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Abstract: Controlling the allocation of safety requirements across a system’s architecture from the early 

stages of development is an aspiration embodied in numerous major safety standards. Manual approaches 

of applying this process in practice are ineffective due to the scale and complexity of modern electronic 

systems. In the work presented here, we aim to address this issue by presenting an extension to the 

dependability analysis and optimisation tool, HiP-HOPS, which allows automatic allocation of such 

requirements. We focus on aerospace requirements expressed as Development Assurance Levels (DALs); 

however, the proposed process and algorithms can be applied to other common forms of expression of 

safety requirements such as Safety Integrity Levels. We illustrate application to a model of an aircraft 

wheel braking system.   
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1. INTRODUCTION 

At the early stages of systems engineering, requirement 

identification and allocation is crucial in driving the 

development correctly and efficiently towards a timely, cost-

effective project completion. Indeed, changes in requirements 

which occur late in the development lifecycle incur much 

greater costs to implement (Sharif, et al., 2012). Therefore, to 

minimize the impact of these changes on the project’s 

schedule and budget, it is important to employ an effective 

requirements engineering methodology. In the case of safety 

critical systems, an effective determination and distribution 

of safety requirements is the basis of the development process 

recommended by numerous safety standards. Specifically, the 

concept of Safety Integrity Levels (SILs), first introduced in 

the IEC61508 (SC 65-A, 2010) standard, provides a means of 

describing, summarizing and assigning such requirements 

across the system. This concept is shared across numerous 

domain-specific standards such as ISO26262 (TC 22/SC3, 

2011) for the automotive industry and ARP4754A (S-18, 

SAE, 2010) for the aerospace industry. 

Manual methods have been employed widely in the past to 

deal with various phases of development, including 

requirements engineering. However, as the scale and 

complexity of subject systems grow, such approaches 

inevitably become ineffective and a potential liability against 

a project’s completion. For instance, in the case of allocating 

SILs, determining an appropriate allocation might require 

evaluating hundreds of thousands of possibilities, each of 

which has a potentially different impact in terms of 

development time and effort required to implement. Note that 

many of those options which are often chosen in practice are 

non-optimal incurring unnecessary costs. Obviously, a 

process of exhaustive evaluation of all options would incur a 

prohibitive cost for most projects of non-trivial scale. By 

introducing tool support to specific development processes, 

such as requirements allocation, a high degree of automation 

can be achieved and costs alleviated. Automation would 

allow the development effort to be directed towards tackling 

more important, higher-level development issues, freeing up 

precious development resources. It also provides the 

opportunity to repeat the process efficiently, if required, as 

part of subsequent development iterations. 

Recently, work has enabled automatic SIL allocation from 

system models annotated with failure logic in (Azevedo, et 

al., 2014) and DAL allocation from minimum cut sets in 

(Bieber, et al., 2011). In this paper, we describe a further 

development of this work to provide robust support within 

the HiP-HOPS tool for model-based automatic allocation of 

aerospace safety requirements in the form of DALs. The 

work is different from that described in (Bieber, et al., 2011) 

because our starting point is not a minimum cut set list but 

the system model. Furthermore, we use meta-heuristics, 

specifically Tabu Search, as a basis for obtaining optimal 

requirement allocations.  

1.1 A summary of Development Assurance Levels 

ARP4754A (henceforth referred to as ‘the standard’) 

provides guidelines towards the development of civil aircraft 

and is employed internationally. Its recommended 

methodology describes a set of safety assessment processes, 

which are designed to be carried out in parallel to a typical 

system development lifecycle. By performing the activities 

required by these processes, with the specified level of rigor, 

the system can be certified to meet its regulatory 

requirements. Development Assurance Levels (DALs) are the 

aerospace equivalent to SILs and are central to the 



 

 

     

 

assessment framework described by the standard. DALs are 

meant to represent the ‘level of rigor’ (ARP4754A, 2010, p. 

11) which safety assessment activities are required to be 

performed with. To understand the importance of DALs in 

the safety assessment process, it is necessary to outline the 

standard’s view of a system’s architecture. 

