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Abstract
Plastic pollution and changes in oceanic pH are both pressing environmental issues. Little emphasis, however, has 
been placed on the influence of sex and gametogenesis stage when investigating the effects of such stressors. Here, we 
examined histology and molecular biomarkers of blue mussels Mytilus edulis exposed for 7 days to a pH 7.7 scenario 
(− 0.4 units) in combination with environmentally relevant concentrations (0, 0.5 and 50 µg/L) of the endocrine dis-
rupting plasticiser di-2-ethylhexyl phthalate (DEHP). Through a factorial design, we investigated the gametogenesis 
cycle and sex-related expression of genes involved in pH homeostasis, stress response and oestrogen receptor-like 
pathways after the exposure to the two environmental stressors. As expected, we found sex-related differences in the 
proportion of developing, mature and spawning gonads in histological sections. Male gonads also showed higher 
levels of the acid–base regulator CA2, but females had a higher expression of stress response-related genes (i.e. sod, 
cat, hsp70). We found a significant effect of DEHP on stress response-related gene expression that was dependent 
on the gametogenesis stage, but there was only a trend towards downregulation of CA2 in response to pH 7.7. In 
addition, differences in gene expression between males and females were most pronounced in experimental condi-
tions containing DEHP and/or acidified pH but never the control, indicating that it is important to consider sex and 
gametogenesis stage when studying the response of mussels to diverse stressors.
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Introduction

Present-day marine plastic waste is often associated with 
aquaculture and fishing practises, or improper litter disposal 
(Galgani et al. 2015). Plastic is also considered a long-term 
source of toxic additives such as phthalates, which may leach 
from the plastic surface into the environment (Engler 2012). 
As a plastic softener compound, di-2-ethylhexyl phthalate 

(DEHP) has been added to polyvinyl chloride (PVC) for years 
(Erythropel et al. 2014). Despite the restricted use in the 
European Union (European Union Commission Regulation 
2018/2005 2018), DEHP still represents almost 40% of the 
global plasticiser market (ECPI 2020). As a result, average 
concentrations between 0.145 (Sánchez-Avila et al. 2012) and 
71.7 µg/L (Jebara et al. 2021) were detected in marine envi-
ronments. The effects of DEHP on Mytilus spp. range from 
alterations in antioxidant and peroxisomal enzyme activities 
at high levels of 100–500 µg/L (Cancio et al. 1998; Orbea 
et al. 2002) to hormetic effects on the expression of oestrogen 
receptor-like (Mincarelli et al. 2021) and stress-related genes 
(Xu et al. 2021) when environmentally relevant concentra-
tions are dosed. In fact, the nonmonotonic dose–response 
action of some endocrine active chemicals such as DEHP can 
provoke a stronger effect at low concentrations and inhibition 
at higher levels (Conolly and Lutz 2004; Do et al. 2012).
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This scenario of increasing plastic pollution of aquatic 
environments coincides with an increase in atmospheric 
CO2 levels, which has already led to a reduction of oceanic 
surface water pH with respect to pre-industrial levels (IPCC 
2021). Surface pH is predicted to decrease under all pro-
jected scenarios for the end of the century, and to a larger 
extent in high-latitude oceans, especially the Arctic Sea 
(Kwiatkowski et al. 2020). This may exacerbate naturally 
occurring pH fluctuations in coastal and near-shore habi-
tats, to which intertidal species are adapted (Baumann and 
Smith 2018; Wolfe et al. 2020). Besides possible commer-
cial repercussions of decreased oceanic pH on economically 
important calcifying organisms such as mussels (Mangi 
et al. 2018), short-to-medium term pH drop can also have 
a range of other consequences. In bivalves, a decrease in 
pH can alter immune responses (Bibby et al. 2008), affect 
calcification and energy metabolism-related gene expression 
(Hüning et al. 2013) and impact growth performances in lar-
vae (Gazeau et al. 2010) and adults during gonadal ripening 
(Zhao et al. 2019).

Pollutants also frequently alter their toxicity depend-
ing on climate conditions, and chemicals often impact the 
ability of organisms to adapt to environmental fluctuations 
(Landis et al. 2014; Nikinmaa 2013). Low pH is reported to 
affect mussel biological responses when exposed in com-
bination with pharmaceutical products (Mezzelani et al. 
2021), heavy metals (Han et al. 2014) or illicit drugs (da 
Silva Souza et al. 2021). Likewise, the responses to plasti-
cisers and other contaminants on mussels could be altered 
by concomitant changes in ocean chemistry with respect 
to CO2-induced ocean acidification, even considering pre-
adaptation to pH-fluctuating current environments. Thus, it 
becomes extremely important to investigate the repercus-
sions of these chemicals in altered pH conditions.

