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Abstract 

The ability to perform an effective and robust safety analysis on the design of modern safety-critical 

systems is crucial. Model-Based Safety Analysis (MBSA) has been introduced in recent years to 

support the assessment of complex system design by focusing on the system model as the central 

artefact, and by automating the synthesis and analysis of failure-extended models. Model checking 

and Failure Logic Synthesis and Analysis (FLSA) are two prominent MBSA paradigms. Extensive 

research has placed emphasis on the development of these techniques, but discussion on their 

integration remains limited. In this paper, we propose a technique in which model checking and 

Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) - an advanced FLSA 

technique - can be applied synergistically with benefit for the MBSA process. The application of the 

technique is illustrated through an example of a brake-by-wire system. 
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1 Introduction 

Modern safety-critical systems frequently involve various engineering disciplines, numerous 

embedded control components, and employ complex architectures. These systems are widely 

employed in various industries including the automotive, aerospace, and nuclear industries. However, 

failures in these systems may result in catastrophic consequences, including the loss of human life. 

With the increasing scale and complexity, the analysis of the design and development of these 

systems have become increasingly challenging. Classical safety assessment techniques such as 

Hazards and Operability Analysis (HAZOP) [1], Fault Tree Analysis [2], and Failure Modes and 

Effects Analysis (FMEA) [3] have been used for many years to analyze the safety and reliability of 

safety-critical systems. However, these techniques are traditionally manual applied, and often 

considered to be no longer adequate to cope with the complexity of modern safety-critical systems 

because in the context of a large, complex system, manual processes become laborious and error-

prone. The safety information and analyses in classical techniques are also often disconnected or 

loosely connected to system design models, making safety analysis in the context of design iterations 

difficult. Safety analyses are therefore often performed in the later stage of the design process, thus 

missing the opportunity to influence the system design.  

Model-Based Safety Analysis (MBSA) techniques have been developed in recent years to address the 

challenges in analyzing and verifying complex safety-critical systems. MBSA focuses on developing 

effective and robust safety assessment techniques through the automation of the safety analysis 

process. Semi-formal and formal models are used as the foundation for various development 

activities, like prototyping, simulation, and code generation [4], making the process integrated and 
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coherent. Various general-purpose modeling languages have been developed over the years to support 

the development of system design models. These include Systems Modelling Language (SysML) [5], 

Architecture Analysis and Design Language (AADL) [6], and Embedded Automotive System 

Technology - Architecture Description Language (EAST-ADL) [7]. Analysis on these models is 

performed to understand how a system behaves not only in its normal working condition (represented 

in the nominal model), but also in the presence of failure (represented in the error model [8]). The 

term error model refers to a model which contains failure information, and describes potential failures 

of design elements and possibly local effects.  The automated analysis in MBSA typically determines 

global effects of failure of design elements, and the automated nature of the technique means that the 

results can be more easily generated to reflect changes in the system design, and can be incorporated 

as part of an iterative design process. This makes the process more efficient and contributes to more 

reliable results.  

In general, the various MBSA techniques proposed and developed over the years gravitate towards 

two prominent paradigms, Failure Logic Synthesis and Analysis (FLSA) and model checking [9]. 

FLSA uses a process of composition to construct the system error models from the topology of a 

system and the local error models of its components. Model checking, on the other hand, uses 

exhaustive exploration of behavioral models of the system to assess satisfaction of safety 

requirements.  

FLSA and model checking have emerged with little integration. Both techniques are fundamentally 

different in their objectives of assessment, working mechanisms, and application process. We aim to 

investigate the combined application of these emerging techniques, and believe that the exploitation 

of each technique’s strengths can bring substantial value to the development process, particularly at 

the early design stages.  Here we propose a technique through which we aim to demonstrate how a 

systematic, combined application of these two technologies can be performed, and how this may lead 

to a more robust design assessment process. In this work, HiP-HOPS [10] has been selected to 

facilitate FLSA, and NuSMV [11]  has been selected to facilitate model checking. HiP-HOPS is a 

state-of-the-art tool that enables dependability analysis and optimization of design models. NuSMV is 

a model checker tool which enables formal verification. In addition to the higher-level conceptual 

integration of techniques, this paper also investigates and discusses the integration of HiP-HOPS and 

NuSMV.  

