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Abstract

In the recent years, generalizations of support vec-
tor methods for analyzing interval-valued data have
been suggested in both the regression and classifica-
tion contexts. Standard Support Vector methods for
precise data formalize these statistical problems as
optimization problems that can be based on various
loss functions. In the case of Support Vector Regres-
sion (SVR), on which we focus here, the function that
best describes the relationship between a response and
some explanatory variables is derived as the solution
of the minimization problem associated with the ex-
pectation of some function of the residual, which is
called the risk functional. The key idea of SVR is
that even when considering an infinite-dimensional
space of arbitrary regression functions, given a finite-
dimensional data set, the function minimizing the risk
can be represented as the finite weighted sum of kernel
functions. This allows to practically determine the
SVR estimate by solving a much simpler optimization
problem, even in the case of nonlinear regression. In
case that only interval-valued observations of the vari-
ables of interest are available, it has been suggested to
minimize the minimal or maximal risk values that are
compatible with the imprecise data, yielding precise
SVR estimates on the basis of interval data. In this pa-
per, we show that also in the case of an interval-valued
response the optimal function can be represented as
the finite weighted sum of kernel functions. Thus, the
minimin and minimax SVR estimates can be obtained
by minimizing the corresponding simplified expressions
of the empirical lower and upper risks, respectively.

Keywords. Support Vector Regression, interval data,
Representer Theorem.

1 Introduction

In this paper, we deal with the generalization of Sup-
port Vector Regression (SVR) to interval data. By
SVR we denote a class of kernel-based methods for
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the statistical problem of regression analysis. These
methods originated in the field of Machine Learning
(Vapnik, 1998, 1995) and recently also gained attention
in the field of Statistics (see, e.g., Hable, 2012; Christ-
mann et al., 2009; Hofmann et al., 2008; Steinwart
and Christmann, 2008). The typical goal of a regres-
sion analysis is to describe the relationship between
a response variable Y € J) C R and a number d € N
of explanatory variables X € X C R? by a function
f + X = R. The sought-after function f is usually
assumed to be a member of a particular space F of
considered regression functions, for example, the space
of all (affine) linear functions.

To identify which functions in F best describe the
relationship between the random variables in (X,Y) =
V', the considered regression functions are assessed
by a loss function. Most common loss functions are
characteristics of the distribution of (some function
of) the residual Ry, which we here define by

Ry =Y - f(X)]

for each f € F. In the SVR methodology, the expecta-
tion of some usually convex error function is considered
as loss function, which is called risk functional. If the
probability distribution Py of the random vector V is
known, the distribution of Ry can be derived from it
and the best regression functions can be identified by
minimizing the chosen loss function. Yet, usually the
true distribution of the investigated variables is un-
known, but it is assumed that Py lies in some specific
set of probability measures Py. Thus, the evaluation
of each regression function also varies over possible
distributions of V.

Given the realization of an independent sample of ran-
dom variables Vi = (z1,91),..., Vo, = (Tn, yn), with
n € N, where V; ~ Py for all i € {1,...,n}, we can
learn something about the distribution of the variables
of interest. In SVR, the empirical distribution Py of
the observations is used as a point estimate of Py, and
the (regularized) risk under this particular distribu-
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tion is minimized to obtain the regression estimate.
The SVR estimate is in general unique. Moreover, the
so-called Representer Theorem states that the func-
tion minimizing the risk given the observations can
be represented as the finite weighted sum of kernel
functions. This is a key result for SVR, as it allows
to practically determine the SVR estimate by solving
a relatively simple optimization problem, even in the
case of nonlinear regression. Further details of the
SVR methodology are presented in the next section.

If the variables of interest are not observed as pre-
cise numbers but only upper and lower bounds to the
values are available, the empirical distribution Py is
not revealed by the observable data. We denote the
random sets describing the observables by Vi*,..., V*
and their probability distribution by Py«. If the ob-
served intervals are assumed to cover the unknown
precise values with probability one, bounds for the
empirical risk can be derived from the empirical dis-
tribution Py of the imprecise data. How can we use
this information to obtain an SVR estimate in this
situation? Starting from the simplified representation
of the optimal function in standard SVR, Utkin and
Coolen (2011) proposed to follow a minimin or a mini-
max approach and to minimize either the lower or the
upper (regularized) risk in order to obtain a precise
regression estimate.