The model upon which the standard bases its 

recommendations divides the system’s architectural elements 

into three categories: functions, systems and items. Functions 

represent a high-level view of the system’s functionality. For 

example, a likely function in any aircraft would be ‘Flight 

Control’. Systems are an abstraction level immediately below 

functions, with each system providing, either on its own or 

with other systems, the behaviour described by a function; 

e.g. a ‘Wheel Braking System’ could support the ‘Braking’ 

function. Finally, items represent the lower-levels of the  

architecture, i.e., hardware or software components or small 

size sub-systems. 

The initial assignment of DALs to functions occurs early in 

the development lifecycle, during the Aircraft Functional 

Hazard Assessment (FHA). The FHA is the first major stage 

in safety assessment and is more commonly known as 

Functional Hazard Analysis (ARP4754A, pg.12, 2010). This 

analysis identifies the potential Failure Conditions (FC) 

associated with each function, i.e., undesirable events that 

could occur during operation and that compromise the 

aircraft’s safety. Each FC has a severity classification, 

stemming from its impact in the worst possible case, and an 

estimated probability of occurrence. During the Preliminary 

Aircraft Safety Assessment process, DALs are assigned 

based on each Function’s hazard severity (ARP4761, pg.43, 

1996), as seen in Table 1. 

Table 1.  DAL to Severity correspondence 

Severity DAL 

Catastrophic A = 4 

Hazardous / Severe - Major B = 3 

Major C = 2 

Minor D = 1 

No Safety Effect E = 0 

Once DALs have been assigned to functions, and an 

architecture for the system has been defined, DALs are 

iteratively assigned to more refined architectural elements. 

The rules that guide the process of allocation utilize the 

concept of Functional Failure Sets (FFS). FFS contain the 

minimum combinations of function, system or item failures, 

termed Functional Failures (FF) in the standard, which are 

necessary and sufficient to cause a failure of the system 

containing said architectural elements (ARP4754A, pg.11, 

2010). They are assigned with the DALs of the system failure 

they originate from. In turn, items whose failures belong to a 

given FFS can be, in principle, immediately allocated with its 

DAL. However, the standard allows for some items to receive 

less stringent DAL allocations. There are two options in 

doing so. Given a FFS with a DAL of k: 

Option 1: a singular member is assigned a DAL of at least k 

and the other members of at least k-2. 

Option 2: two members are assigned a DAL of at least k-1 

and the other members of at least k-2. 

In the case of a FFS with only one member, option 1 is  

taken. 

The allocation rules effectively state that in a set of items 

which, by failing together, cause a system failure, either one 

of the items must be developed at the system DAL with the 

rest developed at two DALs below, or two items must be 

developed one DAL below the system DAL with the rest 

developed two DALs below system DAL. 

1.2 The issue of Independence in ARP4754A 

In the standard, the concept of “Independence” is said to be 

‘a fundamental attribute to consider when assigning 

Development Assurance Levels’ (ARP4754A, pg. 41, 2010). 

The standard uses independence as an attribute aiming to 

address the issue of common mode errors, which occur due to 

shared requirements amongst Functions or development 

processes amongst Items. It is important to explain our views 

on this matter and how we treat dependence and 

independence in the approach presented here.  

The standard introduces two forms of independence, 

Functional and Item independence. The former refers to the 

presence of common causes of failure between separate 

Functions or Systems of the architecture, while the latter 

refers to separate Items. In both cases, identification of such 

common causes falls within the purview of the 

Aircraft/System Common Cause Analysis (CCA) process. 

The CCA process identifies such causes and includes them in 

the failure analyses performed at subsequent stages such as 

fault tree analysis.  

In HiP-HOPS common causes are treated in two ways. They 

can be explicitly specified in the components and cause, via 

propagation of common energy, material or data errors, 

failure of more than one element in system models. Examples 

of such common causes are common power supplies or data 

sources that affect more than one element. Implicit common 

causes are events such as flood and fire which are typically 

examined in zonal analysis. They can also be specified at the 

model level and trigger simultaneous failure of more than one 

function or components directly and without explicit 

propagation of errors through the architecture. If the failure 

analysis determines that such failures indeed contribute 

towards the failure of seemingly independent Items, Systems 

or Functions, they will accordingly affect the DAL allocation 

to these elements. Therefore, our method correctly allocates 

DALs while addressing the issue of independence taking 

simultaneously into account all possible sources of failure in 

the system. 