The rest of the paper is structured as follows: Section 2 presents the background to this work and 

discusses relevant safety analysis techniques. Section 3 presents the proposed technique which 

combines application of FLSA and model checking in the context of an improved MBSA process. 

This process involves failure severity analysis, local failure logic definition and annotation, translation 

of FLSA results into finite state machines, and application of formal verification through model 

checking. This section also discusses how relevant failure information can be obtained and translated 

between different models of FLSA and model checking. Section 4 presents an example of a brake-by-

wire system which illustrates the proposed technique. We show how failure information and safety 

artefacts from FLSA are used as the basis for the construction of finite state machines, which can then 

be verified. This section also discusses how a simple example of control and mitigation procedure of a 

diagonal-locking mechanism in car wheels can be assessed and verified. Section 5 presents a 

summary of this paper and outlines future work.   

2 Background 

2.1 Failure Logic Synthesis and Analysis (FLSA) 

In FLSA techniques, individual components in a system model are extended with descriptions of their 

failure behavior, which are then used to construct the system-level error model. System error models 

are automatically constructed by establishing how the local component failures combine as effects 
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propagate through the topology of the system. These error models are predictive models of system 

failure, and are typically produced in the form of well-known safety artefacts like fault trees. 

Safety artefacts produced from FLSA are generally familiar to safety engineers, making the process 

more intuitive. These artefacts allow identification of potential failures and design weaknesses which 

guide useful design iterations, and help to derive and refine requirements. The process is flexible and 

adaptable to different stages of model development. Because of its compositional nature, it is easy to 

determine what the effects of changing one component will have on the rest of the system. This 

speeds up the analysis and enables effective evaluation on speculative changes to the design, which is 

important as it enables the assessment to be started early in the design process when concrete system 

details are still minimal.  

FLSA is also often employed to facilitate reliability engineering. For example, with techniques like 

HiP-HOPS [10], it is possible to not only effectively perform qualitative assessment to obtain root 

causes of a failure, but also to perform advanced temporal analysis [12], probabilistic quantitative 

analysis, as well as architectural optimization [13].  

Despite these benefits, analyses with FTA and FMEA are generally static, and do not take into 

consideration the changes in system states and therefore unable to capture dynamic behavior 

accurately. Techniques which are based upon FLSA approach include: Failure Propagation and 

Transformation Notation (FPTN) [14], Component Fault Trees (CFT) [15], State-Event Fault Tree 

(SEFT) [16], and HiP-HOPS [10].  

2.1.1 HiP-HOPS  

Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) [10] is a safety 

analysis method which automatically constructs fault trees and FMEAs from system model topologies 

annotated with component failure information. HiP-HOPS was inspired by FPTN but extends FPTN 

[14] with more advanced features and automation. FPTN was not originally intended for synthesis and 

analysis of artefacts like fault trees and FMEAs as in HiP-HOPS and the early papers that preceded 

HiP-HOPS do not describe such features and algorithms. FPTN was rather intended as a modular  

specification of failure logic.   

HiP-HOPS works in conjunction with commonly-used system modeling tools, such as Matlab 

Simulink or Simulation X, and has recently been extended to facilitate analysis of AADL models. 

Failure editors are integrated into these modelling tools to allow system designers to annotate the 

components with failure information. This failure information includes failure modes (internal 

malfunction) and output failure expressions, and describes how the component fails and its 

relationship with other component failures, i.e. whether and how the component responds or not to 

effects of failure received at the component  inputs. HiP-HOPS takes this information and examines 

how component failures propagate through the system topology, producing sets of interrelated fault 

trees and eventually an FMEA. This approach also enables the hierarchical structure of the system to 

be captured neatly in the fault trees.  

