and ATP). The P2 receptors contain two further sub-
types: G protein–coupled receptors (P2Y, subunits (func-
tional human receptors) are numbered 1, 2, 4, 6, 11, 12, 13, 
and 14) and ligand-gated ion channels (P2X, homotrimers 
or heterotrimers of subunits numbered 1–7) [43, 44]. The 
expression of purinergic receptors and ectonucleotidases 
varies in different tissues or cells under physiological and 
pathophysiological situations.

Once ATP is released from the cells under pathological 
conditions, it will act on P2 receptors as a local mediator in 
an autocrine or paracrine manner. The releases of these and 
other distress signals are collectively known as alarmins. 
Currently, there is a growing understanding of purinergic 
signalling in almost every system. Since ATP can enhance 
cough reflex in pulmonary diseases, it is reasonable to 
assume that the blockade of ATP receptors on vagal fibres 
could modulate cough hypersensitivity. In  vivo studies 
pointed to the expression of functional P2X receptors on the 
nodoses neurons projecting C-fibres to the lungs of guinea 
pigs and canines [34, 39]. In 2005, Kamei and his colleagues 
found ATP-induced enhanced cough reactivity to citric acid 
in guinea pigs could be abolished by TNP-ATP, an antago-
nist of P2X1-4 [40]. Later, in 2006, they reported that the 
combination of TNP-ATP and reactive blue 2 (a P2Y antag-
onist) could completely eliminate the histamine-induced 
increased cough reactivity to citric acid in guinea pigs [45]. 
Homotrimeric P2X3 receptors (e.g. with three P2X3 subu-
nits) and heterotrimeric P2X2/3 receptors (e.g., with two 
P2X3 subunits and one P2X2 subunit), which are expressed 
in both peripheral and central terminals of the vagus, are the 
most investigated subunits of P2X receptors [46, 47]. P2X3 
receptors were first cloned in 1995 and were demonstrated 
to be located on small nociceptive sensory neurons in dor-
sal root ganglia (DRG) with lectin IB4 in 1998. Geoffery 
Burnstock proposed a P2X3 purinergic hypothesis for the 
initiation of pain in 1996 [48–50]. Later, the P2X3 knockout 
mice confirmed this receptor’s importance in the field of 
sensory processing, nociceptive signalling, and hollow organ 
biology [51–54]. Given the similar hollow organ biological 
features in the respiratory tract, and the similarity of cough 
to the physiology of neuropathic pain, RCC was described 
as a distinct clinical entity and termed neuropathic cough in 
the last decade [55–57]. Many studies provided the mecha-
nistic evidence for targeting P2X3 as a promising antitussive 
therapeutic indication. In an ex vivo study, ATP-mediated 
nodose C fibre activation was found to be inhibited with 
the P2X2/3 and P2X3 purinoceptors antagonists [58]. The 
extracellular patch-clamp electrophysiology and single cell 
RT-PCR analysis revealed the expression of P2X2/3 hetero-
meric receptors on C fibres derived from nodose ganglion 
neurons, whereas the jugular neurons primarily expressed 
homomeric P2X3 receptors [47]. Puzzlingly, in these stud-
ies, only heteromeric P2X2/3 receptors were functional, i.e. 
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have a sustained current when activated. In contrast, P2X2 
and P2X3 gene knock out mice confirmed that both recep-
tors play an important role in nociceptions [59]. Moreover, 
the evidence in the preclinical guinea pig cough model 
that BLU-5937 (a selective P2X3 antagonist) reduced the 
histamine-enhanced cough reflex to citric acid, and that 
aerosolized DT-0111 (a selective and effective P2X2/3 
antagonist) inhibited ATP-induced bronchoconstriction and 
cough, intimated the potential for potent antitussive activity 
of P2X3 antagonist [60, 61]. Taken together, these evidence 
suggests that P2X2 and P2X3 receptors play different roles 
dependent on the species and the pathophysiological stimuli 
provoking their activation.