In this paper, we investigate the validity of their start-
ing from the simplified representation in the general-
ized data situation. At first, we introduce the formal
framework of the SVR methodology in detail and for-
mally discuss Utkin and Coolen (2011)’s SVR general-
ization. Then, we consider the Representer Theorem
in the more general data situation. We find that also
in this case the optimal function can be represented
as the finite weighted sum of kernel functions. Finally,
after applying the discussed SVR methods to an in-
teresting problem in the area of winemaking, a short
outlook concludes the paper.

2 Methodological Framework of SVR

In this section, the formal framework of SVR with
precise data is presented. In the SVR methodology, the
set Py is assumed to contain all probability measures
on V=X x ). In this paper, we additionally assume
that ) is a bounded subset of R. Furthermore, in SVR,
the loss assigned to a possible regression function f
and a distribution Py is the risk Ep,, (f). Presupposing
measurability, the risk functional £p, on F can be
defined for each Py € Py as

Epy [ Epy (f) =Ep, (V(Ry)), (1)

326

where 1 is a convex mapping from R>( to R>q sat-
isfying ¥(0) = 0 and Ep, denotes the expectation
with respect to Py. For example, if 9 is defined by
Y(r) = r? for all r € Rx(, the loss associated with a
pair (f, Py) is given by Ep, (f) = Ep, (R}). Thus, we
obtain the loss function corresponding to Least Squares
regression. Another famous example is the function
defined by ¢(r) = max{0,r — v}, for all r € R>g and
some v > 0, which was introduced by Vapnik (1995,
Section 6.1) and represents the so-called v-insensitive
loss.

The convexity of the mapping v implies convexity of
the risk functional €p,, , that is, the risk functional
satisfies for each p € [0, 1]

Epy (pf+ (A —=p) ) <p&Ep, (f)+ 1 =p)Ep, (),

for all f, f' € F (see also Steinwart and Christmann,
2008, Lemma 2.13). As explained later, this property is
crucial to the existence of a unique optimal regression
function.

In the SVR framework, the space F of considered
regression functions from X to R is supposed to
be a Reproducing Kernel Hilbert Space (RKHS)
with associated scalar product (-,-)r F = R.
An RKHS is uniquely associated with its repro-
ducing kernel function. A kernel function x is a
positive semi-definite function on X x X, that is,
Doy 2oy i aj k(i) > 0, for all ag, ..., ap €R,
X1,...,2n, € X, and n € N. Here, we only consider
kernel functions that are moreover measurable and
bounded. If x is the reproducing kernel function of
the RKHS F, for each € X we have x(-,z) € F and

f(x) = <f’ H(',l‘»]:,

for all f € F. From this property called reproducing
property follows that k(z,z") = (k(-, z), k(-, 2")) 7, for
all z,2’ € X. A simple example for an RKHS and
its reproducing kernel is the function space associated
with the linear kernel defined by «(z,z’) = (x,2’) + 1,
for all z,2’ € X, which is the Hilbert space of all
(affine) linear functions from X’ to R. Another common
kernel function is the so-called Gaussian kernel, which
is defined for all z,z’ € X by

K(w,2') = exp (= 5z [lz — 2'|%),

with ¢ > 0. The associated RKHS is a very large
function space that is dense in the space of all continu-
ous (real-valued) functions on X. For more details on
kernels and RKHSs, see, for example, Steinwart and
Christmann (2008, Chapter 4).

To avoid obtaining too wiggly functions as descriptions
of the relationship of interest when the regression
analysis is based on a finite sample of observations,
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the risk is further supplemented by an additive penalty
for the complexity of the functions f € F. Hence, in
the SVR methodology, instead of £p,, the regularized
risk functional £p,  is minimized, which is defined
for all f € F by

Epy A(f) = Epy () + A IISIIZ,

where A > 0 is a fixed parameter regulating the penal-
ization and || - || = is the norm induced by the scalar
product in F. The regularization can be interpreted
as minimizing Ep,, under the restriction || f||% < ¢, for
some ¢ € R, but instead of choosing the bound c
explicitly, we fix the value of the corresponding La-
grange multiplier A in the constrained optimization
problem.