The scenario is further complicated by additional factors 
such as sex and reproductive status. These may affect both 
contaminant uptake and elimination, as well as biomarker 
levels and activities (Blanco-Rayón et al. 2020; Matozzo 
and Marin 2010). Moreover, natural differences in basal 
antioxidant levels between males and females could favour 
one sex over the other when coping with stressful environ-
ments (Gismondi et al. 2012; Sroda and Cossu-Leguille 
2011). Thus, sex and reproductive status identification can 
be advantageous in analysing exposure experiment results.

For years, Mytilus spp. have been commonly used in 
biomonitoring programs worldwide or in ecotoxicological 
experiments (Laouati et al. 2021; Marigómez et al. 2013), 
as these molluscs are considered key biomonitors for their 
habitats (Markert et al. 2003). Mussels are also used as dis-
tinctive indicators of health and food safety because of their 
position in the food chain and their close relationship with 
the human diet (Chiesa et al. 2018; Van Cauwenberghe and 
Janssen 2014). Here, we conduct a multi-factor investigation 

into the blue mussel, M. edulis, gene expression under a 
pH 7.7 scenario combined with DEHP additive exposure in 
environmentally relevant concentrations, while considering 
sex-based and reproductive differences. Genes for superox-
ide dismutase (sod) and catalase (cat) were chosen as part 
of the antioxidant enzyme system due to their coordinated 
roles in reducing superoxide anion O2

−, a reactive oxygen 
species (ROS, Regoli and Giuliani 2014). Heat shock protein 
70 (hsp70) was selected as a biomarker of stress responsive 
to environmental perturbation (Encomio and Chu 2005; 
Lewis et al. 1999) and xenobiotic exposure (Franzellitti and 
Fabbri 2005; Koagouw et al. 2021). Genes coding for car-
bonic anhydrase 2 (CA2), oestrogen-related receptor (ERR, 
MeER1) and oestrogen receptor (ER, MeER2) were chosen 
as they are associated with biomineralisation, pH homeosta-
sis and reproductive cycle, whose expression can be affected 
by oestrogenic compounds (Balbi et al. 2016; Ciocan et al. 
2010; Nagasawa et al. 2015).

Materials and methods

Experimental design

Adult blue mussels (n = 180; length mean ± standard 
deviation = 4.9 cm ± 0.5 cm) were collected from the sus-
pended ropes farm of Cromarty Mussels, Ltd. in Cromarty 
Firth, Scotland, UK (57.40.741 N 4.06.062 W) in January 
2020 and transported to the aquarium facilities of the Uni-
versity of Hull. Thirty mussels for each of the 6 treatments 
were randomly divided into 6 4-L continuously aerated 
glass tanks, for a total number of 5 mussels for each rep-
licate tank at a density of 1 mussel per 0.8 L (Supplemen-
tary Fig. 1). They were kept for acclimation for 12 days in 
artificial saltwater (Premium REEF-Salt, Tropical Marine 
Centre, Chorleywood, UK) in a climate-controlled room 
at photoperiod 10:14 light:dark, salinity of 35 psu, pH of 
8.1 units and temperature of 9 °C, in line with the natural 
environmental conditions in Cromarty Firth at the time of 
collection. The number of 30 individuals was chosen for 
each exposure treatment to ensure an adequate number of 
animals for each sex. After the acclimation period, mus-
sels were exposed for 7 days to two different pH levels 
(8.1 and 7.7) and three concentrations of DEHP (0, 0.5 
and 50 µg/L), for a final yield of six experimental treat-
ments (CTRL, LOW pH, LOW DEHP, LOW DEHP LOW 
pH, HIGH DEHP, HIGH DEHP LOW pH). For the pH 
exposure, a total decrease of 0.4 units for the 7.7 low pH 
treatment was chosen considering the projected range for 
ocean acidification conditions for the year 2100 (IPCC 
2021). DEHP exposures of 0.5 and 50 µg/L were chosen 
from the literature, considering the levels found in marine 
coastal waters (Jebara et al. 2021; Sánchez-Avila et al. 
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2012). The 7-day DEHP exposure was chosen account-
ing for the non-persistency of the plasticiser in the envi-
ronment (Staples et al. 1997), with a half-life of approxi-
mately 0.35–3.5 days for surface water and sediments in 
aerobic conditions (Peterson and Staples 2003). Mussels 
were not fed during the exposure and artificial saltwater 
was prepared the day before each water change, to allow 
the water temperature to adjust to the controlled room. 
Water was changed every second day and DEHP was dosed 
right after (i.e. days 1, 3 and 5) from a stock solution of 
1 mg/mL DEHP (≥ 99.5% purity, Sigma Aldrich®, Gill-
ingham, UK) in ethanol. The 7.7 pH values were adjusted 
by mixing seawater with small amounts of CO2-saturated 
water over the course of the exposure week (Nardi et al. 
2017; Schulz et al. 2013). Temperature, pH and salinity 
were measured daily (Supplementary Table 1) with a digi-
tal thermometer (Amarell Thermometer, Kreuzwertheim, 
Germany), a pH meter (Jenway, Bibby Scientific Limited, 
Stone, UK) and a digital seawater refractometer (Hanna 
Instruments, Woonsocket, USA). Alkalinity was meas-
ured twice a week with a HI 84531 mini titrator (Hanna 
Instruments, Woonsocket, USA). After 7 days of expo-
sure, tissues from gonads were collected for molecular and 
histological analyses (unlicensed animal ethics approval; 
reference no #U080/FEC_2021_11, University of Hull). 
Approximately 1.0 cm2 of left gonad tissue was immersed 
in 1 mL neutral-buffered 10% formalin solution (Sigma 
Aldrich, Gillingham, UK) at room temperature for his-
tological observations. The same gonadal amount was 
dissected and preserved in 1 mL RNAlater® stabilisation 
solution for gene expression analysis (Thermo Fisher Sci-
entific, Loughborough, UK) and stored at − 80 °C.

