
IFAC-PapersOnLine, 48 (7): 9-14

Automating Allocation of Development Assurance Levels: an extension to HiP-

HOPS

Ioannis Sorokos, Yiannis Papadopoulos, Luis Azevedo, David Parker, Martin Walker

University of Hull, Hull, HU6 7RX, UK

(+44 (0)1482 465981, e-mail: {I.Sorokos@2012, Y.I.Papadopoulos@, L.P.Azevedo@2012,

D.J.Parker@, Martin.Walker@} hull.ac.uk).

Abstract: Controlling the allocation of safety requirements across a system’s architecture from the early

stages of development is an aspiration embodied in numerous major safety standards. Manual approaches

of applying this process in practice are ineffective due to the scale and complexity of modern electronic

systems. In the work presented here, we aim to address this issue by presenting an extension to the

dependability analysis and optimisation tool, HiP-HOPS, which allows automatic allocation of such

requirements. We focus on aerospace requirements expressed as Development Assurance Levels (DALs);

however, the proposed process and algorithms can be applied to other common forms of expression of

safety requirements such as Safety Integrity Levels. We illustrate application to a model of an aircraft

wheel braking system.

Keywords: automatic, safety requirements allocation, DALs, HiP-HOPS.

1. INTRODUCTION

At the early stages of systems engineering, requirement

identification and allocation is crucial in driving the

development correctly and efficiently towards a timely, cost-

effective project completion. Indeed, changes in requirements

which occur late in the development lifecycle incur much

greater costs to implement (Sharif, et al., 2012). Therefore, to

minimize the impact of these changes on the project’s

schedule and budget, it is important to employ an effective

requirements engineering methodology. In the case of safety

critical systems, an effective determination and distribution

of safety requirements is the basis of the development process

recommended by numerous safety standards. Specifically, the

concept of Safety Integrity Levels (SILs), first introduced in

the IEC61508 (SC 65-A, 2010) standard, provides a means of

describing, summarizing and assigning such requirements

across the system. This concept is shared across numerous

domain-specific standards such as ISO26262 (TC 22/SC3,

2011) for the automotive industry and ARP4754A (S-18,

SAE, 2010) for the aerospace industry.

Manual methods have been employed widely in the past to

deal with various phases of development, including

requirements engineering. However, as the scale and

complexity of subject systems grow, such approaches

inevitably become ineffective and a potential liability against

a project’s completion. For instance, in the case of allocating

SILs, determining an appropriate allocation might require

evaluating hundreds of thousands of possibilities, each of

which has a potentially different impact in terms of

development time and effort required to implement. Note that

many of those options which are often chosen in practice are

non-optimal incurring unnecessary costs. Obviously, a

process of exhaustive evaluation of all options would incur a

prohibitive cost for most projects of non-trivial scale. By

introducing tool support to specific development processes,

such as requirements allocation, a high degree of automation

can be achieved and costs alleviated. Automation would

allow the development effort to be directed towards tackling

more important, higher-level development issues, freeing up

precious development resources. It also provides the

opportunity to repeat the process efficiently, if required, as

part of subsequent development iterations.

Recently, work has enabled automatic SIL allocation from

system models annotated with failure logic in (Azevedo, et

al., 2014) and DAL allocation from minimum cut sets in

(Bieber, et al., 2011). In this paper, we describe a further

development of this work to provide robust support within

the HiP-HOPS tool for model-based automatic allocation of

aerospace safety requirements in the form of DALs. The

work is different from that described in (Bieber, et al., 2011)

because our starting point is not a minimum cut set list but

the system model. Furthermore, we use meta-heuristics,

specifically Tabu Search, as a basis for obtaining optimal

requirement allocations.

1.1 A summary of Development Assurance Levels

ARP4754A (henceforth referred to as ‘the standard’)

provides guidelines towards the development of civil aircraft

and is employed internationally. Its recommended

methodology describes a set of safety assessment processes,

which are designed to be carried out in parallel to a typical

system development lifecycle. By performing the activities

required by these processes, with the specified level of rigor,

the system can be certified to meet its regulatory

requirements. Development Assurance Levels (DALs) are the

aerospace equivalent to SILs and are central to the

assessment framework described by the standard. DALs are

meant to represent the ‘level of rigor’ (ARP4754A, 2010, p.

11) which safety assessment activities are required to be

performed with. To understand the importance of DALs in

the safety assessment process, it is necessary to outline the

standard’s view of a system’s architecture.