As the functional f — X[ f|% is strictly convex by
general properties of norms and £p,, is convex because
of 1, we have that £p,  is also a strictly convex func-
tional on F. Exploiting the strict convexity of £p,, x,
it can be shown that an optimal function always exists
and is unique, provided that some regularity condi-
tions are fulfilled (see, e.g., Steinwart and Christmann,
2008, Lemma 5.1 and Theorem 5.2).

Given observations (z1,41),-. ., (Zn,ys) of an inde-
pendent and identically distributed random sample
Vi,..., Vs, the SVR methodology consists in estimat-
ing Py by the corresponding empirical distribution Py,
before identifying the regression estimate f Py x €F by
the minimization of £ Py for some A\ > 0. Like in the
general case, there always exists a unique minimizer
of the regularized risk for Py. Moreover, the so-called
Representer Theorem states that this unique function
f Py CAN be represented as the linear combination of
the corresponding functions k(-,z1),. .., k(-, Zn), that
is, there exist weights a1, ..., a, € R such that

fpv7k($)=zaj k(T ;) (2)

for all z € X (see, e.g., Steinwart and Christmann,
2008, Theorem 5.5). This expression is sometimes
called support vector expansion of f Py and the op-
timal function f Py 1S often referred to as a Support
Vector Machine (SVM). This term can be explained
historically, because Vapnik (1998, 1995) proposed to
use functions for 1 that have the property that some
of the resulting a, ..., a, are zero. The vectors x; for
which a; # 0 are called support vectors, whence the
notion SVM. One example for such a representing func-
tion % is the function associated with the v-insensitive
loss mentioned before. Nevertheless, in general, SVMs
are not sparse in this sense (see, e.g., Steinwart and
Christmann, 2008, Section 11.1).

The result of the Representer Theorem expressed in
(2) is extremely useful for the practical computation

of SVR estimates as it simplifies the associated op-
timization problems and allows to solve them even
when large RKHSs of arbitrary smooth regression
functions are considered, like, for example, the RKHS
associated with the Gaussian kernel. Given a data
set (z1,Y1),-..,(Zn,yn) with empirical distribution
Py and a fixed A > 0, Equation (2) tells us that Tey A
is an element of the set F,, C F, with

]‘-n: {Zajl{(.Vl.j) 0 S IR 6 7% GR}
j=1

Furthermore, for all functions fo = >0, a; k(- 2;),
with @ = (aq,...,a,)" € R™, the squared norm is
given by |falls = S0, Y7, o £(ay, ;). Hence,
the regularized risk associated with Py can be written
for each f, € F, as

n

Epy alfa) =7 D2 0y = S 3wl 1))

i=1

+A ZZO@ o K(z4, 25).

i=1 j=1

As Spv)\ is convex, the SVM fﬁv)\ can be obtained by
solving a convex optimization problem over o € R™,
for which there are numerous efficient algorithms (see,
e.g., Boyd and Vandenberghe, 2004). For the selection
of an appropriate regularization parameter A > 0 and
of other hyper-parameters like the parameter o of the
Gaussian kernel, different strategies can be applied,
for instance, cross-validation (see, e.g., Steinwart and
Christmann, 2008, Section 11.3). Since we are mainly
interested in the generalization of a key theoretical
result about SVR to the situation with interval data,
we neglect the latter issues in this paper and always
consider these parameters fixed.

3 SVR with Interval Data

In this section, we investigate whether the SVR
methodology can be used for regression analysis when
the variables of interest cannot be observed as precise
numbers but only (bounded) intervals covering the val-
ues of interest are available. Utkin and Coolen (2011)
proposed a generalization of the SVR methodology
to this situation. As we will see later, the suggested
methods of Utkin and Coolen (2011) work well for
interval-valued observations of the response variable
Y, but cannot directly be extended to interval-valued
observations of the variables in X. Therefore, we also
consider here only the situation where instead of V'
the random set V* € V* C 2V is observed, whose pos-
sible realizations are of the form {X} x [Y,Y], with
XeXCR%andY,Y ¢ Y CRsuchthat Y <Y.
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3.1 Utkin and Coolen (2011)’s SVR
Generalization

Now, we discuss the generalization of SVR proposed
by Utkin and Coolen (2011) in detail. Since in the
considered data situation the precise variables are not
observable, it is impossible to evaluate the considered
regression functions f € F by &£p (f), i.e., by the
risk associated with the empirical distribution of the
precise data. However, the probability distribution of
the imprecise data Py« can be estimated on the basis
of the observations.