Histological analysis

Gonad samples were washed with phosphate-buffered saline 
(PBS) and dehydrated with increasing ethanol concentra-
tions (70, 90, 100%). Samples were then cleared with Histo-
clear II® (National Diagnostics, Atlanta, USA) and embed-
ded in paraffin wax. Tissue sections of 10-µm gonads were 
cut on an automatic microtome (Thermo Fisher Scientific, 
Loughborough, UK) and stained using haematoxylin and 
eosin solutions (Sigma Aldrich, Schnelldorf, Germany). 
To conduct blind observations, sample slides were coded 
before the microscope identification. Sex and reproductive 
status were assessed under a light microscope following 
Seed (1969): (i) development (Fig. 1A and B); (ii) mature 
stage (Fig. 1C and D); (iii) spawning (Fig. 1E and F). Each 
stage was categorised by a maturity factor (MF): (i) MF = 1 
for resting or spent gonad; (ii) MF = 2, developing gonads; 
(iii) MF = 3, mature gonads; (iv) MF = 4, spawning gonads. 
Then, the sexual maturity index (SMI) was calculated 
according to the equation established by Siah et al. (2003): 
SMI = Σ (proportion of each stage × maturity factor).

Gene expression analysis

For the gene expression analysis, 8 female and 8 male gonads 
(approx. 10 mg of gonad tissue, n = 96) were selected ran-
domly and blindly coded, and total RNA was extracted from 
gonadal tissues using the High Pure RNA Tissue Kit (Roche 
Applied Science, Burgess Hill, UK), including a 15-min 
DNase I treatment at 25 °C. Then, cDNA templates were 
synthesised using 200 units of Invitrogen™ SuperScript™ 
II Reverse Transcriptase (Fisher Scientific, Loughborough, 

Fig. 1   Percentage of each gametogenesis stage and sexual matu-
rity index (SMI) of males (left) and females (right) in CTRL (n = 14 
(males), 15 (females)), LOW pH (n = 14 (males), 16 (females)), LOW 
DEHP (n = 13 (males), 17 (females)), LOW DEHP LOW pH (n = 19 
(males), 9 (females)), HIGH DEHP (n = 18 (males), 11 (females)) and 
HIGH DEHP LOW pH (n = 17 (males), 13 (females)). Gametogen-

esis stages of 10-µm gonadal tissue sections stained with haematoxy-
lin and eosin are displayed alongside. Developing status in males (A) 
and females (B), mature gonads in males (C) and females (D), spawn-
ing stage in males (E) and females (F). Scale bars represent 200 µm. 
Images were modified for brightness and contrast
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UK). Since M. edulis frequently hybridises with M. gallo-
provincialis throughout its distribution area (Simon et al. 
2019), species and potential hybrids were identified by PCR 
and agarose gel electrophoresis for the non-repetitive region 
of the Mytilus foot protein 1 (mfp-1). Primer set Me15 and 
Me16 were taken from Inoue et al. (1995), and used in com-
bination with 12.5 µL of PCRBIO Taq Mix Red (containing 
6 mM MgCl2, 2 mM dNTPs, PCR BioSystems, London, 
UK), 1.25 µL of cDNA and the following thermal condi-
tions: pre-heating to 95 °C for 5 min, followed by 40 cycles 
of 1 min at 95 °C, 1 min at 60.5 °C and 1 min at 72 °C and 
a final extension step of 10 min at 72 °C.

