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Abstract
The paper deals with parameter estimation for categor-
ical data under epistemic data imprecision, where for
a part of the data only coarse(ned) versions of the true
values are observable. For different observation models
formalizing the information available on the coarsening
process, we derive the (typically set-valued) maximum
likelihood estimators of the underlying distributions.
We discuss the homogeneous case of independent and
identically distributed variables as well as logistic re-
gression under a categorical covariate. We start with
the imprecise point estimator under an observation
model describing the coarsening process without any
further assumptions. Then we determine several sen-
sitivity parameters that allow the refinement of the
estimators in the presence of auxiliary information.

Keywords. Coarse data, missing data, epistemic data
imprecision, sensitivity analysis, partial identification,
categorical data, multinomial logit model, coarsening
at random (CAR), likelihood.

1 The Problem and its Background

A frequent challenge in statistical modelling is data
imprecision, where some data are coarse, i.e. they are
not observed in the resolution originally intended in
the subject matter context. Throughout this paper,
we focus on the case where the coarse observations are
data under epistemic data imprecision. For categorical
data as considered here this means that there exists
a true precise value y of a generic variable Y taking
values in a finite sample space ΩY = {1, . . . ,K}, but
we may only observe a non-singleton set Y containing y.
It is important to distinguish epistemic from ontic data
imprecision, where data are coarse by nature and thus
have to be interpreted as indivisible entities of their
own (see, in particular, [7, 8]; [24] for an application
in a multinomial logit model and classification.)

Epistemic data imprecision emerges most naturally in a
huge variety of applications. Missing data, interpreted
as the prominent special case where the whole sample
space is observed only, arise, for instance directly by
design in observational studies on treatment effects,
see, e.g., [27], and unit non-response is quite frequent
in surveys, in particular as refusals to answer sensitive
questions. Typical instances of not missing but still
coarse data include the numerous data sets where
coarsening is deliberately applied as an anonymization
technique (see, e.g., [10]), matched data sets with not
completely identical categories, secondary data where
the originally coded categories turn out to be not fine
enough and, as a technical example, reliability analysis
of a system whose components are tested separately
prior to assembly [30].

Trapped in the framework of precise probabilities, tra-
ditional statistical methods are forced to neglect data
imprecision or to impose quite strong, empirically
untestable assumptions on the underlying coarsening
process. Thus, except the very rare cases where the
external information on the subject matter problem is
rich enough to justify such an extent of precision of the
modelling of the coarsening process, the price of the
(seemingly) precise result is a substantial debilitation
of the reliability of the conclusions drawn.

Against this background, set-valued approaches, aim-
ing at a proper reflection of the available information,
have been gathering momentum, also becoming a pop-
ular topic at the ISIPTA symposia ([5, 26, 17, 32, 33],
to name just a few contributions). In different areas
of application concepts of cautious data completion
emerged, where a classical procedure is extended by
considering the set of all virtual precise observations
in accordance with the coarse data (see, e.g., the expo-
sition in [2], and the references therein). General inves-
tigations of coarse data from an imprecise-probability-
based Bayesian point of view include [6, 36]; random
set-based perspectives are developed for instance in
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[8, 21]. Linear regression under metrical coarse data
(interval data) is vividly discussed in the partial iden-
tification literature in the spirit of [19] (see also, e.g,
[26], and the references therein). Mainly focusing on
missing data, [34] suggests a framework for a system-
atic sensitivity analysis for statistical modelling under
epistemic data imprecision. [5] introduces a profile
likelihood approach for coarse data (for missing data
see also [37]) and derive from it a uniform framework
for robust regression analysis with imprecise data.

This paper will develop another likelihood-based (see,
e.g., [4, § 6.3, 7.2.2] for a general introduction) ap-
proach and we will in addition briefly sketch Bayesian
approaches in Section 3. Our work is strongly influ-
enced by the methodology of partial identification,
dealing with the trade-off between information and
credibility by first using the empirical evidence only,
i.e. using information implied by the data and includ-
ing only those assumptions about which there exists
a common consensus concerning their validity (e.g.,
[19, 28, 20]). Sensitivity analysis pursues the same
goal, but proceeds in a different direction. While par-
tial identification starts from total uncertainty and
gradually adds assumptions, in the framework of sen-
sitivity analysis the collection of all precise results
from successively relaxed assumptions is considered.
Thereby, the analysis is framed by a sensitivity param-
eter, which is not identified but suffices to identify the
parameter of interest, (e.g., [34]).