When the probability distribution Py« of the observ-
able data is known, as we assume that the interval
[Y,Y] covers the precise unobservable Y with proba-
bility one, we know that the unknown probability dis-
tribution of the precise data lies in the set [Py«] C Py
containing all distributions of the precise data, Py,
that satisfy for all measurable events A C V the in-

equalities

Py(VE€A) > Py (V' CA) and

3

By consequence, for all f € F, the unknown risk
Ep, (f) lies in the interval [€p,. (f),Ep,. (f)], where

Er-(f) = min Ep,(f) and
Epy.(f) = max Ep (f).

P{ePy<] Y

Hence, in the regression problem with interval-valued
response, the set [Ep,.(f),Ep,.(f)] of all possible
risk values constitutes the loss evaluation for each
f € F. Of course, it is in general impossible to directly
determine an optimal function with respect to this
imprecise criterion. The central idea of the regression
methodology proposed by Utkin and Coolen (2011)
is to use the minimin or the minimax rule to solve
this problem, that is, to minimize either the lower risk
Ep,. or the upper risk ?pv* in order to identify a
single optimal regression function.

To derive expressions of the lower and upper risks,
Utkin and Coolen (2011) describe, for each regression
function f € F, the set of compatible probability dis-
tributions of the residual Ry given Py« by a so-called
p-box and apply results from Utkin and Destercke
(2009). Introduced by Ferson et al. (2003, Section 2),
the notion p-box designates a convex set of probabil-
ity measures for a univariate random quantity that is
bounded by a lower and an upper cumulative distribu-
tion function. In the situation considered here, given
Py, also the marginal distribution of the interval-
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valued residual [Ry, Ry], where

Ry = min — f(x and
Ry = min ly — f(2)]
R, = ~ f@),

£= oy f(@)]

is known for each f € F. According to (3), the
marginal distribution of the imprecise residual im-
plies lower and upper bounds to the probabilities of
all measurable events associated with the marginal
distribution of the precise residual Ry. If we consider
these lower and upper bounds for all events of the
form (—oo,r], with r € R>¢, we obtain a lower and
an upper cumulative distribution function that con-
stitute a p-box. As the p-box covers all probability
distributions of R; that comply with the bounds at
least for the intervals (—oo, 7], with r € R>q, some of
the probability measures included in the p-box may
not satisfy (3) for all measurable events, and thus,
may be incompatible with the marginal distribution of
the imprecise residual. However, the p-box obtained
in the described way from the random set [Ry, Ry],
with f € F, is the tightest outer approximation by
a p-box of the set of probability distributions of Ry
implied by this random set (see, e.g., Destercke et al.,
2008). In fact, in the present situation, for each f € F,
the upper bound of the associated p-box corresponds
to the cumulative distribution function of the lower
endpoint of the interval-valued residual [R¢, R¢], while
the lower bound of the p-box corresponds to the cu-
mulative distribution function of the upper endpoint.
This can be seen by considering the corresponding
bounds to the probabilities of the events (—oo, r], with
r € R>¢, used to derive the p-box for all f € F, that
is,

Py(Ry <r) > Py« ([Ry,Ry] C (~o0,7]) and
Py(Rp <7) < Py-([Ry, Rf] N (—00,7] # @)

It can easily be checked that the probability distribu-
tions corresponding to the bounds of the p-box comply
with (3) for arbitrary measurable events, and thus, are
elements of [Py+]. Since, according to its definition
in (1), the risk functional Ep, is the expectation of
a convex function in R; with minimum at zero, it
is straightforward to conclude that £p,. and ?pv*
coincide with the expected errors associated with the
marginal distributions of the lower and of the upper
residual, that is, of Ry and of Ef, respectively (see
also Utkin and Destercke, 2009, Proposition 3).