Primer sequences for qPCR gene expression analysis were 
taken from the literature: elongation factor-1 alpha (EF1α) 
(GenBank accession no. AF063420), 18SrRNA (Me18S) 
(L33448) and 28SrRNA (Me28S) (Z29550) from Ciocan 
et al. (2011); superoxide dismutase (sod) (AJ581746), heat 
shock protein 70 (hsp70) (AF172607) and oestrogen recep-
tor 1 (MeER1) (AB257132) from Mincarelli et al. (2021); 
carbonic anhydrase 2 (CA2) (LK934681.1) from Balbi et al. 
(2016); and oestrogen receptor 2 (MeER2) (AB257133) 
from Puinean et al. (2006). Additionally, new primers were 
designed using Primer3 (http://​prime​r3.​ut.​ee/) from the 
published sequence for catalase (cat) (AY580271). Only 
primer efficiencies between 90 and 110% were accepted, in 
accordance with the MIQE guidelines (Bustin et al. 2009). 
Primer details are provided in Supplementary Table  2. 
Me18S, Me28S and EF1α were chosen as they represent 
suitable reference genes during mussel gametogenesis and 
exogenous oestrogenic exposures (Cubero-Leon et al. 2012). 
EF1α and Me28S genes were furthermore chosen for nor-
malisation of the final dataset using the 2−ΔCt and 2−ΔΔCt 
methods (Schmittgen and Livak, 2008), being considered 
the most stable combination by RefFinder software and 
Kruskal–Wallis test (Me18S KW-H = 2.1865, p = 0.8228; 
Me28S KW-H = 3.0456, p = 0.6929; EF1α KW-H = 7.697, 
p = 0.1737). qPCR reactions were performed on a CFX96 
Real-Time PCR Detection System (Bio-Rad, Hemel Hemp-
stead, UK) using 10 µL of qPCRBIO SyGreen Mix Lo-ROX 
(PCRBioSystem, London, UK), 7.5 µL molecular-grade 
water, 1 µL of each primer and 0.5 µL cDNA. Final primer 
concentrations are given in Supplementary Table 2. Thermal 
cycling was as follows: 95 °C for 2 min, 40 cycles of 95 °C 
for 5 s, 60 °C for 30 s and 72° C for 1 min. Template nega-
tives were included alongside samples.

Statistical analysis

The histology dataset was analysed with general ordered 
logit with partial proportional odds model, to predict the 
dependent variable “gametogenesis stage”, assuming 
“DEHP”, “pH” and “sex” as independent variables, after 

verifying the rejection of the proportional odds assumption 
(test of Parallel Lines, ordinal package, Christensen 2019). 
Model uncertainty was assessed by comparing ΔAICc 
values and Akaike weights. Model selection was carried 
out in RStudio with the AICcmodavg package (Mazerolle 
2020) in R 4.0.3 (CRAN). The model was estimated using 
the vglm function (VGAM package, Yee 2010), calculating 
the p error probability by comparing the z-value against 
the standard normal distribution.

Permutation multivariate analysis of variance (PER-
MANOVA, Anderson 2014) was used in RStudio (vegan 
package, Oksanen et al. 2013), to test the effects of pH, 
DEHP, sex, gametogenesis stage on the 2−ΔΔCt values of 
the stress-related (sod, cat and hsp70), oestrogen recep-
tor-like (MeER1 and MeER2) and pH homeostasis (CA2) 
gene expression using Bray–Curtis distance and 9999 
permutations (Anderson 2014). Factors “sex” (males or 
females) and “stage” (developing, mature, spawning) were 
added for the PERMANOVA analysis to underline sex- 
and gametogenesis-driven differences between the treat-
ments. Possible outliers were identified by Grubb’s test 
(Grubbs 1969) and outlier values beyond the significance 
level of α = 0.05 were rejected (Burns et al. 2005). Pair-
wise multilevel comparison with Benjamini and Hoch-
berg p-adjustment was used to compare male and female 
groups. Moreover, regarding the effect of different treat-
ments on the expressions of each gene, an additional non-
parametric Scheirer-Ray-Hare (SRH, rcompanion package, 
Mangiafico 2017) test was used on the 2−ΔCt values, after 
verifying non-normal distribution (Shapiro–Wilk test) and 
homogeneity of variances (Levene’s test). Statistical sig-
nificance was set to p < 0.05. All graphs were created using 
MATLAB R2021a.