The model upon which the standard bases its

recommendations divides the system’s architectural elements

into three categories: functions, systems and items. Functions

represent a high-level view of the system’s functionality. For

example, a likely function in any aircraft would be ‘Flight

Control’. Systems are an abstraction level immediately below

functions, with each system providing, either on its own or

with other systems, the behaviour described by a function;

e.g. a ‘Wheel Braking System’ could support the ‘Braking’

function. Finally, items represent the lower-levels of the

architecture, i.e., hardware or software components or small

size sub-systems.

The initial assignment of DALs to functions occurs early in

the development lifecycle, during the Aircraft Functional

Hazard Assessment (FHA). The FHA is the first major stage

in safety assessment and is more commonly known as

Functional Hazard Analysis (ARP4754A, pg.12, 2010). This

analysis identifies the potential Failure Conditions (FC)

associated with each function, i.e., undesirable events that

could occur during operation and that compromise the

aircraft’s safety. Each FC has a severity classification,

stemming from its impact in the worst possible case, and an

estimated probability of occurrence. During the Preliminary

Aircraft Safety Assessment process, DALs are assigned

based on each Function’s hazard severity (ARP4761, pg.43,

1996), as seen in Table 1.

Table 1. DAL to Severity correspondence

Severity DAL

Catastrophic A = 4

Hazardous / Severe - Major B = 3

Major C = 2

Minor D = 1

No Safety Effect E = 0

Once DALs have been assigned to functions, and an

architecture for the system has been defined, DALs are

iteratively assigned to more refined architectural elements.

The rules that guide the process of allocation utilize the

concept of Functional Failure Sets (FFS). FFS contain the

minimum combinations of function, system or item failures,

termed Functional Failures (FF) in the standard, which are

necessary and sufficient to cause a failure of the system

containing said architectural elements (ARP4754A, pg.11,

2010). They are assigned with the DALs of the system failure

they originate from. In turn, items whose failures belong to a

given FFS can be, in principle, immediately allocated with its

DAL. However, the standard allows for some items to receive

less stringent DAL allocations. There are two options in

doing so. Given a FFS with a DAL of k:

Option 1: a singular member is assigned a DAL of at least k

and the other members of at least k-2.

Option 2: two members are assigned a DAL of at least k-1

and the other members of at least k-2.

In the case of a FFS with only one member, option 1 is

taken.

The allocation rules effectively state that in a set of items

which, by failing together, cause a system failure, either one

of the items must be developed at the system DAL with the

rest developed at two DALs below, or two items must be

developed one DAL below the system DAL with the rest

developed two DALs below system DAL.

1.2 The issue of Independence in ARP4754A

In the standard, the concept of “Independence” is said to be

‘a fundamental attribute to consider when assigning

Development Assurance Levels’ (ARP4754A, pg. 41, 2010).

The standard uses independence as an attribute aiming to

address the issue of common mode errors, which occur due to

shared requirements amongst Functions or development

processes amongst Items. It is important to explain our views

on this matter and how we treat dependence and

independence in the approach presented here.

The standard introduces two forms of independence,

Functional and Item independence. The former refers to the

presence of common causes of failure between separate

Functions or Systems of the architecture, while the latter

refers to separate Items. In both cases, identification of such

common causes falls within the purview of the

Aircraft/System Common Cause Analysis (CCA) process.

The CCA process identifies such causes and includes them in

the failure analyses performed at subsequent stages such as

fault tree analysis.

In HiP-HOPS common causes are treated in two ways. They

can be explicitly specified in the components and cause, via

propagation of common energy, material or data errors,

failure of more than one element in system models. Examples

of such common causes are common power supplies or data

sources that affect more than one element. Implicit common

causes are events such as flood and fire which are typically

examined in zonal analysis. They can also be specified at the

model level and trigger simultaneous failure of more than one

function or components directly and without explicit

propagation of errors through the architecture. If the failure

analysis determines that such failures indeed contribute

towards the failure of seemingly independent Items, Systems

or Functions, they will accordingly affect the DAL allocation

to these elements. Therefore, our method correctly allocates

DALs while addressing the issue of independence taking

simultaneously into account all possible sources of failure in

the system.

1.3 Challenges in requirements allocation

The allocation of a specific DAL (or SIL or similar safety

requirement) to a function or item typically implies a

development cost. Higher DALs imply a higher level of

rigour and more costly development and assurance activities.