Our paper is structured as follows. In the next sec-
tion we fix the notation and formulate the problem
setting more exactly for the cases considered in this
paper: independent and identically distributed (i.i.d.)
variables and logistic regression with a categorical co-
variate. The crucial technical argument underlying our
paper (developed in general terms in Section 3) is to
introduce an observation model and utilize invariance
properties of the likelihood. In Section 4 we derive
and discuss the set-valued estimators arising from a
fully non-committal observation model, and we then
turn to settings where this interval is narrowed when
we benefit from the presence of additional auxiliary in-
formation. For technically handling this by sensitivity
parameters, it is helpful to go to the other extreme,
investigating point identifying additional assumptions
in some special cases. For the homogeneous situation,
after studying known coarsening in Section 5.1, we
focus on the coarsening at random (CAR) assump-
tion and illustrate the disastrous behaviour of the
resulting point estimator when CAR is inappropriate
(Section 5.2). Then in Section 5.3 we consider an
extension of CAR and determine the corresponding
ratio of coarsening probabilities as a sensitivity pa-
rameter. For the logistic regression case in Section 5.4

we work out that there is, as an alternative to CAR
and its extensions, a further assumption refining the
initial set of estimators to a precise result. This as-
sumption is called subgroup independent coarsening
and its generalization again can serve as a sensitivity
parameter (Section 5.5). These sensitivity parameters
frame a systematic sensitivity analysis, resulting in im-
precise point estimators reflecting justifiable auxiliary
information.

2 The Basic Setting

Let Y1, . . . , Yn be a random sample of a categori-
cal response variable of interest Y with realizations
y1, . . . , yn in sample space ΩY = {1, . . . , j, . . . ,K}.
Problematically, some of those realizations are not
known in a precise form, and thus only realizations
Y 1, . . . ,Y n of a sample Y1, . . . ,Yn of a random vari-
able Y within sample space ΩY = P(ΩY ) \ ∅ can
be observed, where P denotes the power set. The
possible categories of Y constitute the singletons of
(ΩY , P(ΩY)), with corresponding probability mass
functions p

Yi
= P (Yi = Y i) (i = 1, . . . , n). But as we

are interested in the random variables Y1, . . . , Yn, our
basic goal consists of gathering information about the
individual probabilities πi1 = P (Yi = 1), . . . , πiK =
P (Yi = K). Thereby, we assume throughout the paper
that the coarsening process is error-free, in the sense
that Y i 3 yi, i = 1, . . . , n.

We discuss the homogeneous case (i.i.d. case), in bio-
metrical terms prevalence estimation, as well as sit-
uations with one precise categorical covariate X, in
biometrical terms called treatment, with sample space
ΩX , being available. Both situations will be illustrated
by means of the following example.

Running Example: We refer to the data from the
German panel study “Labor Market and Social Security”
(PASS, wave 1, 2006/2007, [29]). As asking for the in-
come may be regarded as a sensitive question and thus
the response rate is expected to be low, in this study
non-responders are required to report their income in
classes starting from rather large classes that are nar-
rowed by following questions. By proceeding in this
way, anonymization is guaranteed in the level that is re-
quested by the respondents and answers of different de-
grees of coarseness are obtained. Keeping things simple,
here we refer to the data from question “HEK0700”,
where respondents are asked to report if their income
Y is < 1000e or ≥ 1000e (yi ∈ {<,≥}; “<” and “≥”
abbreviating these classes, respectively) and our main
goal is the estimation of π<. As some respondents gave
no suitable answer (“na”) and cannot be allocated to
one of the classes, partly only coarsened values of the
variable Y are observed (Y i ∈ {<,≥,na}).
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Example, version 1: In order to illustrate the
i.i.d. case, we only consider the reported answers
of the income question, where 238, 835 and 338 re-
spondents reported “<”, “≥” and “na”, respectively
(n< = 238, n≥ = 835, nna = 338).

In the case with categorical covariates, we here con-
fine ourselves to one categorical covariate only, as this
is technically equivalent to any finite set of categor-
ical covariates. While in the i.i.d. case probabilities
πi1 = π1, . . . , πiK = πK are assumed to be inde-
pendent of individual i, in the case with one covari-
ate the probabilities πi1 = P (Yi = 1|Xi = xi) =
πxi1, . . . , πiK = P (Yi = K|Xi = xi) = πxiK are influ-
enced by individual i through the corresponding value
of the covariate Xi. One of most generally applied
models is the multinomial logit model. It describes the
dependence of a categorical dependent variable Y of
nominal scale on covariates X by

πij = P (Yi = j|xi) = exp(βj0 + xTi βj)
1 +

∑K−1
s=1 exp(βs0 + xTi βs)

(1)
i = 1, . . . , n for categories j = 1, . . . ,K − 1 and by

πiK =
(
1 +

∑K−1

s=1
exp(βs0 + xTi βs)

)−1 (2)

with category specific regression coefficients, that is
βj = (βj1, . . . , βjm)T referring to m covariates and
intercept βj0. As we here address the case of one
categorical covariate Xi ∈ {1, . . . , c}, dummy coded
variables Xi1, . . . , Xim with m = c − 1 are included
into the model.1

It is common to summarize categorical data in con-
tingency tables by reporting the counts for possible
outcomes, where the covariatesX are supposed to be in
the rows (e.g., [31]). Thus, in our case the contingency
table in Table 1 will be addressed. The number of ob-
servations with Y = Y and treatment group X = x is
denoted by nxY

, where n0 = n0A +n0B +n0AB , n1 =
n1A + n1B + n1AB , nA = n0A + n1A, nB = n0B + n1B
and nAB = n0AB + n1AB .