P2X receptor antagonists in clinic trials 
for RCC 

P2X receptor antagonists previously widely used in the 
preclinical studies, such as pyridoxal phosphate-6-azo 
(benzene-2,4-disulphonic acid) (PPADS), suramin, the 
dye reactive blue 2, and 2′,3′-O-(2,4,6-trinitrophenyl) ATP 
(TNP-ATP), have limited potency, selectivity, stability, and 
poor pharmacokinetics, and have therefore not progressed 
to clinic trial programmes [62, 63]. A- 317,491 is the first 
identified competitive and reversible P2X3 antagonist with 
good systemic bioavailability; however, its water solubility 
and oral bioavailability are not good [64]. Alternative chemi-
cal antagonists with drug-like characteristics such as good 
oral bioavailability, slow clearance, little blood–brain barrier 
permeability, and high safety margin have been developed. 
In the last 7–8 years, there had been an explosion in the 
clinical application of several novel P2X3 receptor antago-
nists in RCC (Table 1).

Gefapixant

Gefapixant (previously known as AF-219 and MK-7264) 
was named after Geoffery Burnstock and is the first in class 
P2X3 and P2X2/3 receptor-selective antagonist. This mol-
ecule, as with all other antagonist in development, is revers-
ible and is an allosteric (non-competitive) antagonist. It 
was firstly developed by Roche and subsequently licenced 
to Afferent who undertook the initial successful clinical 
studies. Merck then purchased the rights for over one bil-
lion dollars. It has a good pharmacokinetic profile and low 
potential to cause a clinically relevant drug-drug interaction 
[82–85]. A range of clinical studies have been undertaken 
leading to two phase III trials which have recently been suc-
cessfully completed. They confirmed its antitussive efficacy 
and regulatory approval is expected shortly for the treatment 
of RCC in practice [86].

The phase I study examined the pharmacokinetics, safety, 
and tolerability of gefapixant by profiling a very large range 
dose and exposure levels in HV and subsequently confirmed 
its high oral bioavailability and resistance to metabolic deg-
radation [62]. The initial proof-of-concept (POC) phase II 
study of AF-219 suggested its promising efficacy in RCC 
[65]. In this randomized, double-blind, placebo-controlled, 
crossover study in 24 RCC patients, gefapixant produced sig-
nificant reductions in objective cough frequency. However, 
the high dose administered (600 mg twice daily) produced 
marked taste disturbances (hypogeusia or dysgeusia), which 
caused withdrawal in 25% subjects. In another double-blind, 
randomized, 2-period, crossover phase II study [28], which 
was conducted on 24 CC patients and 12 HV, a lower single-
dose gefapixant 100 mg inhibited ATP-evoked cough in CC 
and HV, as well as distilled water–evoked cough in CC, but 
had no effect on capsaicin or citric acid challenge. Median 
cough frequency was reduced by 42% with gefapixant over 
placebo in CC subjects. This suggests the underlying role 
of TRPV4/ATP-mediated P2X3 receptor activation in the 
pathophysiology of chronic cough as a peripheral target. The 
preservation of the protective irritant-induced cough dem-
onstrated in this study is an important safety signal and sub-
sequent larger studies have failed to demonstrate any excess 
of aspiration pneumonia with P2X3 antagonist. Taste-related 
issues were again the most common adverse events, during 
which dysgeusia was reported in 75% HV and 67% CC.

The notable taste adverse events are thought to be due 
to the relatively poor selectivity of gefapixant for the P2X3 
receptor over the P2X2/3 heterotrimer. This may lead to 
unmasking effects in clinical trials and inhibit medica-
tion compliance. Therefore, the exploration of the optimal 
cough relief of P2X3 antagonist with a diminished or even 
eliminated side effect on taste was the objective in the sub-
sequence phase II studies. Two crossover-designed rand-
omized dose-escalation studies (study 1: 50–200 mg, twice 
daily; study 2: 7.5–50 mg, twice daily) were reported in the 
European Respiratory Journal in 2020, and allowed the 
calculation of optimal dosing [66]. Reduction of the awake 
cough frequency was maximal at dose ≥ 30 mg, two times 
daily, which was far lower than the dose in the POC. Taste 
disturbances were also dose-dependent. On the basis of 
these findings, a randomized, double-blinded, controlled, 
parallel-group, phase IIb study was performed, evaluating 
the efficacy of gefapixant at one of three doses of 7.5 mg, 
20 mg, or 50 mg, twice daily, over 12 weeks [67]. With 
the dose of 50 mg, geometric mean of awake cough fre-
quency was reduced by 37%, relative to placebo, and with 
marked improvements in cough-related assessments; taste 
disturbances occurred in 81% patients although at a much-
reduced severity.