This is clear in the standards where it is possible to observe,

for instance, that the higher the DAL for a software item, the

higher the number of assurance objectives that must be met

(Nordhoff, p. 7). It is apparent that allocation schemes which

can achieve the required integrity for the system by assigning

lower DALs to more items would be more economical and

translate into less effort and time spent on assurance

activities. It is precisely those cost-optimal allocations that

one is interested in finding during the refinement of a system

architecture under design. This problem can be more formally

defined as a constrained optimization problem, with the

decision variables being the DALs of each item; the

constraints being the rules of allocation defined in the

standard; and the objective of the optimization being to

minimize the overall cost imposed by the allocation on the

development process. This description can be summarized in

the following expressions:

Where

 : the i-th allocated item DAL across all functions

Cost: the cost function, assigning each DAL a specific cost

We attempt to identify the allocation of item DALs across all

functions which minimizes the total cost impact, subject to

the following constraints:

Or

Where

 : the i-th allocated item DAL contributing to a function

with a DAL of k

 : the set of DALs for items of a function with DAL of k

The two constraints represent the two options available when

allocating DALs (see section 1.1). The first constraint ensures

that one member has a DAL of at least k, as in option 1,

whereas the second that two members have DALs of at least

k-1, as in option 2. In both cases, the remaining members

must have DALs of at least k-2.

2. AUTOMATIC ALLOCATION OF DEVELOPMENT

ASSURANCE LEVELS

2.1 HiP-HOPS

Hierarchically Performed Hazard Origin and Propagation

Studies (Papadopoulos, et al., 2011) is a state-of-the-art

model-based safety analysis software tool that largely

automates the synthesis of fault trees and FMEAs from

system models. Model-based development is a design

paradigm in which the nominal behaviour of a system is

developed using a common formal or semi-formal model of

the system to facilitate communication of requirements and

design between stakeholders in complex development

processes. Model-based safety analysis extends this paradigm

by enhancing the nominal behaviour of the system described

in the model with component failure logic (Sharvia &

Papadopoulos, 2011). This allows safety analyses to be

conducted synchronously with the rest of the development

activities and provide feedback earlier and more efficiently.

HiP-HOPS requires a model of the system that is annotated

with local failure logic for each component from which the

tool then automatically synthesizes fault trees. These fault

trees represent the failure logic of the system in the form of a

tree, with the root of the tree being the ‘top event’

representing system failure and its leaves being base

component failures. These are linked through a series of

logical connectors such as AND and OR gates. Once the fault

tree synthesis stage is complete, the tool analyzes the trees to

produce useful safety artefacts, such as the system’s

Minimum Cut Sets. These sets contain the combinations of

basic failure events whose occurrence is both necessary and

sufficient to cause the overall system’s failure. These sets are

equivalent to the standard’s FFS (ARP574-A, pg.41, 2010),

therefore we can use them in applying the DAL

decomposition rules to allocate DALs onto the system’s

components. A more detailed description of HiP-HOPS can

be found in (Papadopoulos, et al., 2011).

2.2 Reduction Stage

The rules of DAL allocation allow multiple allocation

possibilities when an FFS has more than one member. In

large systems, these options can multiply leading to a

combinatorial explosion. Indeed, in practice, many options

exist for the allocation of function DALs to items of an

architecture, often too many to consider exhaustively. The

process would certainly benefit from an optimization

algorithm that can efficiently search the large space of

potential allocations to seek a cost-optimal allocation. We

present such an algorithm in the next section which benefits

from a pre-processing step for search space reduction.

Let us consider the following scenario in which each FFS

contributes to a different function of DAL A or lower and

therefore inherit said DAL:

FFS 1 = { FF1}

FFS 2 = { FF1, FF2 }

FFS 2 = { FF2, FF3 }

FFS 4 = { FF2, FF3, FF4 }

In this illustrative example, the relative costs implementing

an element according to the different DALs are introduced in

Table 2.

Table 2. Example Cost Function

DAL A B C D E

Cost 50 40 20 5 0

An interesting phenomenon is occurring in this scenario.

Each of the sets contain at least one member from a previous

set and one member from the next, apart from the first and

last. Additionally, each set only contains one member not

belonging to a previous set. The cost function itself seen in

Table 4 is also interesting, as it is strictly increasing with

regards to the DALs and non-linear.

Although there are multiple possible optimal solutions,

finding one in this case does not necessarily involve

enumerating all options. The solution given in Table 3, for

instance, can be found using the following reasoning steps:

 FF1 was assigned A because it belongs to FFS1 and

is the sole member, therefore inheriting its level.