Example, version 2: Illustrating the case with a
categorical covariate, apart from the partial income
knowledge, the receipt of the so-called Unemployment
Benefit II (variable alg2abez; here denoted by UBII)
is considered and serves in the model in Expressions
(1) and (2) as covariate Xi, i, . . . , n. The data are
summarized in Table 2.

1Dummy variable Xil (l = 1, · · · ,m) attains value 1 if the
l-th category is chosen by individual i, otherwise it is 0. In this
way, reference category c is represented by all dummy variables
being 0.

Y
A B AB total

X 0 n0A n0B n0AB n0
1 n1A n1B n1AB n1

total nA nB nAB n

Table 1: Contingency table that introduces used nota-
tion.

income
< ≥ na total

UBII yes (0) 130 114 75 319
no (1) 108 721 263 1092
total 238 835 338 1411

Table 2: Contingency table to illustrate some results
by means of the PASS data.

3 Sketch of the Basic Argument

This paper, similarly to [5, 37], relies on the likelihood
as the fundamental concept to derive parameter esti-
mators under epistemic data imprecision, but looks
at it from a different angle. In order to support the
appropriate incorporation of the available information
provided by the data and the background knowledge,
we explicitly formulate, and utilize, an observation
model relating the observable level and the ideal level.
The observation model is a set Q of (precise) coars-
ening probabilities,2 and thus the medium to specify
carefully and flexibly the available information about
the coarsening process.

By virtue of the theorem of total probability, the
elements of Q relate the probability distribution of
the imprecise observation Y to the distribution of the
underlying latent variable Y (and, if present, certain
covariates).

Parametrizing the distributions, again possibly after
splitting with respect to certain covariate values, let
ϑ (the various p’s in the following sections) and η
(the various π’s below) be the parameters determining
the distribution of Y and Y , respectively, and let ζ
be the parameter characterising the elements of Q
(the various q’s, possibly constrained by the specified
constraints:

(
q
Y |y := P (Y = Y |Y = y)

)
(Y ∈ΩY ,y∈ΩY )

in the i.i.d. case, while in the regression context the
coarsening mechanisms generally also depend on the
values of Xi, i.e., (q

Y |xy := P (Y = Y |X = x, Y =
y)(Y ∈ΩY ,y∈ΩY ,x∈ΩX) has to be considered).

Then we can describe the relationship between γ :=
(ηT , ζT )T ∈ Γ and ϑ ∈ Θ via the mapping Φ : Γ→ Θ ,
γ 7→ ϑ . Figure 1 and the running example illustrate

2More precisely, Q is a generalized transition kernel, consist-
ing of credal sets indexed by the values of Y .
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coarse data

Y
�

observation model

Q
?

ζ here e.g.
(qna|<, qna|≥)T

HHHHHHj

Φ� �

�
latent variable

Y

η here e.g.
π<

?

ϑ here e.g.
(p<, p≥)T

γ here e.g.
(π<, qna|<, qna|≥)T

?

?

Figure 1: Observable and latent variable and the cor-
responding parameters.

this mapping Φ(·) and all parameters involved.

Example, version 1 (cont.): The mapping Φ(·)
with arguments ζ = (qna|<, qna|≥)T and η = π< es-
tablishes a connection to the parameters determining
the probabilities of the observable income variable Y,
namely ϑ = (p<, p≥)T .

In a first step (Section 4), we will only assume that
the coarsening process is error-free and therefore take
Q as the set of all coarsening mechanisms compatible
with error-freeness. Then (Section 5), by using aux-
iliary information, we sharpen this set Q. Note that
we do neither assume anything about the plausibility
of different elements ζ of Q nor do we treat different
y ∈ Y as differently plausible. To derive the estima-
tors, the invariance of the likelihood under parameter
transformations is crucial: evaluating the likelihood in
terms of γ and in terms of ϑ = Φ(γ) is equivalent here.
Our random set modelling will allow us to determine
the ML-estimator ϑ̂ of ϑ, which moreover, apart from
trivial extreme cases, can be shown to be single-valued.
Then the possibly set-valued maximum-likelihood es-
timator for γ is obtained as

Γ̂ =
{
γ
∣∣∣Φ(γ) = ϑ̂

}
(3)

(see also [5, Section 2]). Thus, adapting the concept of
maximum likelihood (ML) estimators to a persistent
set-based perspective and to random set-based situa-
tions, we achieve a general and powerful framework
for handling coarse categorical data via the mapping
Φ(·). If Φ(·) is injective, then Γ̂ is a singleton as well,
and γ so-to-say empirically point identified; otherwise
Γ̂ is set-valued in the literal sense and γ empirically
partially identified.

This compares to other approaches: A classical
Bayesian analysis would put some prior on ζ and on η
(cf., e.g., [23, 14]) while a generalized Bayesian analysis
would replace one or both priors by a set of priors.