There are three main phases in HiP-HOPS: model annotation, fault tree synthesis, and fault tree and 

FMEA analysis phase.  

The model annotation phase  provides information to HiP-HOPS on how the component can fail. It 

takes the form of a set of expressions which are manually added. These local failure expressions 

describe how failures of the component outputs can be caused by a combination of failures received at 

the component's inputs and/or by internal malfunctions of the component itself. Common cause 

failures are also supported, as are failures propagated via other means, e.g. from allocated 

components. In this way it is possible to model more sophisticated scenarios — for instance, the 

effects on a software function when the hardware processor executing that function fails. 
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The synthesis phase produces an interconnected network of fault trees which link system-level 

failures (i.e., failures of the system's output functions) to component-level internal failures by using 

the model topology and component failure information. These fault trees show how the component 

failures propagate from one component to another and how ultimately they may affect the wider 

system, whether individually or in combination with other component failures. 

In the analysis phase, the synthesized fault trees are analyzed via automated algorithms to generate 

minimal cut sets. Minimal cut sets describe the necessary and sufficient combination of events which 

lead to the undesired events. Eventually the data is combined into a multiple failure mode FMEA 

which shows both direct effects of failure modes on the system, as well as the further effects of the 

failure modes caused in conjunction with other failure modes occurring in the system. The resultant 

FMEA is presented in tables which are conveniently displayed through a web browser.  

These main phases of HiP-HOPS are illustrated in Figure 1.   

 

Figure 1. Main Phases in HiP-HOPS 

Quantitative data can also be entered for the component to represent the probability of internal failures 

occurring and the severity of output deviations. This data can then be used in the quantitative analysis 

phase to calculate the unavailability of the top event. HiP-HOPS assists reusability by enabling 

failure-annotated components to be stored in a library. This allows other components of a similar type 

to reuse the failure data, and avoids the designer having to enter the same failure data multiple times. 

Recently, HiP-HOPS has also been extended with advanced features, including the capability to 

accommodate temporal analysis and perform multi-objective optimization.  

2.2 Model Checking 

Model checking [17] [9]is often used to facilitate system formal verification. The system-level effects 

of failures are established by injecting faults into the formal specification of the system, and the 

effects on system behavior are observed. The technique is often employed to allow formal verification 

by ensuring that the system model conforms to specified safety properties. Formal models are 
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expressed as state automata (or finite state machine), while the safety properties are expressed in 

temporal logic. A model checker tool is used to perform exhaustive exploration of the state space in 

order to assess whether a specified property holds for the system. When the safety property does not 

hold, a counterexample is produced to show the traces of simulation on how the breaching situation is 

reached.  

The ability to facilitate automated formal verification and capture system dynamic behavior makes 

model checking a powerful and rigorous approach in assuring that certain critical properties are 

guaranteed in a complex system. It is also possible to differentiate between transient and permanent 

failures and model the temporal ordering of failures.  

However, limitations of model checking include the fact that model checker tools generally require 

the system model to be expressed in the particular model checker input language. Useful safety 

artefacts like fault trees which are produced from model checkers in this approach generally have 

‘flat’ structures, effectively a two level "OR-AND" structure representing the disjunction of all 

minimal cut sets. Therefore the tree is only two levels deep and can be very broad, and this can 

hamper the understanding of fault propagation through the system. Formal models - used as the input 

to the model checker – are usually developed only at the later stage where designs are more mature 

and stable. Approaches which are based on model checking also tend to be more computationally 

expensive and inductive in nature. This means that the exhaustive assessment of the effects of failure 

combinations can be potentially infeasible in larger systems.  

Examples of techniques which are based on model checking, include Altarica [18] and Formal Safety 

Analysis Platform/New Symbolic Model Verifier (FSAP/NuSMV) [19]. The NuSMV model checker 

has been selected here as a good example of this technique to facilitate the integrated analysis with 

HiP-HOPS. 