Now consider that the realization of an independent
sample of random sets V;* = Ay,..., V) = A, is ob-
served, where V* ~ Py« for all i € {1,...,n}. Then,
by analogy with standard SVR, Py« is estimated by
the empirical distribution Py of the imprecise data,
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and furthermore, the complexity of the estimated func-
tions is restricted by an additive penalty term. Hence,
the optimization criteria considered in the minimin
and minimax generalizations of SVR are the regular-
ized lower and upper risk, respectively. For a fixed
penalization parameter A > 0, the regularized lower
and upper risks associated with the empirical distribu-
tion Py« can, for each f € F, be expressed as follows:

1
Ep,. A1) =~ Z(m};meA Wlly: = Faa)l) + A 1113
= 1
Epynf)=— Z(%{E%Aw (lyi = F)) + A 1%,

(4)

where 1) is again the convex mapping from R>¢ to
R> representing the chosen loss.

Utkin and Coolen (2011) deduce from these expres-
sions of the regularized empirical lower and upper risks
solvable formulations of the optimization problems cor-
responding to both suggested strategies in the special
case of linear regression for different choices of the
loss function. We do not restrict the approach to this
special case here and continue to consider more general
RKHSs of regression functions. Moreover, Utkin and
Coolen (2011) start from the support vector expan-
sion (2) of the solution of the optimization problem
corresponding to standard SVR. However, it first has
to be verified that the Representer Theorem applies
to or that its statements can be transferred to the set-
ting with interval data. Only in this case, the simple
expression (2) can be used for the optimal regression
function in (4), providing the favorable starting point
for solving the corresponding optimization problems.

3.2 The Representer Theorem for SVR with
Interval-Valued Response

As mentioned in the previous subsection, the Repre-
senter Theorem implies that if an SVR analysis of a
precise data set Vi = (z1,41), ..., Vo = (Tn, yn) with
empirical distribution Py is based on a convex repre-
senting function v, then, for all A > 0, there exists a
unique function minimizing £ P, n» Which can be rep-
resented as (2) (see, e.g., Steinwart and Christmann,
2008, Theorem 5.5). In the proof of this theorem as it
is presented in Steinwart and Christmann (2008, The-
orem 5.5), the first steps are to show strict convexity
and continuity of &5 Py x> which provide existence and
uniqueness of the minimizing function fp A €F, by
the corresponding arguments of the proofs of Theo-
rem 5.2 and Lemma 5.1 of Steinwart and Christmann
(2008), respectively. Then, the representation of foy
as the kernel expansion of (2) is derived by exploiting
properties of the function spaces F,, and F in addition

to the existence and the uniqueness of the function
fﬁv AT

The generalized SVR methods discussed in this sec-
tion differ from the standard SVR methods only in the
expressions of their risks. Hence, we have to derive
the crucial properties of convexity and continuity for
the lower and upper risks to be able to transfer the
arguments proving the simplified expression of f Py
to the situation with interval-valued response. In the
following lemma, we derive for the general case that
the regularized lower and upper risks have unique min-
imizers, before we prove Theorem 1, stating that the
functions minimizing the regularized empirical lower
and upper risks can be expressed as in Equation (2).

Lemma 1. The reqularized lower and upper risk func-
tionals

Epyer: [ Epp. (f) +AfII% and
Eppern: frEpu () + A5

have unique minimizers fm”“mm and f‘m“lmax in F,
respectively.

Proof. Since k is bounded, convergence in the norm
|| - || implies convergence in the norm || - ||oc, because
using the Cauchy—Schwarz inequality,

[ flloo = sup [ f(z)]| = sup [[(f, &(-, 2)) 7|
rzeX reX

sup || fll7 v/ (k(, ), (-, x)) 7

reX

1f1l= flelgvm(x,x)

for all f € F. Therefore, the functionals £p,. » and
Ep, . are continuous on F (with respect to the norm
Il - ll7), because they are the sum of the continuous
functional A || - ||% with the lower and upper previsions
of ¥(Ry), respectively, and # is uniformly continuous
on the relevant domain (since it is convex, and Y is
bounded).