1.3 Challenges in requirements allocation 

The allocation of a specific DAL (or SIL or similar safety 

requirement) to a function or item typically implies a 

development cost. Higher DALs imply a higher level of 

rigour and more costly development and assurance activities. 

This is clear in the standards where it is possible to observe, 

for instance, that the higher the DAL for a software item, the 



 

 

     

 

higher the number of assurance objectives that must be met 

(Nordhoff, p. 7). It is apparent that allocation schemes which 

can achieve the required integrity for the system by assigning 

lower DALs to more items would be more economical and 

translate into less effort and time spent on assurance 

activities. It is precisely those cost-optimal allocations that 

one is interested in finding during the refinement of a system 

architecture under design. This problem can be more formally 

defined as a constrained optimization problem, with the 

decision variables being the DALs of each item; the 

constraints being the rules of allocation defined in the 

standard; and the objective of the optimization being to 

minimize the overall cost imposed by the allocation on the 

development process. This description can be summarized in 

the following expressions: 

      
 

         

 

   

 

Where 

  : the i-th allocated item DAL across all functions 

Cost: the cost function, assigning each DAL a specific cost 

We attempt to identify the allocation of item DALs across all 

functions which minimizes the total cost impact, subject to 

the following constraints: 

                                     

Or 

                                        

                 

Where 

   : the i-th allocated item DAL contributing to a function 

with a DAL of k 

  : the set of DALs for items of a function with DAL of k 

The two constraints represent the two options available when 

allocating DALs (see section 1.1). The first constraint ensures 

that one member has a DAL of at least k, as in option 1, 

whereas the second that two members have DALs of at least 

k-1, as in option 2. In both cases, the remaining members 

must have DALs of at least k-2. 

2. AUTOMATIC ALLOCATION OF DEVELOPMENT 

ASSURANCE LEVELS 

2.1 HiP-HOPS 

Hierarchically Performed Hazard Origin and Propagation 

Studies (Papadopoulos, et al., 2011) is a state-of-the-art 

model-based safety analysis software tool that largely 

automates the synthesis of fault trees and FMEAs from 

system models. Model-based development is a design 

paradigm in which the nominal behaviour of a system is 

developed using a common formal or semi-formal model of 

the system to facilitate communication of requirements and 

design between stakeholders in complex development 

processes. Model-based safety analysis extends this paradigm 

by enhancing the nominal behaviour of the system described 

in the model with component failure logic (Sharvia & 

Papadopoulos, 2011). This allows safety analyses to be 

conducted synchronously with the rest of the development 

activities and provide feedback earlier and more efficiently. 

HiP-HOPS requires a model of the system that is annotated 

with local failure logic for each component from which the 

tool then automatically synthesizes fault trees. These fault 

trees represent the failure logic of the system in the form of a 

tree, with the root of the tree being the ‘top event’ 

representing system failure and its leaves being base 

component failures. These are linked through a series of 

logical connectors such as AND and OR gates. Once the fault 

tree synthesis stage is complete, the tool analyzes the trees to 

produce useful safety artefacts, such as the system’s 

Minimum Cut Sets. These sets contain the combinations of 

basic failure events whose occurrence is both necessary and 

sufficient to cause the overall system’s failure. These sets are 

equivalent to the standard’s FFS (ARP574-A, pg.41, 2010), 

therefore we can use them in applying the DAL 

decomposition rules to allocate DALs onto the system’s 

components. A more detailed description of HiP-HOPS can 

be found in (Papadopoulos, et al., 2011). 

2.2 Reduction Stage 

The rules of DAL allocation allow multiple allocation 

possibilities when an FFS has more than one member. In 

large systems, these options can multiply leading to a 

combinatorial explosion. Indeed, in practice, many options 

exist for the allocation of function DALs to items of an 

architecture, often too many to consider exhaustively. The 

process would certainly benefit from an optimization 

algorithm that can efficiently search the large space of 

potential allocations to seek a cost-optimal allocation. We 

present such an algorithm in the next section which benefits 

from a pre-processing step for search space reduction. 

Let us consider the following scenario in which each FFS 

contributes to a different function of DAL A or lower and 

therefore inherit said DAL: 

FFS 1 = { FF1}   

FFS 2 = { FF1, FF2 }   

FFS 2 = { FF2, FF3 }  

FFS 4 = { FF2, FF3, FF4 } 

In this illustrative example, the relative costs implementing 

an element according to the different DALs are introduced in 

Table 2. 