This can be seen as imposing imprecise priors on ζ and
on η. The non-committal analysis would start with
a near-ignorance prior, for instance based on Dirich-
let distributions adapting [35]’s imprecise Dirichlet
model, and auxiliary information can be expressed by
smaller credal sets; compare also the general Bayesian
treatment of incomplete information in [6, 36]. Par-
tially differently, in [3, Section 4.4.] an approach is
presented that puts a precise prior on η and no prior
on ζ and models the coarsening process with a mul-
tivalued mapping. This may be seen as imposing a
vacuous imprecise probability on ζ. In another direc-
tion, one could impose some prior knowledge w.r.t. the
imprecise data point Y by assuming different y ∈ Y

as differently plausible. This can be done for example
by imposing a possibility distribution on y (cf., e.g.,
[9, Section 3.2.]) or constructing observations directly
by data augmentation (cf., e.g., [18]).

The dimension of the parameter vectors η and ζ in-
creases substantially with the cardinality of ΩY and
ΩX . In the i.i.d. case m = (

∑|ΩY |
z=1

(|ΩY |
z

)
· z) − 1 or

equivalently m = K · 2K−1 − 1 parameters have to
be estimated, where in the case with one covariate
this number even increases to |ΩX | ·m. Thus, for rea-
sons of conciseness of presentation, we confine detailed
explanations and derivations on the special, yet still
representative cases of a binary response variable Y
with sample space ΩY = {A, B} and observations
within ΩY = {A, B, AB}, as well as a binary precise
categorical covariate X with values 0 and 1. Then the
underlying model expressed in Expression (1) and (2)
is called logit model. As the inclusion of more than
one dummy variable simply leads to an increase of the
number of subgroups, all results can be transferred
straightforwardly to more general cases, namely cases
with more than one non-binary covariates. Further-
more, the main results not only will be shown for the
situation of a binary Y , where coarsening corresponds
to missingness, but also in a general way.

4 Maximum Likelihood Estimation
without Additional Information

In this section we derive the maximum likelihood esti-
mators for the case where no additional information
on the coarsening process is available, i.e. there are
no constraints on the elements of Q. A crucial step
is to rely on the random set view that treats data
imprecision as a change of the sample space with cor-
responding random variables Yi, i = 1, . . . , n, which
then lead to multinomially distributed variables with
parameter ϑ for the counts based on the new sample
space. According to the argumentation in Section 3,
the resulting likelihood in ϑ, and the estimator derived
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from maximizing it, will then be related to the param-
eters of the distribution of the latent variable (and
the observation model). As just discussed, we explain
the construction in some detail for the representative
special cases with ΩY = {A, B} (and ΩX = {0, 1})
and then report the general results.

4.1 Estimation in the i.i.d. Case

Considering categorical i.i.d. random variables
Y1, . . . ,Yn with realizations Y 1, . . . ,Y n in the sam-
ple space ΩY = {A, B, AB}, we obtain the following
likelihood function for the parameter ϑ = (pA, pB)T
given the data, summarized by the counts nA, nB and
nAB (with pAB = 1− pA − pB):3

L(ϑ) = L(pA, pB) = L(pA, pB ||Y 1, . . . ,Y n) (4)
= P (Y 1, . . . ,Y n||pA, pB) ∝ pnA

A · pnB

B · pnAB

AB .

For n = nA+nB +nAB > 0 this likelihood is uniquely
maximized by the relative frequencies (see [25]),

p̂
(MLE)
A = nA

n
, p̂

(MLE)
B = nB

n
, (5)

and thus p̂(MLE)
AB = 1− p̂(MLE)

A − p̂(MLE)
B = nAB

n .

Essentially, we are interested in the parameter η = πA
determining the probabilities of the true, but unob-
served variable Y being equal to particular categories
and the associated maximum likelihood estimator.
Those probabilities of interest, in our case πA and
πB = 1− πA, can be related with probabilities pA, pB
and pAB corresponding to the observable variables by

pA = (1− qAB|A) · πA , (6)
pB = (1− qAB|B) · (1− πA) ,

where pAB = qAB|A ·πA+qAB|B · (1−πA) results from
the law of total probability.

This means that the likelihood in terms of ϑ =
(pA, pB)T in Expression (4) and in terms of γ =
(πA, qAB|A, qAB|B)T , coincide, indeed.

By the invariance of the likelihood under parameter
transformations, Expressions (5) and (6) can be com-
bined, resulting in the following system of equations:

(1− q̂AB|A) · π̂A = nA
n

= p̂
(MLE)
A ,

(1− q̂AB|B) · (1− π̂A) = nB
n

= p̂
(MLE)
B , (7)

q̂AB|A · π̂A + q̂AB|B · (1− π̂A) = nAB
n

= p̂
(MLE)
AB .