IA

Moreover, £p,. » and Epv* x are strictly convex func-
tionals on F, since A || - ||% is strictly convex, and the
unregularized lower and upper risk functionals Ep,.
and ?pv* can be shown to be convex. The proof
for the upper risk functional is simple, since €p,,.
is the maximum of the convex functionals £ Pl with
P|, € [Py+]. By contrast, the proof for the lower risk
functional is more involved. We start by noting that

for each possible realization A = {z} x [y,7] € V* of
the random set V*, the function
y—z ifz <y,
ratz— min ly—z/=< 0 ify<z<y,
ysysy z—7y fy<z
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on R is convex, and therefore i o r4 is convex too,
since 1 is convex and nondecreasing. This implies that

b By v (W) [V = 4) = (o) (/)

is a convex functional of f, and so is

Epy.(f) = P‘,/Iél{ilglv*]EP(, (V(Ry))

=Ep,. min
Pl €[Py+]

Er v (0(R7) [ V7).
So far we have proven that £p,. \ and Ep,. » are
continuous and strictly convex functionals on F. The
desired result is implied by Theorem A.6.9 of Steinwart
and Christmann (2008), since the sets

{feF:&p. (H)+NfIF <Epy.(0)} and
{FEF:Ep.(f) + A IfI% < Ep,. (0)}

are nonempty and bounded (with respect to the norm
- 1l7)- O

Theorem 1. There exist qfinimin_ o minimin ¢ g

and oMMAX o MaX e R such that

n

minimin , minimin i
fﬁ’v*J\ s g o k(z,x;) and
i=1

n

minimax ., minimax .
ff’v*)\ DT E a; K(x, x;)
i=1

are the.umque minimizers of va*)\ and 515‘/*’)\ in F,
respectively.

Proof. Let f’ denote the orthogonal projection of a
function f € F on the subspace F,, spanned by the
functions k(-,z;) with ¢ € {1,...,n}. Then || f'||r <
|fll7, and f" is of the form Y ! | ;k(-,z;) with
aq,...,an € R, Moreover, for each i € {1,...,n}, the
orthogonality of f' — f and k(-,z;) implies f'(x;) =
f(x;), because

fl(i) = fz) = (f = f, 6(-,24)) 7 = 0.

Therefore, £ . (f) < Ep . \(f) and ?PV*,A(JN) <
Ep,. A(f), and the desired result is implied by Lem-
ma 1. O

Hence, f(z;) can indeed be replaced by a support vec-
tor expansion in the expressions of £ Pyeh and £ Pyeh
given in (4), and the derivation of solvable formula-
tions of the corresponding optimization problems can
be based on the thereby simplified expressions of the
risks.

However, the above results cannot directly be general-
ized to accounting also for interval-valued observations
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Figure 1: Histogram plot of the red wine data set with
n = 1599 observations. The darker a line segment the
more observations overlap this line segment.

of the explanatory variables. This is because, when V*
is of the form [X(M), XM x ... x [X@) XD x [V,Y],
in general £ Pya ) 1S 10 longer convex, and moreover,
Theorem 1 does not apply to &5 , | anymore.

4 SVR Analysis of Wine Quality

In this section, we analyze a data set collected to
study the quality of Vinho Verde wines from Portugal.
The data were obtained from wine samples that were
tested by the official certification entity of the system
of protected designation of origin of the Vinho Verde
wines between May 2004 and February 2007. For
each of the included 1599 red and 4 898 white wines,
11 physicochemical characteristics and an evaluation
of the sensory quality are available. The data set
was initially analyzed by Cortez et al. (2009) and is
freely available from the UC Irvine Machine Learning
Repository (Lichman, 2013). Here, we focus on the
subsample of red Vinho Verde wines and study the
relationship between taste and alcohol content.

In the data set, the sensory quality of the wine is mea-
sured on a discrete scale ranging from 0 — very bad to
10 — excellent. These discrete quality measurements
should, in fact, be considered as coarse observations
of an underlying continuous variable taking values in
[0,10]. Therefore, instead of analyzing the discrete
values as if they were precise measurements of the
wine quality, we consider them to be interval data
and replace the discrete values 0,1,...,9,10 by the in-
tervals [0,0.5],[0.5,1.5],..., [8.5,9.5],[9.5, 10], respec-
tively. The alcohol content of the wines is available as
volume percent of alcohol, which we here assume to
be measured with sufficient precision.
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Figure 2: Minimax function of the generalized SVR
analysis with linear kernel, ¢(r) = r? for all r € R>,
and A = 0.0001.