Two global, parallel, double-blind, randomized placebo-
controlled phase III trials (COUGH-1 and COUGH-2) were 
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designed [68] and completed in March 2020. Subjects were 
administrated either placebo, gefapixant 15 mg or 45 mg, 
twice daily, in a ratio of 1:1:1. Study period differed, 
12 weeks for COUGH-1 (extension periods of 40 weeks) and 
24 weeks for COUGH-2 (extension periods of 28 weeks). 
A total of 2044 RCC patients were recruited, in COUGH-1 
(n = 730) and COUGH-2 (n = 1314). Gefapixant at the 
dose of 45 mg reduced 24-h cough frequency by 18.5% in 
COUGH-1 and 14.6% in COUGH-2, relative to placebo. The 
placebo response was considerably higher in these phase III 
studies with a reduction of 24-h cough count greater than 
50% compared to the approximate 30% seen in phase II 
studies. Taste disturbance remained to be the most common 
adverse events, with the incidence of 59.3% in COUGH-1 
and 68.9% in COUGH-2, with most being tolerated and 
reversing after cessation of treatment. However, 15 mg of 
gefapixant, two times daily, had no significant efficacy com-
pared to placebo, which presumably swamped any treatment 
effect. Thus, 45 mg of gefapixant was finally proven to be 
an effective antitussive option for these RCC patients who 
had a mean duration of cough greater than 10 years. The 
reports of COUGH-1 and COUGH-2 were published in The 
Lancet [87].

In a trial of idiopathic pulmonary fibrosis cough [88], 
50 mg of gefapixant, two times daily, demonstrated a poor 
efficacy in awake cough frequency and a similar incidence 
of efficacy-unrelated taste disturbance (78.7%) [89]. This 
may suggest the heterogeneity in the underlying etiology 
in disease-specific cough and RCC although there were a 
number of methodological problems in this study.

Because of the allosteric nature of P2X3 antagonists, their 
roles in mediating taste signalling or cough hypersensitivity 
has not been well established as yet [90]. P2X2/3 hetero-
trimeric receptors were speculated to play a dominant role 
in taste signalling with evidence that the chorda tympani 
and glossopharyngeal nerves failed to response to all taste 
qualities in P2X2 and P2X3 double knockout mice, but did 
not exhibit such severe taste disturbance in P2X2 or P2X3 
single knockout mice [91, 92]. Given that gefapixant dem-
onstrated approximately threefold low degree of selectivity 
for P2X3 homotrimers over P2X2/3 heterotrimers [57, 84], 
a new generation of antagonists with higher selectivity to 
P2X3 are under clinical development.

Eliapixant (BAY‑1817080)

A novel, highly selective (confirmed by patch clamp stud-
ies) P2X3 receptor antagonist, eliapixant, was developed by 
Bayer (BAY-1817080)[82, 93]. In vivo studies showed its 
potential efficacy in nerve hypersensitization [93]. Eliapix-
ant has been reported for its good tolerability in HV after 
single and multiple dosing [70]. Promising efficacy for RCC 
was shown in a phase IIa study [71]. In this randomized, 

placebo-controlled, double-blinded, crossover study, elia-
pixant was administered twice daily in two treatment peri-
ods: 2 weeks of placebo followed by 1 week of 10 mg and 
escalating doses of 50, 200, and 750 mg, each for 1 week. 
Forty RCC patients were assessed with the change in 
objective 24-h cough frequency as the primary endpoint. 
Doses ≥ 50 mg demonstrated a 15% reduction in cough fre-
quency compared with placebo, with a lower incidence of 
taste-related side effects of 10–21% (all mild). Recently, 
Bayer reported the most current encouraging results of the 
international placebo-controlled, randomized, double-blind, 
parallel group, phase IIb dose-finding study of eliapixant in 
RCC at the European Respiratory Society (ERS) Interna-
tional Congress 2021 [72]. A total of 310 participants were 
administrated orally with either 25, 75, or 150 mg of eliapix-
ant or placebo tablets, twice daily, for 12 weeks. Seventy-
five-milligram dose of eliapixant twice daily could reduce 
objective cough frequency by 27% over placebo, with the 
majority of side effects considered mild or moderate. Taste-
related side effects were reported in 24% of patients with the 
highest test dose of 150 mg, which were markedly less under 
lower doses. Taken together, these studies confirmed a lower 
incidence of taste-related issues with eliapixant at effective 
therapeutic doses. That eliapixant has demonstrated efficacy 
in RCC confirms the hypothesis that the P2X3 antagonists, 
as a class, have an important role in the treatment of this pre-
viously intractable condition. Despite the promising clinical 
trial results with eliapixant clinical trial, development has 
been suspended by Bayer because of a risk of hepatotoxicity 
(elevated transaminases) seen in a small number of patients 
exposed to the 150-mg dosage.