Results

Histology results to determine gametogenesis 
stages

The dataset analysed in this experiment consisted of 46% 
females and 54% males, an approximately regular 1:1 pro-
portion for sex ratio in a mussel population. The most par-
simonious model (using only “sex” as predictor variable, 
Supplementary Table 3) showed a predictably significant 
difference between males and females in the transition 
from developing to the more advanced stages (mature 
and spawning, p sex = 0.01, z-value = 2.49), with male 
SMI being overall higher than that of females (Fig. 1). 
The effect of the predictors “pH” and “DEHP” was also 
tested, confirming no significant effect for either of them 
(p > 0.05).

http://primer3.ut.ee/
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Molecular analysis

Molecular species identification confirmed that the sampled 
population consisted of M. edulis and neither hybrids with 
M. galloprovincialis nor other Mytilus species were present 
(Supplementary Fig. 2).

Using “pH”, “DEHP”, “sex” and “gametogenesis stage” 
as predictors for stress-related gene expression in PER-
MANOVA analysis, we observed both significant dif-
ferences between sexes (p sex = 0.001, F = 6.97, Fig.  2 
and Table 1) and an effect of DEHP exposure in interac-
tion with gametogenesis stage (p DEHP*stage = 0.005, 
F = 2.79, Fig. 2). A slight but non-significant trend was 
observed for the combination of pH, DEHP and stage (p 
pH*DEHP*stage = 0.09, F = 1.76, Fig. 2) and DEHP, sex 
and stage (p DEHP*sex*stage = 0.09, F = 1.82, Fig. 2). 
Overall, stress-related gene expression was higher in females 
than in males and higher in male mature gonads than in 
developing ones exposed to the high DEHP treatments. In 
females, an opposite trend was observed in the groups co-
exposed to the two stressors, with a downregulation in the 
LOW DEHP LOW pH and an upregulation in the HIGH 
DEHP LOW pH following the progression of gonadal 
maturation.

Expression of the pH responsive CA2 gene was 
only slightly modulated by low pH (PERMANOVA 
p pH = 0.06, F = 2.80, Fig.  3), with a trend towards 

downregulation of the gene in females in the pH 7.7 
treated groups (Supplementary Fig. 12). Better predictors 
for variance in CA2 expression were sex (p sex < 0.001, 
F = 13.8, Fig. 3 and Table 2) and the interaction term 
of sex and gametogenesis status (p sex*stage = 0.02, 
F = 3.72, Fig. 3). As expected, DEHP treatments did not 
have any effect on the expression of this acid–base regu-
latory enzyme.

Finally, neither the drop to pH 7.7 nor the DEHP expo-
sure did have any consequences on MeER1 and MeER2 
expression, and neither did sex nor the gametogenesis sta-
tus apart from a significant difference between sexes in the 
LOW DEHP LOW pH group (Fig. 4, Table 3).

Fig. 2   Boxplots showing stress-related (sod, cat, hsp70) gene expres-
sion in males and females, n = 6–8, considering sex and gametogen-
esis stage (developing. mature, spawning) of the gonads. Excluded 
outliers are not shown, while the furthest accepted values are iden-
tified by black plus symbols. Datapoints, means and standard devia-
tions for each gametogenesis stage are displayed in red (developing 
gonads), blue (mature gonads) and green (spawning gonads). Differ-

ent genes are displayed in squares (sod), triangles (cat) and circles 
(hsp70). Abbreviations are control (CTRL), low pH (LOW pH), low 
DEHP concentration (LOW DEHP), low DEHP at low pH (LOW 
DEHP LOW pH), high DEHP concentration (HIGH DEHP) and 
high DEHP at low pH (HIGH DEHP LOW pH). Significant factors 
in PERMANOVA are sex p < 0.01 (**), DEHP*stage p < 0.01 (**), 
pH*DEHP*stage p = 0.09 and DEHP*sex*stage p = 0.09

Table 1   Pairwise multilevel comparisons of the stress response (sod, 
cat, hsp70) between males and females in the same treatments. Sig-
nificant differences and related p values are shown in italics

Treatment males Treatment females F.model p

CTRL CTRL 0.36 0.77
LOW pH LOW pH 2.09 0.12
LOW DEHP LOW DEHP 3.46 0.05
LOW DEHP LOW pH LOW DEHP LOW pH 1.08 0.37
HIGH DEHP HIGH DEHP 2.62 0.09
HIGH DEHP LOW pH HIGH DEHP LOW pH 1.29 0.29
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Considering the single gene expression (2−ΔCt values) 
in either females or males, no particular effect was found 
(Supplementary Fig. 3–14). Details of mRNA expres-
sion levels of each gene are provided in Supplementary 
Tables 4 and 5.