2.2.1 NuSMV  

The New Symbolic Model Verifier (NuSMV) [11] is a symbolic model checking tool which checks a 

finite state system against specifications in the temporal logic Computation Tree Logic (CTL), and 

recently, Linear Temporal Logic (LTL). NuSMV is a newer version of Symbolic Model Verifier 

(SMV [20]).  

The NuSMV language allows components of the system to be described in a modular hierarchical 

way. This means that each of the component can be described as a separate module in NuSMV, and 

links between these modules preserve the hierarchical structure (i.e. system and subsystem can be 

described clearly).  System behavior is described through variables within the modules. Modules are 

generally used to define or distinguish separate physical (sub) systems or components.  

A NuSMV Module can consist of a set of variable declarations, assignments of variable initial values 

and definitions, and property assertions. Data types used are confined to finite type (for example, 

Boolean, scalar, enumerated or fixed array of basic data types). The Assignment section contains a 

set of assignments of Variables into their initial value or the value in the next execution step. 

Various operators are available for variable assignments, including Boolean logic, conditional, 

arithmetic and comparison operators. The transition relation is described using expressions in 

propositional logic which outlines the variable update rules. The set of reachable states (if the 

activation condition in the update rules is true) is non-deterministic. An Assertion section is used 

to define CTL properties, which should hold over all executions.  

NuSMV has been selected as a technique to complement HiP-HOPS based on the following 

considerations. Firstly, NuSMV is fundamentally a symbolic model checker. Symbolic model 

checkers are generally more scalable and therefore, are recommended for larger real-life systems. 

NuSMV is also more suitable for Boolean-based data (as opposed to enumerated type) [21]. 

Considering that most of the failure data obtained from HiP-HOPS are Boolean-based, NuSMV is a 
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logical choice. The NuSMV support tool is also available as an open-source program which allows it 

to be tailored more effectively into a future integrated support tool. 

3 Integrated Application of HiP-HOPS and Model Checking  

The integration between HiP-HOPS and model checking aims to exploit the quick iterative nature of 

FLSA and the verification capability of model checking. The initial analysis results from FLSA are 

used to help derive a more-robust model prior to the application of model checking. The method can 

be iterated until a satisfactory design that fulfills safety requirements is reached.  

The key steps involved in this process are illustrated in Figure 2. The method starts with the 

construction of a system model and a set of safety specifications. This model can be an early 

functional model or a more detailed architectural model depending on the stage of the system 

development. In the early functional design, the method is applied to an early model where design 

details are not mature, but sufficient enough to show input, processing and output functions, as well as 

the dependencies. In the next step, this model is examined further to evaluate the severity of failures 

in the output functions (or components). Local failure logic for each function (or component) is 

obtained and, once components have been augmented with that logic, one or more system fault trees 

for system level failures recording causes of these failures are synthesized and analyzed. A result of 

this process is also the synthesis of a system FMEA. This FMEA is then studied and interpreted, 

usually leading to recommendation for design improvement or additional safety measures. With the 

introduction of new safety measures, the requirements and system model may be updated. The 

severity of the failures and the failure data annotation are revised, and the next iteration of FTA and 

FMEA may be performed. When deemed satisfied, the results of FMEA can be analyzed and used to 

assist the construction of abstract state machines to represent the system dynamic behavior. Failure 

modes and effects in the FMEA are used to determine in a state machine transitions from normal 

states or modes of the system to degraded and failed states and modes. Model checking is then used to 

verify whether this dynamic system model conforms to the requirements. If the conformity is verified, 

the process proceeds to either further refinement of the model and iteration of the above process or its 

implementation. Otherwise, counter examples are produced to show how the model fails to fulfill 

certain requirements. 