Hence, we analyze the relationship between the pre-
cisely observed alcohol content and the imprecisely
observed sensory quality of the red Vinho Verde wine.
Thus, as we consider only one explanatory variable
here, the imprecise data are line segments. The ana-
lyzed data set is displayed in Figure 1, where X is the
alcohol level in percent by volume and Y corresponds
to the sensory quality. All graphs and computations
are realized in the statistical software environment R
(R Core Team, 2014), resorting amongst others to func-
tions provided by the packages kernlab (Karatzoglou
et al., 2004) and quadprog (Turlach and Weingessel,
2013).

A red wine lover would probably hypothesize that the
higher the alcohol content of a red wine, the stronger
and possibly better the taste of the wine. As also the
data suggest a positive linear relationship, in the first
instance, we choose the linear kernel function for the
SVR analysis, although SVR is not limited to linear re-
gression. Furthermore, we consider the Least Squares
loss, i.e., we set ¥(r) = r? for all r € R>q. This config-
uration of SVR corresponds to what is also known as
Ridge regression. As the minimax approach appears
to be more cautious, we consider the corresponding
generalized SVR method of Utkin and Coolen (2011)
here. Finally, for the estimation, the regularization
parameter A is set to 0.0001. The estimated regression
line confirms the surmise of a positive relationship
between alcohol content and sensory quality of the
Vinho Verde red wines and is displayed in Figure 2.

As the assumption of a linear relationship is very
strict, we alternatively consider the minimax SVR
method based on the Gaussian kernel with parameter
o equal to 1. Furthermore, we consider the absolute
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Figure 3: Minimax function of the generalized SVR
analysis with Gaussian kernel, ¢(r) = r for all 7 € R>,
and A = 0.000001.

loss here represented by ¢ defined as 9(r) = r for
all € R>g and set A = 0.000001. The estimated
regression function is depicted in Figure 3 and shows
an increasing tendency in those areas of the observation
space V = [8,15] x [0, 10] where most observations are.
Hence, also the more general SVR analysis provides
evidence for a positive relationship between alcohol
content and sensory quality of red Vinho Verde wines.

5 Conclusion and Outlook

In this paper, we investigated the generalized SVR
methods for regression with interval data that were
initially proposed by Utkin and Coolen (2011). These
methods consist in minimizing either the minimal or
the maximal regularized risk compatible with the em-
pirical distribution of the imprecise data. In this paper,
we proved that the corresponding optimal functions
can be represented as the weighted sum of kernel
functions and thereby provide the so far lacking justi-
fication for the regression methods derived in Utkin
and Coolen (2011). Hence, the minimin and minimax
SVR methods constitute sensible adaptations of the
SVR methodology to interval data and yield interest-
ing results when applied to real data as in the previous
section.

We here focused on the data situation where only for
the response variable there are interval-valued obser-
vations, while the explanatory variables are precisely
observed. Unfortunately, our findings cannot simply
be generalized to account also for interval-valued obser-
vations of the explanatory variables, because then the
regularized lower risk is no longer necessarily convex
and the Representer Theorem cannot be transferred to
the regularized upper risk anymore. This means that
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for the minimin SVR method there is not necessarily
a unique optimal function and that the optimal mini-
max function cannot be expanded as in Equation (2).
This indeed limits the applicability of the minimin and
minimax SVR methods to the more restrictive setting
considered in this paper. Moreover, the meaning of
the estimated regression functions is less clear than in
the precise data case.

Furthermore, it can be argued that, in the context
of the statistical analysis of imprecise data, methods
yielding precise results are in general problematic, be-
cause a reasonable statistical method should reflect
the imprecision of the data in its result. In addition,
a responsible statistical analysis should always take
the involved statistical uncertainty into account. A
regression methodology for imprecise data allowing to
express these two types of uncertainty at the same time
constitutes the so-called Likelihood-based Imprecise
Regression (LIR) methodology introduced by Catta-
neo and Wiencierz (2012). In the LIR methodology,
each possible regression function is evaluated by the
whole set of loss values that are plausible in the light
of the data and then the set of all undominated re-
gression functions is considered as the imprecise result
of the regression analysis, which can furthermore be
interpreted as a confidence set. As it can be shown
that, for each f € F, the interval [ | (f),f[;,w (N
is the Maximum Likelihood estimate of Ep,, (f) in the
situation considered in Section 3, Utkin and Coolen
(2011)’s SVR methods can be further generalized by
embedding them in the LIR framework.
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