Discussion

Histology results to determine gametogenesis 
stages

Histology observations of the gonadal gametogenesis status 
revealed male and female M. edulis to be in advanced stages 
of the gametogenesis cycle, with the majority of females 
late developing or mature and males ripening or spawning. 
Overall, there was a difference of ca. one point between 
their sexual maturity indices. Such an asynchrony between 
sexes in ripeness proportions was already shown in M. bar-
batus (Mladineo et al. 2007), as well as different timing of 
spawning events for M. galloprovincialis, which nonethe-
less should not preclude successful fertilisation (Azpeitia 
et al. 2017). This difference could also be related to the 
scheme of scientific classification of the different stages of 
the gonadal cycle, for which female sex often appears to be 
slightly behind males. However, it is also possible that the 
production of spermatozoa is faster than the ova, due to the 
large yolk reserves of the latter (Seed 1969).

By itself, DEHP was observed not to induce any severe 
modifications of the gametogenesis cycle, as we have previ-
ously found in blue mussels from Filey, North Yorkshire 
(Mincarelli et al. 2021). Similarly, no alterations of the 
gametogenesis cycle seemed to be present after 7 days of 
exposure to low pH in either sex. This could suggest that 
the stimulation of gonadal maturation is not responsive to 
acidic pH but could possibly be more sensitive to alkaline 
ones, as shown for sea snails’ oocytes (Aquino De Souza 

Fig. 3   Boxplots showing CA2 gene expression in males and females, 
n = 8, considering sex and gametogenesis stage (developing, mature, 
spawning) of the gonads. The furthest accepted values are identified 
by black plus symbols. Datapoints, means and standard deviations for 
each gametogenesis stage are displayed in red (developing gonads), 
blue (mature gonads) and green (spawning gonads). Abbreviations 

are control (CTRL), low pH (LOW pH), low DEHP concentra-
tion (LOW DEHP), low DEHP at low pH (LOW DEHP LOW pH), 
high DEHP concentration (HIGH DEHP) and high DEHP at low pH 
(HIGH DEHP LOW pH). PERMANOVA error probabilities are sex 
p < 0.001 (***), sex*stage p = 0.02 (**) and pH p = 0.06

Table 2   Pairwise multilevel comparisons of the CA2 response 
between males and females in the same treatments. Significant differ-
ences and related p values are shown in italics

Treatment males Treatment females F.model p

CTRL CTRL 0.01 0.98
LOW pH LOW pH 6.29 0.02
LOW DEHP LOW DEHP 1.90 0.18
LOW DEHP LOW pH LOW DEHP LOW pH 0.30 0.65
HIGH DEHP HIGH DEHP 3.21 0.04
HIGH DEHP LOW pH HIGH DEHP LOW pH 5.13 0.04

Table 3   Pairwise multilevel comparisons of the oestrogen receptor-
like response (MeER1, MeER2) between males and females in the 
same treatments. Significant differences and related p values are 
shown in italics

Treatment males Treatment females F.model p

CTRL CTRL 0.80 0.41
LOW pH LOW pH 0.48 0.55
LOW DEHP LOW DEHP 0.41 0.66
LOW DEHP LOW pH LOW DEHP LOW pH 3.03 0.05
HIGH DEHP HIGH DEHP 1.88 0.16
HIGH DEHP LOW pH HIGH DEHP LOW pH 0.27 0.71
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et al. 2009). On the other hand, mussels inhabit naturally 
pH-fluctuating environments, often influenced by variable 
immersive time and freshwater input. This could result in 
a heightened tolerance and adaptation to local pH fluctua-
tions, possibly resulting in no immediate repercussions for 
the reproductive cycle. However, according to Zhao et al. 
(2019), exposure to pH 7.7 for 40 days decreased the per-
centage of M. senhousia spawning gonads by shifting the 
energy budget towards more essential physiological pro-
cesses such as acid–base regulation. This suggests that a 
higher susceptibility to prolonged acidified conditions in the 
final gametogenesis stages is possible.

Expression analysis of stress‑related genes

Regarding the stress response at the molecular level, rep-
resented in this experiment by the expression of the genes 
sod, cat and hsp70, the PERMANOVA analysis showed a 
significant influence of sex and of DEHP exposure in inter-
action with the gametogenesis stage. In males, developing 
gonads showed lower levels with respect to mature ones 
in the groups exposed to the high concentration of DEHP. 
For females, a higher stress-related gene expression was 
observed overall compared to males. Similar results were 
noted in crustaceans Pachygrapsus marmoratus and Daph-
nia magna, which were observed to have higher levels of 
stress-related heat shock proteins in female individuals 