BLU‑5937

BLU-5937 is another potent non-competitive antagonist 
stereoselective to P2X3 homotrimeric receptor developed 
by Bellus Health. It exhibited excellent drug-like charac-
teristics in preclinical studies and showed potential efficacy 
with limited or no taste disturbance in animal cough model 
[60]. The randomized, double-blind, placebo-controlled 
phase I study recruited 90 HV to assess the safety, toler-
ability, and pharmacokinetic profile of BLU-5937 [73]. 
During the administration of single ascending doses (50, 
100, 200, 400, 800, 1200 mg) or doses of 100, 200, 400 mg, 
twice daily, for 7  days, BLU-5937 presented excellent 
pharmacokinetic and safety/tolerability profiles, with only 
one case of mild, transient, and sporadic taste alteration at 
the anticipated therapeutic doses (500–100 mg). Recently, 
the top-line results from the POC phase IIa randomized, 
double-blinded, placebo-controlled, two-period, crossover, 
dose-escalation study (the RELIEF trial) of BLU-5937 in 
RCC patients have been reported at the American Thoracic 
Society International Conference 2021 [74]. Sixty-nine RCC 

299Purinergic Signalling (2022) 18:289–305



1 3

participants were randomized to 16-day treatment (25, 50, 
100, and 200 mg, twice daily) or matching placebo, with 
dose escalation every 4 days, then were crossed over after 
a 10–14-day washout. This trial was terminated early due 
to COVID-19 limitations and failed to reach significant 
reductions in the awake cough counts in the intent-to-treat 
population. However, significant reductions were observed 
in a pre-planned sub-group analysis of patients with higher 
baseline cough frequency: awake cough frequencies at base-
line of ≥ 20 coughs/h (− 23.8%, − 19.1%, and − 27.3% at 25, 
50, and 200 mg, twice daily, respectively, over placebo) 
or ≥ 32 coughs/h (− 29.0%, − 28.8%, − 27.1%, and − 32.1% 
at 25, 50, 100, and 200 mg, twice daily, respectively, over 
placebo). According to data presented by Bellus Health [75], 
taste-related side effects were infrequent at all dose levels, 
which were 6.5%, 9.8%, 10%, and 8.6% at 25, 50, 100, and 
200 mg, respectively, versus 4.9% with placebo, and were 
mostly mild in nature. No patients reported complete taste 
loss. Higher cough counts were assumed to be the best avail-
able clinical indicator of cough hypersensitization via the 
P2X3 pathway; however, conflicting results have been seen 
in other studies and this may represent a statistical artefact 
akin to regression to the mean. These data moved forward 
BLU-5937 to an adaptive phase IIb trial for RCC patients 
with higher cough counts [76, 94]. This is a multi-centre, 
randomized, double-blind, parallel arm dose-finding study 
(the SOOTHE trial), and included a placebo run-in period 
and stratification by baseline cough frequency. A total of 
240 patients with a baseline awake cough frequency ≥ 25 
coughs/h were randomized to the three active treatment arms 
of BLU-5937 (12.5, 50, and 200 mg, twice daily, 1:1:1:1) or 
placebo for 4 weeks after a single-blind run-in period. An 
exploratory population of participants (n = 60) with baseline 
awake cough frequencies between 10 and 25 coughs/h will 
be randomized to placebo and BLU-5937 200 mg twice daily 
treatment arms (1:1). The primary endpoint is the reduc-
tion in objective 24-h cough frequency versus placebo. In 
December 2021, Bellus Health announced the positive top-
line results of this study [77]. Significant placebo-adjusted 
improvement of 34% was observed in 24-h cough frequency 
(the primary efficacy endpoint) at 50 mg and 200 mg BID 
doses with a few taste-related adverse events (≤ 6.5%).