Table 2. Example Cost Function 

DAL A B C D E 

Cost 50 40 20 5 0 

 

An interesting phenomenon is occurring in this scenario. 

Each of the sets contain at least one member from a previous 

set and one member from the next, apart from the first and 

last. Additionally, each set only contains one member not 

belonging to a previous set. The cost function itself seen in 



 

 

     

 

Table 4 is also interesting, as it is strictly increasing with 

regards to the DALs and non-linear.  

Although there are multiple possible optimal solutions, 

finding one in this case does not necessarily involve 

enumerating all options. The solution given in Table 3, for 

instance, can be found using the following reasoning steps:  

 FF1 was assigned A because it belongs to FFS1 and 

is the sole member, therefore inheriting its level. 

 FF2 was assigned C because the other member of 

FFS2 is FF1 and has already been assigned level A, 

thus C is the lowest allowable level. 

 FF3 was assigned A because the other member of 

FFS3 is FF2 and has already been assigned level C. 

Note that assigning FF2 and FF3 level B would 

result in a costlier allocation, due to the cost 

function, as C + A = 70 whereas B + B = 80. This is 

where the nature of the cost function chosen plays a 

particular role. 

 Finally, FF4 was assigned C because another 

member of FFS4, FF3, has already been assigned 

level A. 

Table 3. Example Optimal Allocation 

FF1 FF2 FF3 FF4 Cost 

A C A C 140 

 

Although this reasoning excludes the other possible optimal 

allocation, given in Table 4, it can still lead to an optimal 

solution (as shown) and does not require investigating other 

options that could be derived from the rules.  

Table 4. Alternative Optimal Allocation 

FF1 FF2 FF3 FF4 Cost 

A A C C 140 

 

Let us now try to generalise the above example. Due to the 

high severity of aircraft hazards, the rules for DAL allocation 

are stricter than those found in other standards, allowing 

DAL reduction of only two levels at most. This allows us, 

when a model and the cost function exhibit certain properties, 

to reduce the possible allocations significantly by removing 

inefficient options, in some cases even eliminating all options 

of allocation down to one without loss of optimality. Even 

when there are still options remaining for optimization, the 

search space of the problem has been significantly reduced, 

thereby likely improving the effectiveness of the optimization 

technique employed subsequently. 

These series of allocations can be applied when: 

1) the cost function of each element is non-linear and 

strictly increasing with respect to the DALs of its 

FFs  

2) there exist N FFSs for all of the architecture’s 

effects (N can be less than the total number of FFS 

in the architecture) that, when ordered in descending 

order of their effect’s DAL, exhibit the following 

‘chain’ property: 

Let      of size n be followed by                 
and so on. The chain property holds for these FFSs 

if:  

a) there exists a common FF that belongs to 

both      and        

b)                   , i.e. the difference 

in the cardinality of two neighbouring FFS 

in the chain is maximum one 

3) there exists a FFS amongst those N that satisfies the 

chain property with a single member 

Note that the above heuristic can only apply in analysis of 

simultaneous allocation of more than one function DALs. 

The reason is that, in the case of allocation of a single DAL 

which is done on the basis of analysis of a single fault tree, 

the redundant FFS required to satisfy the chain property have 

already been eliminated during logical reduction of the sets. 

In cases of multiple allocation of DALs, the chain property 

may apply to subsets of the total set of FFS of the system and 

can be used in those cases to fix a subset of allocations in the 

system, thus reducing the overall search space required in 

subsequent optimisation.The pseudo code for this reduction 

stage follows: 

1) sizeCounter = 1 

2) sort all FFSs in descending order of DAL 

3) changesMade = true 

4) while changesMade is true 

a) changesMade = false 

b) foreach FFS k 

i) if sizeCounter = k.size then: 

(1) if there is just one Member in k unassigned, 

then: 