 FF2 was assigned C because the other member of

FFS2 is FF1 and has already been assigned level A,

thus C is the lowest allowable level.

 FF3 was assigned A because the other member of

FFS3 is FF2 and has already been assigned level C.

Note that assigning FF2 and FF3 level B would

result in a costlier allocation, due to the cost

function, as C + A = 70 whereas B + B = 80. This is

where the nature of the cost function chosen plays a

particular role.

 Finally, FF4 was assigned C because another

member of FFS4, FF3, has already been assigned

level A.

Table 3. Example Optimal Allocation

FF1 FF2 FF3 FF4 Cost

A C A C 140

Although this reasoning excludes the other possible optimal

allocation, given in Table 4, it can still lead to an optimal

solution (as shown) and does not require investigating other

options that could be derived from the rules.

Table 4. Alternative Optimal Allocation

FF1 FF2 FF3 FF4 Cost

A A C C 140

Let us now try to generalise the above example. Due to the

high severity of aircraft hazards, the rules for DAL allocation

are stricter than those found in other standards, allowing

DAL reduction of only two levels at most. This allows us,

when a model and the cost function exhibit certain properties,

to reduce the possible allocations significantly by removing

inefficient options, in some cases even eliminating all options

of allocation down to one without loss of optimality. Even

when there are still options remaining for optimization, the

search space of the problem has been significantly reduced,

thereby likely improving the effectiveness of the optimization

technique employed subsequently.

These series of allocations can be applied when:

1) the cost function of each element is non-linear and

strictly increasing with respect to the DALs of its

FFs

2) there exist N FFSs for all of the architecture’s

effects (N can be less than the total number of FFS

in the architecture) that, when ordered in descending

order of their effect’s DAL, exhibit the following

‘chain’ property:

Let of size n be followed by
and so on. The chain property holds for these FFSs

if:

a) there exists a common FF that belongs to

both and

b) , i.e. the difference

in the cardinality of two neighbouring FFS

in the chain is maximum one

3) there exists a FFS amongst those N that satisfies the

chain property with a single member

Note that the above heuristic can only apply in analysis of

simultaneous allocation of more than one function DALs.

The reason is that, in the case of allocation of a single DAL

which is done on the basis of analysis of a single fault tree,

the redundant FFS required to satisfy the chain property have

already been eliminated during logical reduction of the sets.

In cases of multiple allocation of DALs, the chain property

may apply to subsets of the total set of FFS of the system and

can be used in those cases to fix a subset of allocations in the

system, thus reducing the overall search space required in

subsequent optimisation.The pseudo code for this reduction

stage follows:

1) sizeCounter = 1

2) sort all FFSs in descending order of DAL

3) changesMade = true

4) while changesMade is true

a) changesMade = false

b) foreach FFS k

i) if sizeCounter = k.size then:

(1) if there is just one Member in k unassigned,

then:

(a) assign it the lowest possible DAL

(b) changesMade = true

(2) end if

ii) end if

c) end foreach

d) increment sizeCounter

5) end while

2.3 Tabu Search

There is a range of optimization algorithms that could be

adapted to solve the DAL allocation problem. We chose Tabu

Search (Glover, 1986) for this study as a good candidate as it

has already shown good performance in earlier work in

allocation of automotive requirements (Azevedo, et al.,

2013). Tabu search is a meta-heuristic optimization

technique, which owes its name to its memory structures,

used to store recently evaluated candidate solutions. The

candidates stored in these structures are not eligible for

generation of further candidates and are thereby considered

‘Tabu’ by the algorithm. The memory artefacts allow for the

technique to trade space for time and therefore accelerate the

search for the optimal solution. We have implemented a basic

version of Tabu Search; each candidate is an allocation of

DALs over all FFs and the best candidates are those with the

lowest overall DAL cost. Candidates recently chosen and

therefore Tabu are stored on the short-term memory structure,

the ‘Tenure’. An Aspiration Criterion is employed, allowing

a candidate to be chosen despite being Tabu. The chosen

criterion requires the candidate allocation to beat the

Tenure’s current best candidate in terms of overall DAL cost,

thus being the best (i.e. cheapest) allocation in recent

memory. The search method used to generate the next set of

candidates produces a new candidate for each allocation of

the current one that can be changed and not violate DAL

decomposition rules. This means that allocations assigned by

the reduction stage cannot be reduced in DAL under the level

they were then assigned, only increased. The algorithm for

Tabu Search follows:

1) Generate a random allocation

2) Set random allocation as the current choice

3) Add the current choice to Tabu Tenure

4) Repeat until iteration count or time limit are reached

i) Produce random alternative allocations from the

current choice

ii) Sort the produced allocations by DAL cost,

ascending

iii) Select the lowest cost allocation as the next choice

iv) Repeat until a next choice has been selected or all

alternative allocations have been examined

(1) If the next choice is not Tabu, select it to be the

next choice

(2) If it is Tabu but aspiring, select it to be the next

choice

(3) Otherwise, examine the next produced choice

v) If none of the produced allocations is either non-

Tabu or aspiring, set the lowest cost one as the next

choice

5) The next choice becomes the current choice

6) Add the current choice to the Tabu Tenure

7) Sort the Tabu Tenure by DAL cost, ascending

The potential options per each FFS are placed in ‘Allocation

Packs’. Generating a random allocation in Step 1 involves

selecting a random option from each Allocation Pack and

then combining them with the non-optional allocations from

the reduction stage, as mentioned earlier. Sorting the

generated allocations for the next iteration means that after

each iteration, the lowest cost — and ideally non-Tabu or

aspiring — choice out of the produced candidates will have

been made. To check if a candidate is Tabu, the fixed-size

Tabu Tenure is parsed to see if there’s an identical allocation

on it. If so, the subject allocation is not allowed. An

allocation is considered aspiring if its cost is lower than each

member of the Tabu Tenure. Thanks to the sorting of the list

in Step 4ii, a simple comparison with the first entry in the list

is only needed.
To produce the next set of alternative allocations, the process

described in the following algorithm is performed:

1) Add into list Optional all ‘optional’ partial allocations

2) Add into list IncreasableNonOptional all ‘non-optional’

partial allocations of DAL lower than 4

3) For every partial allocation in the

IncreasableNonOptional list,

a) Select a random Allocation Pack affecting that

partial allocation

b) Select a random partial allocation from that Pack

which assigns a higher DAL than the current one

c) If none exist, continue to the next partial allocation

d) Else, use that selection to generate a new allocation

and add it to the resulting list

e) Repeat

4) For every partial allocation in the Optional list,

a) Select a random Allocation Pack affecting that

partial allocation

b) Select a random partial allocation from that Pack

which alters the current allocation

c) Use that selection to generate a new allocation and

add it to the resulting list

d) Repeat

5) Return the resulting list

Note that steps 3 and 4 of the above algorithm are almost

(except for sub-steps b and c) identical — simply applied to a

different list. The purpose of the two lists is to find all partial

allocations due to options taken from Allocation Packs which

can be altered. Sub-step b) illustrates the difference between

the two lists. In Optional, any partial allocation which alters

the current allocation can be selected, whereas in the

IncreasableNonOptional list we can only choose a partial

allocation, if any exist, which increases the DAL of the

resulting allocation.

3. CASE STUDY: AIRCRAFT WHEEL-BRAKING

SYSTEM

Our case study is based on an example aircraft wheel braking

system from ARP4761 (S-18, SAE, 1996), adapted by

(Sharvia & Papadopoulos, 2011). The system is illustrated in

Figure 1. The purpose of the system is to provide safe

braking during aircraft takeoff and landing. It features two

primary hydraulic pumps, GreenPump and BluePump. The

Brake System Control Unit (BSCU) forwards input from the

brake pedals to the brakes, monitors input systems and states

for correctness and provides feedback to other systems. The

SelectorValve receives a constant stream of pressure from

both pumps, relaying the pressure from the appropriate one to

the corresponding meter valve. The anti-skid meter valves

(ASMeterValveG and ASMeterValveB) output the required

amount of pressure based on BSCU’s commands. The system

features two modes of operation, Normal and Alternate. In

Normal mode, GreenPump is used, sending pressure through

the SelectorValve to ASMeterValveG. In Alternate mode,

BluePump is used to send pressure through the SelectorValve

to ASMeterValveB. Alternate mode is activated by BSCU

when the pressure output falls under a certain threshold in

Normal mode.