For reasons of redundancy we can leave the third
equation out of consideration. As there typically are

3In the following, we will use the abbreviated notation of the
likelihood without referring to the data.

multiple triples γ̂ = (π̂A, q̂AB|A, q̂AB|B)T that lead
to the same values of ϑ̂ = (p̂(MLE)

A , p̂
(MLE)
B )T , the

mapping Φ : [0, 1]3 → [0, 1]2 with

Φ




πA
qAB|A
qAB|B


=

(
πA · (1− qAB|A)

(1− πA) · (1− qAB|B)

)
=
(
pA
pB

)
(8)

(cf. Figure 1 for the case of the running example)
connecting both parametrizations in general is not in-
jective. Thus the maximum likelihood estimate Γ̂ from
Expression (3) is set-valued in the literal sense. Points
in this set are constrained through the relationships
in (7), and thus Γ̂ is not a cuboid in [0, 1]3. Building
the one dimensional projections, set-valued estimators
of the single components of γ are obtained via

π̂A ∈
[
nA
n
,
nA + nAB

n

]
, (9)

q̂AB|A ∈
[
0, nAB
nA + nAB

]
,

and analogously for q̂AB|B , where 0
0 := 1.

Extending the discussion here to the general case of
ΩY = {1, . . . ,K} and the corresponding ΩY , the esti-
mators in Expression (9) generalize to

π̂y∈
[
n{y}
n

,

∑
Y 3y

n
Y

n

]
q̂
Y |y∈

[
0,

n
Y

n{y} + n
Y

]
,

(10)
(where as above 0

0 := 1) for all y ∈ Ωy = {1, . . . ,K}
and all Y ∈ ΩY such that {y} ⊂ Y .4

Example, version 1 (cont.): Applying Expres-
sion (10) to our example, one obtains

π̂< ∈
[

238
1411 ,

238 + 338
1411

]
= [0.17, 0.41] .

4.2 Logistic Regression with a Categorical
Covariate

Now we consider the heterogeneous situation expressed
by a discrete covariate X, which also has been depicted
in Table 1. Again we can derive set-valued estimators
of the parameters of interest η = (π0A, π1A)T (and the
auxiliary parameter ζ characterizing the coarsening
mechanisms) by taking the random set perspective,
setting up the corresponding likelihood function and

4The estimators of the probability components of the dis-
tribution of Yi prove to be the same as arising from a belief
functions like construction of empirical probabilities and also
coincide with the estimator obtained from cautious data comple-
tion, plugging in all potential precise sample outcome compatible
with the observations Y 1, . . . ,Y n (see, e.g., [2])
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applying the appropriate parameter transformations.
Proceeding in this way, for fixed treatment group
x the cell counts (nxA, nxB , nxAB) follow a multi-
nomial distribution, i.e. (nxA, nxB , nxAB) ∼
M(nx, (pxA, pxB , pxAB)) with conditional probabilities
pxY

= P (Y = Y |X = x) (see [31, 1]).5 Therefore, the
corresponding likelihood function is given by

L(ϑ) = L(p0A, p1A, p0B , p1B) (11)
∝ pn0A

0A · pn0B

0B · pn0AB

0AB · pn1A

1A · pn1B

1B · pn1AB

1AB .

For nx > 0 the maximum likelihood estimators for the
parameters are unique and given by (see [25])

p̂(MLE)
xY

=
nxY

nx
, for x ∈ {0, 1}.

Analogously to Section 4.1, we consider the
mapping, which connects both parametrizations,
Φ : [0, 1]6 → [0, 1]4 with

(12)

Φ




π0A
π1A

qAB|0A
qAB|1A
qAB|0B
qAB|1B




=




π0A · (1− qAB|0A)
π1A · (1− qAB|1A)

(1− π0A) · (1− qAB|0B)
(1− π1A) · (1− qAB|1B)


=




p0A
p1A
p0B
p1B




(cf. Figure 1) and observe that in this case it is also not
injective and thus Γ̂, constructed along the line of (3),
is strictly set-valued, too. Illustrating Γ̂ again by the
corresponding projections along the axes, we obtain
for given value x ∈ {0, 1} in the general case with more
than two categories in Y , i.e. y ∈ ΩY = {1, . . . ,K}
and Y ∈ ΩY with {y} ⊂ Y ,

π̂xy∈



nx{y}
nx

,

∑
Y 3y

nxY

nx


, q̂Y |xy∈

[
0,

nxY

nx{y} + nxY

]
,

(13)
where again 0

0 := 1.6

Example, version 2 (cont.): Applying Expres-
sion (13) to our example, one obtains

π̂0< ∈
[

130
319 ,

130 + 75
319

]
= [0.41, 0.64] ,

π̂1< ∈
[

108
1092 ,

108 + 263
1092

]
= [0.10, 0.34] .

By recurring on the relation defined in Expression (1)
and (2), and utilizing the injectivity of the logistic

5This corresponds to a product-multinomial sampling scheme
(e.g. [31, 1]).