(a) assign it the lowest possible DAL 

(b) changesMade = true 

(2) end if 

ii) end if 

c) end foreach 

d) increment sizeCounter 

5) end while 

2.3 Tabu Search 

There is a range of optimization algorithms that could be 

adapted to solve the DAL allocation problem. We chose Tabu 

Search (Glover, 1986) for this study as a good candidate as it 

has already shown good performance in earlier work in 

allocation of automotive requirements (Azevedo, et al., 

2013). Tabu search is a meta-heuristic optimization 

technique, which owes its name to its memory structures, 

used to store recently evaluated candidate solutions. The 

candidates stored in these structures are not eligible for 

generation of further candidates and are thereby considered 

‘Tabu’ by the algorithm. The memory artefacts allow for the 

technique to trade space for time and therefore accelerate the 

search for the optimal solution. We have implemented a basic 



 

 

     

 

version of Tabu Search; each candidate is an allocation of 

DALs over all FFs and the best candidates are those with the 

lowest overall DAL cost. Candidates recently chosen and 

therefore Tabu are stored on the short-term memory structure, 

the ‘Tenure’. An Aspiration Criterion is employed, allowing 

a candidate to be chosen despite being Tabu. The chosen 

criterion requires the candidate allocation to beat the 

Tenure’s current best candidate in terms of overall DAL cost, 

thus being the best (i.e. cheapest) allocation in recent 

memory. The search method used to generate the next set of 

candidates produces a new candidate for each allocation of 

the current one that can be changed and not violate DAL 

decomposition rules. This means that allocations assigned by 

the reduction stage cannot be reduced in DAL under the level 

they were then assigned, only increased. The algorithm for 

Tabu Search follows: 

1) Generate a random allocation 

2) Set random allocation as the current choice 

3) Add the current choice to Tabu Tenure 

4) Repeat until iteration count or time limit are reached 

i) Produce random alternative allocations from the 

current choice 

ii) Sort the produced allocations by DAL cost, 

ascending 

iii) Select the lowest cost allocation as the next choice 

iv) Repeat until a next choice has been selected or all 

alternative allocations have been examined 

(1) If the next choice is not Tabu, select it to be the 

next choice 

(2) If it is Tabu but aspiring, select it to be the next 

choice 

(3) Otherwise, examine the next produced choice 

v) If none of the produced allocations is either non- 

Tabu or aspiring, set the lowest cost one as the next 

choice 

5) The next choice becomes the current choice 

6) Add the current choice to the Tabu Tenure 

7) Sort the Tabu Tenure by DAL cost, ascending 

The potential options per each FFS are placed in ‘Allocation 

Packs’. Generating a random allocation in Step 1 involves 

selecting a random option from each Allocation Pack and 

then combining them with the non-optional allocations from 

the reduction stage, as mentioned earlier. Sorting the 

generated allocations for the next iteration means that after 

each iteration, the lowest cost — and ideally non-Tabu or 

aspiring — choice out of the produced candidates will have 

been made. To check if a candidate is Tabu, the fixed-size 

Tabu Tenure is parsed to see if there’s an identical allocation 

on it. If so, the subject allocation is not allowed. An 

allocation is considered aspiring if its cost is lower than each 

member of the Tabu Tenure. Thanks to the sorting of the list 

in Step 4ii, a simple comparison with the first entry in the list 

is only needed. 
To produce the next set of alternative allocations, the process 

described in the following algorithm is performed: 

1) Add into list Optional all ‘optional’ partial allocations 

2) Add into list IncreasableNonOptional all ‘non-optional’ 

partial allocations of DAL lower than 4 

3) For every partial allocation in the 

IncreasableNonOptional list, 

a) Select a random Allocation Pack affecting that 

partial allocation 

b) Select a random partial allocation from that Pack 

which assigns a higher DAL than the current one 

c) If none exist, continue to the next partial allocation 

d) Else, use that selection to generate a new allocation 

and add it to the resulting list 

e) Repeat 

4) For every partial allocation in the Optional list, 

a) Select a random Allocation Pack affecting that 

partial allocation 

b) Select a random partial allocation from that Pack 

which alters the current allocation 

c) Use that selection to generate a new allocation and 

add it to the resulting list 

d) Repeat 

5) Return the resulting list 

Note that steps 3 and 4 of the above algorithm are almost 

(except for sub-steps b and c) identical — simply applied to a 

different list. The purpose of the two lists is to find all partial 

allocations due to options taken from Allocation Packs which 

can be altered. Sub-step b) illustrates the difference between 

the two lists. In Optional, any partial allocation which alters 

the current allocation can be selected, whereas in the 

IncreasableNonOptional list we can only choose a partial 

allocation, if any exist, which increases the DAL of the 

resulting allocation.  