Sivopixant (S‑600918)

Sivopixant (also called S-600918), firstly reported by 
Shionogi, is a newly developed antagonist with favourable 
pharmacokinetic profiles and higher selectivity to P2X3 
over P2X2/3 trimeric homomer [95]. Its promising antitus-
sive efficacy with limited taste-related side effects for RCC 
has been demonstrated in a POC phase IIa, randomized, 
double-blind, placebo-controlled, crossover, multicentre 

study [78]. In this study, 31 RCC patients were rand-
omized to oral sivopixant 150 mg or placebo once daily for 
2 weeks, then crossed over for another 2 weeks after a 2–3-
week washout. The placebo-adjusted cough reductions in 
the average hourly objective coughs in day-time (primary 
outcome) and in 24 h (secondary outcome) were − 31.6% 
(p = 0.0546) and − 30.9% (p = 0.0386), respectively, 
accompanied with the significant improvement in health-
related quality of life measured with Leicester Cough 
Questionnaire but not in Visual Analogue Scoring. Only 2 
cases of mild taste disturbance (6.5%) were observed. The 
authors attributed the lack of statistical significance in pri-
mary outcome to the insufficient sample size. However, in 
the subsequent phase IIb dose selection study (ClinicalTri-
als.gov identifier: NCT04110054), which was conducted in 
372 RCC subjects assigned to 50, 150, or 300 mg of oral 
S-600918 or matched placebo for 4 weeks, the statisti-
cally significant placebo-adjusted change in 24-h cough 
frequency (primary efficacy endpoint) was not met at 
any dose. Incidence of taste-related side effects was dose 
dependent (2.0%, 13.6%, 33.0% at 50, 150, or 300 mg, 
respectively, versus 2.9% with placebo) [79, 80]. These 
top-line primary data were reported at Shionogi R&D Day, 
September 29th, 2021. Next steps are under consideration.

In this study, as with the difference between gefapixant 
phase II and the phase III studies, a larger placebo effect was 
seen. In both cases, earlier recruitment had been limited to 
specialized centres experienced in dealing with RCC patients 
who have usually undergone multiple failed treatment trials. 
Placebo response may be greater in treatment-naïve patients 
and centres. This is an important consideration for the design 
of future multicentre phase 3 studies where correct patient 
selection will be vital in demonstrating efficacy over placebo 
response.

Filapixant (BAY‑1902607)

Filapixant, also named BAY-1902607, is another new 
P2X3 antagonist with high selectivity, developed by Bayer. 
Currently, it has been investigated in a phase I/II trial in 
RCC in Netherlands and UK (p.o.) (NCT03535168) 
(EudraCT2018-000,129–29) [96]. No recent reports of 
development were identified for phase I development in 
cough (in volunteers) in Germany (p.o., tablet). Phase I 
study has been reported as completed on ClinicalTrials.gov, 
but data have not yet been posted or published. Primary data 
of efficacy and side effects from phase II POC study have 
been presented at the ERS International Congress 2020 [81]. 
Twenty-three RCC patients were randomized to ascending 
doses of BAY1902607 (20, 80, 150, or 250 mg, twice daily, 
4 days each) or placebo in 2-way crossover. The significant 
decreases in objective 24-h coughs per hour and cough 
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severity were observed at doses ≥ 80 mg. Taste-related side 
effects were mild-to-moderate and dose-dependent (4–57% 
with BAY-1902607 versus 12% with placebo). Despite the 
high selectivity to P2X3, BAY-1902607 had fairly high 
impact on taste. The complete data is awaited.

Other antagonists for P2X3 receptors

DT-0111 (Aspirex™), being developed by Danmir Thera-
peutic, LLC., is a novel, small, water-soluble molecule that 
acts as a selective antagonist at P2X2/3 receptors. In vitro 
and in vivo POC studies have demonstrated its potential to 
be an inhalation drug candidate for ATP-related pulmonary 
diseases such as chronic obstructive pulmonary disease 
(COPD) and chronic cough [61]. In addition, Obrecht et al. 
identified aurintricarboxylic acid (ATA) as a nanomolar-
potency allosteric antagonist of P2X3 and P2X1 receptors 
with weak inhibition to P2X2/3 receptors [97]. However, 
the clinical evidence for their antitussive effects has not yet 
been studied.