6Reminiscing about the derivation given here, we see that
the categorical covariate case for the logistic model – in strict
contrast to the continuous case (see Section 6) – in essence
consists of a subgroup-specific consideration of the i.i.d. case.

function, the likelihood function considered here can
also be uniquely expressed in terms of the regression
coefficients. In this way, instead of the estimators π̂0A
and π̂1A determined by Expression (13), equivalently
one can consider the estimators

β̂A0 ∈
[

log
(

n0A
n0B + n0AB

)
, log

(
n0A + n0AB

n0B

)]

β̂A ∈
[

log
(
n1A · (n0B + n0AB)
n0A · (n1B + n1AB)

)
, (14)

log
(
n0B · (n1A + n1AB)
n1B · (n0A + n0AB)

)]
,

assuming all expressions to be well-defined.

Example, version 2 (cont.): In terms of the
regression coefficients, we obtain the estimates
β̂<0 ∈ [−0.37, 0.59] and β̂< ∈ [−1.83, − 1.25].

Interpreting the indeterminate sign of intercept β<0,
one notes that for the group of persons that receives
UBII (i.e. X = 0) the chance of being in the lower
income group (< 1000e) in comparison to being in
the higher income group (≥ 1000e) varies between
exp(−0.37) = 0.69 and exp(0.59) = 1.89. In this
way, one cannot judge the impact of the UBII on
the dependent variable income without implying fur-
ther assumptions about the coarsening. Unjustifiably
ignoring the coarsening (see Section 5.2) pretends a
particular sign of the regression coefficients. This cor-
roborates the importance of including all imaginable
coarsening mechanisms for obtaining a trustworthy
result, which will be discussed now more in detail.

5 Reliable Incorporation of Auxiliary
Information: Sensitivity Parame-
ters and Partial Identification

The set-valued estimators from Expression (9) (and
analogously from Expression (13)) are a typical ap-
plication of the methodology of partial identification,
emphasizing that only justified assumptions should
be made which do not have to induce point identified
parameters, but at least identify the parameter of in-
terest in parts compared to the set of parameters that
seemed to be possible in the beginning of the analysis
(e.g., [19]). In this way, the trivial bounds [0, 1] on the
probabilities have been refined substantially. In the
spirit of partial identification and sensitivity analysis
we can further refine the analysis if, and also only if,
auxiliary information beyond the empirical evidence
is available. Vansteelandt et al. [34] suggests to deter-
mine a sensitivity parameter δ in some range ∆ under
which the problem is identified and then to calculate
the parameter of interest η for different values of the
sensitivity parameter, where the whole region of the
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resulting parameters of interest is called Ignorance
Region ir(η,∆) and the corresponding region of esti-
mates Honestly Estimated Ignorance Region (HEIR)
îrn(η,∆). In order to account for statistical uncer-
tainty due to finite sample size as well, in context of
sensitivity analysis uncertainty regions are addressed
that either can be constructed as covering the param-
eter of interest or the whole ignorance region with a
probability of at least (1− α) [13, 34].

To handle the inclusion of reliable information tech-
nically, we start with distinguishing and investigating
point identifying additional assumptions, in order to
utilize them as a technical means to derive sensitivity
parameters, governing the incorporation of additional
information.

Due to the fact that the imprecise point estimators in
Expression (13) directly result from considering Ex-
pression (9) in a subgroup specific way, in Section 5.1
to Section 5.3 the detailed presentation is confined on
the i.i.d. case. In Section 5.4, considering explicitly
the regression model, another point-identifying as-
sumption is suggested, where again the corresponding
generalization may be used as a sensitivity parameter
which allows the inclusion of partial knowledge.

5.1 Known Coarsening

If one or both coarsening parameters qAB|A and qAB|B
are known (and different from 1), one can conclude
directly that the corresponding mapping Φ(·) from (8)
is injective as in this case the parameter πA can be
uniquely related to the parameter pA. Therefore, the
set-valued estimator for πA specified in Expression (9)
can be shrunk to a single-valued estimator. The exact
values of the coarsening parameters are most often
unknown, but in case there is material information
available that allows to bound them in non-trivial
intervals, the consideration here gives a first way to
perform a systematic sensitivity analysis. In most
situations however such direct bounds will not be
available. Therefore we look for alternative ways to
introduce auxiliary knowledge.

5.2 Coarsening at Random (CAR)

If the coarsening is non-stochastic, the underlying de-
gree of coarsening is predetermined and known. For
instance, if respondents are requested to give their
answer in a grouped way and we assume that all re-
spondents answer correctly, then the coarsening is
predefined in the sense that there is a unique coars-
ened outcome for every true answer. In the context
of distinguishing between non-stochastic and stochas-
tic coarsening mechanisms, Heitjan and Rubin [12]
investigated under which properties the corresponding

likelihood can be simplified to the so-called grouped
likelihood and introduced the concept of coarsening at
random (CAR). This is a simplifying property request-
ing that the probability q

Y |y is constant, no matter
which true value y is underlying as long as it fits to
the observed value Y . Illustrated by the running ex-
ample, CAR postulates that the probability of giving
no suitable answer should not depend on the true
income category, which contradicts practical experi-
ences (e.g., [16]). In the dichotomous situation of this
example we are then actually concerned with the as-
sumption of missing at random (MAR) [18], which can
be regarded as a special case of CAR.