3. CASE STUDY: AIRCRAFT WHEEL-BRAKING 

SYSTEM 

Our case study is based on an example aircraft wheel braking 

system from ARP4761 (S-18, SAE, 1996), adapted by 

(Sharvia & Papadopoulos, 2011). The system is illustrated in 

Figure 1. The purpose of the system is to provide safe 

braking during aircraft takeoff and landing. It features two 

primary hydraulic pumps, GreenPump and BluePump. The 

Brake System Control Unit (BSCU) forwards input from the 

brake pedals to the brakes, monitors input systems and states 

for correctness and provides feedback to other systems. The 

SelectorValve receives a constant stream of pressure from 

both pumps, relaying the pressure from the appropriate one to 

the corresponding meter valve. The anti-skid meter valves 

(ASMeterValveG and ASMeterValveB) output the required 

amount of pressure based on BSCU’s commands. The system 

features two modes of operation, Normal and Alternate. In 

Normal mode, GreenPump is used, sending pressure through 

the SelectorValve to ASMeterValveG. In Alternate mode, 

BluePump is used to send pressure through the SelectorValve 

to ASMeterValveB. Alternate mode is activated by BSCU 

when the pressure output falls under a certain threshold in 

Normal mode. 

If braking fails during takeoff or landing, consequences could 

be catastrophic. The plane could fail to decelerate as expected 

on landing, or brake during take-off, potentially causing a 

severe accident. We found this reasoning sufficient to test the 

allocation by assigning the overall DAL of the system output 

(WBS) to be A. We should note that this assignment is 



 

 

     

 

primarily used as an example and in practice the actual DAL 

assignment could be lower. However, this would not impact 

the allocation process described; a lower allocation can only 

potentially lead to a smaller number of potential allocations 

that need to be evaluated. Therefore, in this sense, we are 

demonstrating the worst case scenario with regards to the 

number of potential candidates that need to be evaluated. For 

the purposes of the case study, the costs in Table 5 were used 

to approximate the cost each DAL would have on its 

component. 

Table 5. Item DAL Cost 

DAL A = 4 B = 3 C = 2 D = 1 E = 0 

Cost 50 40 20 10 0 

 

The resulting allocation when the parent FC (WBS) is 

assigned with DAL A can be seen in Fig. 1. (DALs from A to 

E numbered from 4 to 0 respectively). 

 

Fig. 1. Allocation of DALs on model. 

The allocation algorithm was executed numerous times, each 

time producing a permutation of the allocation shown above 

or the one displayed with the same overall DAL cost. This 

allocation was found to be optimal after exhaustively 

enumerating all possible combinations of DAL allocations for 

this model. It should be noted that this was only possible due 

to the relative small scale of the search space (531,441 

possible allocations). Larger-scale models might require 

excessively long periods of time to exhaustively search for 

their optimal solutions. 

6. CONCLUSIONS 

In the aerospace industry, dissemination of safety 

requirements across the system’s architecture is a 

fundamental part of the safety development process described 

in ARP4754A. Applying the guidance of the standard is 

challenging as an increase to the number of components 

within a system results in a super-linear growth of the 

number of allocation options that need to be evaluated. 

Furthermore, finding a trivial allocation manually would not 

be ideal, as each allocation has a different impact on 

development costs. Therefore, there is a significant incentive 

in determining the optimal allocation automatically and in 

this paper we have described a method and tool to achieve 

this. We have demonstrated that it is possible to allocate 

DALs to a given system architecture automatically, optimally 

and efficiently by applying this method to an example 

system. This development suggests that the possibility of 

automation of safety development processes is common to 

multiple standards and we feel confident that further 

automation is possible in this direction. Reflecting on the 

implementation of the Tabu Search, we believe it could be 

improved by including midterm and long-term memory 

structures, which would allow models with larger FFSs to 

have their DALs allocated more effectively. Additionally, 

although Tabu Search has proven to be an effective meta-

heuristic in solving the problem, other optimization 

techniques could be evaluated to compare their efficiency, as 

indicated in relevant work described in (Bieber, et al., 2011). 
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