(Madeira et al. 2012; Mikulski et al. 2011), suggesting a dif-
ferent adaptive control of the HSP system in females, which 
could possibly allow them to be more resilient to stressed 
conditions than males (Gismondi et al. 2012). Furthermore, 
DEHP exposure resulted in significantly altering the stress 
response depending on gametogenesis stages. Levels and 
activities of oxidative stress biomarkers are observed to vary 
during the annual reproductive cycle of bivalves (Jarque 
et al. 2014; Wilhelm Filho et al. 2001). Therefore, the game-
togenesis state could have contributed to the basal antioxi-
dant levels and their reaction to contaminants, as reported in 
González-Fernández et al. (2016), where activities of CAT 
and glutathione peroxidase (GPx) were noticed to be affected 
by the chemical fluoranthene only during the gonadal resting 
period. This may also be related to the energy allocation that 
varies during reproductive and resting periods and could 
be affected by energy-demanding stress responses (Madeira 
et al. 2012). Additionally, Yu et al. (2021) observed that 
the expression of HSP90 isoforms was significantly higher 
in gonads of the scallop Chlamys farreri compared to non-
reproductive tissues, suggesting an involvement of these 
proteins the gametogenesis process.

The mild changes in expression in response to pH 
7.7 exposure seem to be in line with the hypothesis that 
organisms from habitats characterised by fluctuating 
conditions such as coastal and near-shore environments 
could be less sensitive and more tolerant to variations 
in water pH. In support of this theory, early stages of 

Fig. 4   Boxplots showing oestrogen receptor-like (MeER1, MeER2) 
gene expression in males and females, n = 5 to 8, considering sex 
and the gametogenesis stage (developing. mature, spawning) of the 
gonads. Excluded outliers are not shown, while the furthest accepted 
values are identified by black plus symbols. Datapoints, means and 
standard deviations for each gametogenesis stage are displayed in 
red (developing gonads), blue (mature gonads) and green (spawning 

gonads). Different genes are displayed in squares (MeER1) and tri-
angles (MeER2). Abbreviations are control (CTRL), low pH (LOW 
pH), low DEHP concentration (LOW DEHP), low DEHP at low pH 
(LOW DEHP LOW pH), high DEHP concentration (HIGH DEHP) 
and high DEHP at low pH (HIGH DEHP LOW pH). No significant 
PERMANOVA differences were found
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Strongylocentrotus purpuratus purple sea urchins from 
naturally low and variable pH habitats showed adaptive 
calcification strategies and absence of a generalised 
stress response when exposed to high pCO2 (Evans et al. 
2013). Nonetheless, other alterations from ocean acidi-
fication in the medium-long term on the immune system 
(Beesley et al. 2008), feeding ability (Xu et al. 2020), 
growth (Michaelidis et al. 2005) and other physiological 
processes (Navarro et al. 2013) cannot be ruled out, as 
some mussel individual traits and population character-
istics seem to be influenced by habitat parameters such 
as intertidal height and shore orientation (Barbosa et al. 
2021). Juvenile stages of mussels are reported to be able 
to cope with decreased surface water pH if food sup-
ply is sufficient (Thomsen et al. 2013); thus, an effect 
of a low pH exposure in the long term in combination 
with nutrient scarcity is plausible, considering that the 
reaction to stress is a dynamic and integrated response 
involving molecular, cellular and physiological processes 
within the organisms (Sokolova et al. 2011). In fact, Guo 
et al. (2021) doubted the survival of M. edulis under 
multiple stressors combined with elevated pCO2. Indi-
viduals were observed to moderately adapt and tolerate 
ocean acidification by increasing the synthesis of ATP 
and reallocating the energy to gills and haemocytes. 
Nonetheless, the excessive energy consumption was not 
compensated in hypercapnic environments, eventually 
leading to increased mortality.

Expression analysis of pH homeostasis gene

In this study, we analysed the expression of CA2, a gene 
part of the family of carbonic anhydrases (CAs), which con-
trol the intra- and extracellular pH homeostasis catalysing 
the reversible carbonic hydration from CO2 to bicarbonate 
(Richier et al. 2011). Here, we found a significant differ-
ence in CA2 expression based on sex, considered alone and 
in combination with the gametogenesis status. Higher lev-
els of CA2 2−ΔΔCt values were found in male groups with 
respect to females, and possibly associated with metabolic 
profiles, hormonal state or fitness strategies (Ji et al. 2013; 
Mikulski et al. 2011; Wong et al. 2014). It was reported 
that CA activity was found at different levels during the life 
cycle of M. edulis, being highest at the end of the devel-
opmental stages (Medaković 2000). Interestingly, in Wang 
et al. (2017), expression of the CAII-1 gene in Crassostrea 
gigas exposed to low pH was downregulated only in male 
gonads, in contrast with a significant upregulation in other 
non-reproductive tissue samples. Together, these findings 
suggest a tissue-specific regulation of this metalloenzyme 
and a potential link to the reproductive system status which 

could explain the differences we observed between sexes at 
different stages of the gametogenesis cycle.