Focusing again on the i.i.d. case, incorporating the
CAR assumption of qAB|A = qAB|B into the likeli-
hood and in the observation model specifying Φ(·),
the situation simplifies substantially. Indeed, Φ is (al-
most) injective now, and we get the empirically point
identified estimators, corresponding to having simply
ignored the units with coarse values:

π̂A = nA
nA + nB

q̂AB|A = q̂AB|B = nAB
nA + nB + nAB

.

There are ideal-type situations in which CAR can be
justified indeed.7 Nevertheless, this assumption must
be treated with greatest care. Deviating from such
an ideal-type situation and wrongly assuming CAR
can lead to a bias of an extent that for sure destroys
the relevance of the analysis, as is also illustrated in
Figure 2. There the estimation of πA under obstinately
assumed CAR but varying coarsening probabilities is
evaluated by the median relative empirical bias π̂A−πA

πA

based on 100 simulated datasets (here with πA = 0.6).8
The absolute value of the relative median bias increases
the more one deviates from the case of CAR, indeed,
up to a median relative bias of almost 80%.

5.3 Ratio of Coarsening Parameters

In our context the paper by Nordheim [22] obtains new
importance. He considers the ratio between different
mechanisms in the context of non-randomly missing
and misclassified data. By fixing the ratio between the
coarsening probabilities the corresponding maximum
likelihood problem leads to quadratic equations, where

7For instance, rounding, type I censoring, which is present if
the censoring times are fixed, and progressive type II censoring,
which investigates censoring after the fixed d-th failure, in their
pure form are CAR [15, 11].

8Thereby, in all addressed situations characterized by differ-
ent true underlying coarsening mechanisms (qAB|A and qAB|B
varying between 0.1 and 0.9 in equidistant breaks of 0.1, respec-
tively), the assumption of CAR is involved into the estimation by
plugging qAB|A = qAB|B into the likelihood that is maximized.
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Figure 2: Consequences for the median relative bias
of π̂A if there is a deviation from assumed CAR.

one solution is contained in the interval of π̂A from
Expression (9), while the other solution lies outside
of [0, 1] (cf. [22, p. 774]). Here we set R = qB|B

qA|A
=

1−qAB|B

1−qAB|A
, slightly modifying the ratio of Nordheim by

referring to the probabilities of the complementary
events. Treating this ratio between the probabilities
of precise observation fixed and including it into the
likelihood in Section 4.1, unique, empirically point
identified estimators are obtained as

π̂A = nA ·R
nB + nA ·R

, (15)

q̂AB|A = nB · (R− 1) + nAB ·R
n ·R

containing CAR as the special case R = 1. As in the
case of CAR, the impact of assuming a wrong value
of R has been investigated (results are available on
request, see also [22]), where again a substantial bias
can occur. The fact that there a similar variance of the
estimators is obtained independently of the amount
of deviation from the true value of R shows drasti-
cally that such deviations do not increase statistical
uncertainty in the traditional sense and thus cannot
be discovered by a traditional statistical analysis.

Because the parameter of interest πA is identified given
the typically unknown value of R, the ratio R can be
used as a sensitivity parameter. In many cases it might
be difficult to gain information about the exact value of
R, but it seems quite realistic that a rough evaluation
of the magnitude of R can be derived from material
considerations, former studies or experiments. Thus,
it is interesting to investigate the gain of information
resulting from implying a factor R that is roughly
known only, compared to the situation without any

additional assumptions.9 Considering the ratio R as a
sensitivity parameter leads to the HEIRs.10

5.4 Subgroup Independent Coarsening

In the situation with covariates, there is apart from
CAR, i.e. q̂AB|xA = q̂AB|xB, an alternative kind of
uninformative coarsening, namely the independence
of the underlying covariate value. Illustrated by the
running example, imposing this kind of assumption
means that answering in a coarse form, i.e., giving no
suitable answer, does not depend on the receipt of un-
employment benefit. As the receipt of unemployment
benefit depends on the income, and the value of the
income may influence the non-response to the income
question (cf. Section 5.2), this assumption should be
treated with particular caution here.