Other purinergic receptor targets 
with promising antitussive effect

P2X4 receptor seems to be an interesting target in modu-
lating cough reflex. P2X4 and P2X4/P2X6 heterotrim-
ers are moderately expressed in the lung [98]. In guinea 
pigs, ATP-induced enhancement of the number of citric 
acid–induced coughs was ameliorated by exposure to TNP-
ATP (an antagonist of P2X1–4 receptors), but without 
response to PPADS (an antagonist of P2X1,2,3,5,7 recep-
tors, but not of P2X4); thus, P2X4 receptor was thought 
to be involved in the ATP-induced enhancement of the 
cough reflex sensitivity [40]. In vitro and in vivo studies 
provided evidence that P2X4 is the predominant subunit 
of P2X expressed in secretory airway epithelial cells and 
its overexpression could be seen in conditions of chronic 
inflammation, mucous metaplasia, and hyperplasia [99]. 
Moreover, PSB-15417, a potent, brain-permeable allos-
teric P2X4 receptor antagonist for human, rat, and mouse, 
showed high efficacy in rat models of neuropathic pain, 
which shares the similar underlying mechanisms with RCC 
[44, 100]. Another P2X4 receptor antagonist, NC-2600, 
is currently in clinical trials for chronic neuropathic pain 
in Japan [101]. P2X7 receptor is also closely associated 
with neuropathic pain, which has been proved in the spi-
nal cord levels and amygdala [102, 103]. However, the 
correlation between P2X7 and RCC is lack of sufficient 
direct evidence, except for the role of P2X7 in mediating 
ATP efflux [104].

In terms of P2Y receptors, which are expressed in 
almost all epithelial cells and responsible for fluid con-
trol and electrolyte transport, the submits of P2Y2, P2Y4, 
P2Y6, and P2Y14 are relatively strongly expressed in epi-
thelial and glandular cells of lungs to regulate the physi-
ological functions of respiratory system [98, 105, 106]. 
The upregulation of P2Y4 and P2Y6 have been detected 
in allergic bronchospasm, which may lead to an increased 
production of endogenous ATP via exocytosis following 
P2Y4 activation, or intensify the inflammatory response 
via raising inflammatory factors following P2Y6 activation 
[107–109]. Moreover, combined with TNP-ATP, exposure 
to reactive blue 2, a P2Y receptor antagonist, could com-
pletely reduce histamine-induced increased coughs to cit-
ric acid; thus, P2Y receptors were assumed to play partial 
role in ATP-induced cough hyperreactivity [45]. However, 
further study to confirm this assumption is warranted.

In the long history of antitussive drug development, 
there has been many promising targets which have dem-
onstrated efficacy in animal models. A good example is 
that the TRP receptors and the TRPV1 receptor agonist 
capsaicin have been long used in cough challenge models. 
Highly specific TRPV1 antagonist was developed which 
showed excellent efficacy in capsaicin challenge models 
demonstrating target engagement. However, these agents 
have showed no efficacy in RCC [13, 14] and indeed a 
TRPV4 antagonist was actually showed to provoke cough 
in RCC [17]. Caution is therefore required in interpreting 
the results of the preclinical studies of other purinergic 
receptor targets.

Taken together, given the breakthroughs in P2X3 recep-
tors and taste-related limitations in patients, new drugs 
with antagonistic activity for other purinergic receptor tar-
gets with possible antitussive effect should be taken into 
consideration.

Conclusions and perspectives

RCC is a complicated neurobiological process with 
marked heterogeneity, and which involves multiple 
peripheral and central neural pathways [110]. Efficacy of 
the available medications varies from patient to patient, 
and it seems unlikely to expect a complete elimination 
of cough symptoms with a single agent. Currently, none 
of the clinical trials, whether P2X3 antagonists or other 
neuromodulators, has achieved this goal. Future clinical 
management of chronic cough will almost certainly require 
polymodal therapeutic approaches. The antitussive effects 
of P2X3 antagonists, which suppress the ATP-mediated 
sensitization of nociceptors, provide potent evidence for 
ATP-P2X3 pathway in regulating the pathological cough 
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reflex. However, a third of patients fail to respond. Thus, 
ATP seems unlikely to act as a common mediator for all 
tussive stimuli which sensitize nerves. Indeed, it is still 
unclear as to how ATP drives the chronic cough hypersen-
sitization and which sensory neuron pathway is responsi-
ble for transmitting the noxious sensation [27, 111]. The 
combination of further understanding of the neural mecha-
nisms and analysis of clinical variables in RCC patients is 
essential to identify cough phenotypes in the future. More 
work is required to identify further therapeutic targets to 
alleviate this common and chronic disease.
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