If braking fails during takeoff or landing, consequences could

be catastrophic. The plane could fail to decelerate as expected

on landing, or brake during take-off, potentially causing a

severe accident. We found this reasoning sufficient to test the

allocation by assigning the overall DAL of the system output

(WBS) to be A. We should note that this assignment is

primarily used as an example and in practice the actual DAL

assignment could be lower. However, this would not impact

the allocation process described; a lower allocation can only

potentially lead to a smaller number of potential allocations

that need to be evaluated. Therefore, in this sense, we are

demonstrating the worst case scenario with regards to the

number of potential candidates that need to be evaluated. For

the purposes of the case study, the costs in Table 5 were used

to approximate the cost each DAL would have on its

component.

Table 5. Item DAL Cost

DAL A = 4 B = 3 C = 2 D = 1 E = 0

Cost 50 40 20 10 0

The resulting allocation when the parent FC (WBS) is

assigned with DAL A can be seen in Fig. 1. (DALs from A to

E numbered from 4 to 0 respectively).

Fig. 1. Allocation of DALs on model.

The allocation algorithm was executed numerous times, each

time producing a permutation of the allocation shown above

or the one displayed with the same overall DAL cost. This

allocation was found to be optimal after exhaustively

enumerating all possible combinations of DAL allocations for

this model. It should be noted that this was only possible due

to the relative small scale of the search space (531,441

possible allocations). Larger-scale models might require

excessively long periods of time to exhaustively search for

their optimal solutions.

6. CONCLUSIONS

In the aerospace industry, dissemination of safety

requirements across the system’s architecture is a

fundamental part of the safety development process described

in ARP4754A. Applying the guidance of the standard is

challenging as an increase to the number of components

within a system results in a super-linear growth of the

number of allocation options that need to be evaluated.

Furthermore, finding a trivial allocation manually would not

be ideal, as each allocation has a different impact on

development costs. Therefore, there is a significant incentive

in determining the optimal allocation automatically and in

this paper we have described a method and tool to achieve

this. We have demonstrated that it is possible to allocate

DALs to a given system architecture automatically, optimally

and efficiently by applying this method to an example

system. This development suggests that the possibility of

automation of safety development processes is common to

multiple standards and we feel confident that further

automation is possible in this direction. Reflecting on the

implementation of the Tabu Search, we believe it could be

improved by including midterm and long-term memory

structures, which would allow models with larger FFSs to

have their DALs allocated more effectively. Additionally,

although Tabu Search has proven to be an effective meta-

heuristic in solving the problem, other optimization

techniques could be evaluated to compare their efficiency, as

indicated in relevant work described in (Bieber, et al., 2011).

REFERENCES

Azevedo, L. S. et al., 2013. Automatic Decomposition of

Safety Integrity Levels: Optimization by Tabu Search.

Toulouse, France, s.n.

Azevedo, L. S. et al., 2014. Assisted Assignment of

Automotive Safety Requirements. IEEE Software, 31(1),

pp. 62-68.

Bieber, P., Delmas, R. & Seguin, C., 2011. DALculus -

Theory and Tool for Development Assurance Level

Allocation. Naples, Italy, Springer Berlin Heidelberg, pp.

43-56.

Glover, F., 1986. Future Paths for Integer Programming and

Links to Artificial Intelligence. Computers and

Operations Research, pp. 533-549.

Nordhoff, S., n.d. DO-178C / ED-12C - The new software

standard for the avionic industry: goals, changes and

challenges. [Online]

Available at: www.sqs.com/uk/_download/DO-

178C_ED-12C.pdf

Papadopoulos, Y. et al., 2011. Engineering failure analysis

and design optimisation with HiP-HOPS. Engineering

Failure Analysis, pp. 590-608.

S-18, SAE, 1996. Guidelines and Methods for Conducting

the Safety Assessment Process on Civil Airborne Systems

and Equipment, s.l.: SAE Int..

S-18, SAE, 2010. ARP4754A Guidelines for Development of

Civil Aircraft and Systems, s.l.: SAE Int..

SC 65-A, 2010. IEC61508 - Functional safety of

electrical/electronic/programmable electronic safety-

related systems, s.l.: International Electrotechnical

Commission.

Sharif, B., Khan, S. A. & Bhatti, M. W., 2012. Measuring the

Impact of Changing Requirements on Software Project

Cost: An Empirical Investigation. International Journal

of Computer Science Issues, 9(3), pp. 170-174.

Sharvia, S. & Papadopoulos, Y., 2011. IACoB-SA: an

Approach towards Integrated Safety Assessment. Trieste,

Italy, IEEE, pp. 220-225.

TC 22/SC3, 2011. ISO 26262 - Road vehicles - Functional

safety, s.l.: International Organization for

Standardization.