We will establish injectivity of the corresponding map-
ping Φ(·) under an intuitive regularity condition and
then, analogously to the procedure in Sections 5.2
and 5.3, this idea will be generalized in Section 5.5 by
again considering the corresponding fraction as a sensi-
tivity parameter. Imposing such subgroup independent
coarsening

qAB|0A = qAB|1A =: qAB|A (16)
qAB|0B = qAB|1B =: qAB|B ,

in the estimation problem of Section 4.2, the map-
ping Φ(·) from Expression (12) is now injective11 if re-
stricted to the arguments (π0A, π1A, qAB|A, qAB|B)T ∈
(0, 1)4 such that

π0A /∈ {0, 1}, π1A /∈ {0, 1} and π0A 6= π1A. (17)

One obtains the following unique estimators

π̂0A = n0A
n0

n1Bn0 − n1n0B
n0An1B − n0Bn1A

, (18)

π̂1A = n1A
n1

n1Bn0 − n1n0B
n0An1B − n0Bn1A

,

q̂AB|A = 1− n0An1B − n0Bn1A
n1Bn0 − n1n0B

,

q̂AB|B = 1− n0An1B − n0Bn1A
n0An1 − n1An0

,

9 An example is given in the preliminary version of a techni-
cal report available at http://www.statistik.lmu.de/~jplass/
forschung.html

10In more general cases of |ΩY | > 2, the relations between the
precise observation probabilities are not sufficient and relations
concerning different coarsening mechanisms have to be known
in order to obtain point identified estimators. More detailed
information can be found in the preliminary version of a technical
report cited in footnote 9.

11A proof of the injectivity of Φ in this situation is given in
the preliminary version of a technical report cited in footnote 9.
The case of π0A = π1A reproduces the i.i.d. case, where there
are multiple solutions.
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when these are well-defined and inside the interval
[0, 1]. Otherwise the maximum likelihood estimation
is more challenging, but it can be shown that asymp-
totically (n → ∞) the estimators of Expression (18)
typically for all cases satisfying Expression (17) will be
in [0, 1]. It has to be re-emphasized that in practical
applications one must carefully reflect the plausibility
of the subgroup independent coarsening assumption
of Expression (16). In addition, the restrictions

p0A ≤
P (X = 0) · p1B − p0B · P (X = 1)

p1B − p0B · p1A

p0A

≤ 1− p0B

offer, at least under large sample sizes, a possibility to
check whether the subgroup independent coarsening
is appropriate at all.

5.5 A Generalization of Subgroup
Independent Coarsening

There are situations in which one might have an idea
about the relative magnitude of the probabilities of
precise observations in both subgroups. For instance,
knowledge from former studies could be available con-
cerning the question whether respondents who do re-
ceive Unemployment Benefit II rather report their
income class in a precise or a coarse way compared to
the respondents that do not receive this benefit.

Analogously to the generalization of CAR in Sec-
tion 5.3, we now generalize the assumption of sub-
group independent coarsening by considering the ratio
between the subgroup specific probabilities of precise
observation, i.e., R1 = qA|1A

qA|0A
and R2 = qB|1B

qB|0B
, where

the case of R1 = R2 = 1 corresponds to assuming
subgroup independent coarsening. As in Section 5.4,
the mapping Φ(·) from Expression (12) is injective for
all cases in Expression (17) and thus unique estima-
tors result.12 Again, inclusion of partial knowledge
is possible by regarding R1 and R2 as sensitivity pa-
rameters and considering all estimators resulting from
incorporating a region of plausible values R1 and R2.

6 Concluding Remarks

We presented a maximum likelihood analysis of cat-
egorical data under epistemic data imprecision. Our
approach working with possibly set-valued maximum
likelihood estimators overcomes the dilemma of the
precise probability based approaches, often damned
to debilitate conclusions by the need to incorporate
unjustified formal assumptions to ensure identifiability
of parameters. The explicit reliance on an observation
model specifying the coarsening process allows us to

12They are given in the preliminary version of the technical
report cited in footnote 9.

incorporate properly auxiliary information whenever
it is present, in order to refine appropriately estimates
derived from the empirical evidence alone.

The crucial arguments were developed, mutatis mu-
tandis, for the i.i.d. case as well as a logistic regression
based on one (or more) categorical covariates. From
the applied point of view, an extension to metrical
covariates is highly desirable. Although then a sub-
group specific investigation is not possible any more,
appropriate generalizations seem achievable in further
work, especially when sensitivity parameters can be
determined. However, to allow estimation of the un-
derlying distribution from the data and to maintain
the metric character, (partially) parametric modelling
is needed. This implicitly restricts the set of distribu-
tions considered and in particular raises further issues
in the understanding of statistical models as discussed,
e.g., in [26, Sec. 3.1] for linear regression modelling.

In addition to this, the invariance property of the
likelihood under different parametrizations, which is
the technical basis of our results, offers two further
directions of generalization. Further work may utilize
these relationships beyond maximum likelihood esti-
mation, in order to derive likelihood-based hypotheses
tests and regions taking finite sample variability into
account explicitly. These estimators also should be
compared to confidence intervals derived along the
lines of [34] when an appropriate sensitivity parameter
could be determined.

Other areas of further research include a deeper inves-
tigation of the alternative generalized Bayesian (and
possibilistic) approaches briefly mentioned in Section 3
as well as the consideration of other “deficiency” pro-
cesses, most notably misclassification, which can be
formalized in a very similar way. Our methodology
thus also offers an alternative to, and a generalization
to logistic regression of, recent work on misclassifica-
tion from a partial identification perspective [20, 17].
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