With the exception of the LOW DEHP LOW pH treat-
ment, males and females exposed to pH 7.7 (LOW pH and 
HIGH DEHP LOW pH) statistically differed in their CA2 
expression. We also found that the expression of CA2 was 
slightly modulated by low pH, with a general downregula-
tion of the enzyme especially in females. This contrasted 
with Wäge et al. (2016), where a short exposure to low pH 
induced an upregulation of CA in polychaete worms Platy-
nereis dumerilii. In agreement with our results, pH drop is 
known to induce downregulation of this enzyme and loss of 
shell structural integrity in several calcifying species includ-
ing molluscs (Fitzer et al. 2014; Zebral et al. 2019). This 
might be caused by a compensatory strategy in response to 
the alteration of the acid–base balance in the body fluid from 
hypercapnic conditions. Downregulation of CA in clam Pan-
opea globosa larvae was explained as a feedback response 
to its decreased activity at low pH (López-Landavery et al. 
2021), probably caused by enzyme denaturation or lowered 
efficiency (Sun et al. 2016).

Chemical compounds such as metals in molluscs and 
crustaceans are known to alter CA activities (Lionetto et al. 
2006; Skaggs and Henry 2002), but in our experiment, 
DEHP exposure did not. This could be possibly related to 
the metal-binding affinities of CAs and to the more effective 
osmo-, ionoregulatory and acid–base disruption ability of 
certain metals compared to other chemicals (Bianchini et al. 
2005; Lionetto et al. 1998). However, Balbi et al. (2016) 
found an effect on carbonic anhydrases in M. galloprovin-
cialis larvae exposed to 1–10 mg/L of the oestrogenic chemi-
cal bisphenol A, often used as an additive in polycarbonate 
plastic production. This could suggest a greater effect of 
endocrine disruptive chemicals at higher concentrations 
on the vulnerable first phases of development, when the 
biomineralisation process is still at early stages and thus 
more sensitive.

Expression analysis of oestrogen 
receptor‑like genes

Finally, we analysed the expression of MeER1 and 
MeER2, two genes part of the oestrogen receptor-like 
system and biomarkers of reprotoxicity. As already 
noted with respect to the gonadal state histologically 
investigated here, a drop to pH 7.7 did not induce any 
consequences on their expressions. This reinforces the 
hypothesis that the reproduction cycle of mussels is 
less sensitive to acidic environments. Likewise, DEHP 
exposure did not influence the expression of MeER1 
and MeER2, in contrast to other studies that reported 
an effect of xenobiotics such as the plastic additive 
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bisphenol A (Balbi et al. 2016) or the pharmaceutical 
metformin (Koagouw and Ciocan 2018) on the expres-
sion of oestrogen receptor-like genes. Interestingly, 
DEHP did not elicit a response on oestrogen receptor-
like gene expression in either sex. This result contrasts 
with the preceding findings of our team in a previous 
experiment (Mincarelli et al. 2021) where mussels were 
co-exposed to DEHP and high temperature for 1 week. In 
that case study, DEHP exposure significantly affected the 
oestrogen receptor-like pathway, especially in develop-
ing females’ MeER1. Some factors that may account for 
these differences between the two experiments are that 
mussels originated from two different populations (North 
Yorkshire in contrast to Cromarty Firth), years (2018 
and 2020), seasons (early in contrast to late winter) and 
the related gametogenesis gonadal status. Natural varia-
tion in the oestrogen receptor-like physiological condi-
tions could be based on annual and seasonal contexts, as 
already noted for M. edulis MeER2 expression (Ciocan 
et al. 2010). Similarly, variable expression of oestrogen 
receptor-like genes was found during M. galloprovincia-
lis ovarian cycle (Agnese et al. 2019) and throughout 
larval development (Balbi et al. 2016). In this case, the 
initial hypothesis of this experiment that the action of 
certain stressors could be affected by the reproductive 
cycle did not find confirmation, as we found no signifi-
cant influence by the gametogenesis stage on the gene 
expression of oestrogen receptor-like response.

Conclusion

In conclusion, we found that the response of M. edulis to dif-
ferent stressors (pH 7.7 conditions and two environmentally 
relevant concentrations of the plasticiser DEHP for 1 week) 
is strongly dependent on sex and developmental status of 
gonads. As shown before, sex differences were observed for 
genes involved in the stress response and acid–base balance, 
underlying the possibility of a better adaption of either sex 
in future climate conditions. This paper lends support to the 
need of identifying sex and gonadal maturation stages in 
mussels when measuring multiple stressor responses, which 
is necessary in a scenario of plastic-polluted and acidified 
oceans.
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