In this paper, focus is drawn to the benefits yielded by the method in enabling systematic construction 

of behavioral models from the FLSA output, and then useful application of model checking on such 

models. This technique aims to show how the integrated analyses and their results can help transform 

a basic initial functional (or early architecture-allocated functional) model of the system into a more 

robust, better prepared model which eventually becomes the foundation of the development of the 

system and its operating logic.  
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Figure 2. Integrated Application of HiP-HOPS and Model Checking 

3.1 Modelling and Failure Severity Assessment   

HiP-HOPS can be performed on any model of a system which identifies components and the data, 

material or energy flows among these components. The model can be a hierarchy of subsystems 

enclosing architectures of lower level elements to manage complexity, and it may be in the form of a 

functional or architectural model, i.e. components can represent functions or elements like sensors 

processors or actuators. In the early stage of the development process, a functional model is typically 

constructed to reflect how a series of ‘processes’, which need to be performed to fulfill the system 

requirements, are organized. The model becomes increasingly detailed as the development progresses 

and architectural information emerges.  

Once a system model is constructed, the severity of failures in the system outputs needs to be 

examined. Components delivering these outputs interact directly with the environment of the system. 

Environment of the system may refer to the users or other external elements outside the system 

boundaries.  

The categorization of failures in terms of severity is based upon the guidelines presented in the IEC 

61508 [22], as shown in Table 1. The severity of failures can be classified into the following 

categories according to their consequences to human stakeholders or in general the quality of service 

provided: Catastrophic, Critical, Marginal, and Negligible.  

Table 1: Classification of Failure Severity 

Description  Consequence to human stakeholders Consequence to service 

Catastrophic  Fatalities and/or multiple severe 

injuries  

-  

Critical  Single fatality or severe injury  Loss of major system  

Marginal  Minor injury  Severe system damage 

Negligible  Possible minor injury  System damage  
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The understanding of the effects a failure, and hence the assignment of the severity class, can be 

obtained from simulation, testing, experience or consultation with domain experts. The classification 

can be assigned as part of the information presented in the Functional Failure Analysis (FFA). FFA 

primarily aims to identify hazardous functional failures and presents this information in a tabulated 

format, where the analyzed functions, failure type, effects on the system, severity, detection, recovery 

plan, and recommendations are organized.  

The assessment of failure severity allows the analysis process and resources to be focused effectively, 

particularly when conflicting priorities exist in the design. System failures which have been classified 

under ‘catastrophic’ and ‘critical’ categories naturally need to receive higher priority than those with 

‘marginal’ or ‘negligible’ effects.  

3.2 Local Failure Information   

In addition to evaluating the severity of system output failures, it is also important to determine the 

causes which lead to these failures (particularly the catastrophic and critical ones). Qualitative 

analysis identifies the root causes and can provide valuable feedback towards improvement of the 

design architecture by pinpointing weak parts in the system model.  

As mentioned earlier, for the purpose of the analysis, each component is annotated with failure 

information in the format suitable for HiP-HOPS. This failure information defines each component's 

failure behavior including the failure logic. Failure logic describes how the component itself can fail, 

and how it reacts to failures propagated from other components. Essentially, this information defines 

how failure in the component output can occur due to the internal failure within the component itself 

or corresponding deviations received at component inputs. This is done by annotating the model with 

failure expressions which define the failure logic that causes component output deviations.  

The classification of different types of deviation is typically assisted through the use of guide words 

similar to those used in HAZOP. These include: omission, commission, value and timing failure. The 

omission refers to failure of the component to provide the intended output; a commission failure refers 

to unintended provision of output; a value failure refers to incorrect output value provided; and a 

timing failure refers to output provided later or earlier than intended.  

In its basic form a failure expression contains information of the failure type and the location where it 

occurs (i.e. the input/output ports). The dash symbol “-“ is used to separate the failure type from the 

input or output parameters, and the failure causes are connected by logical operators. Commonly used 

logical operators in HiP-HOPS include the disjunctive operator and the conjunctive operator but 

extensions also allow temporal operators such as "before" and at the "same time".  

As an example, a failure expression in HiP-HOPS can be expressed as the following:  

Omission-OutputPort = InternalFailure OR Omission-InputPort 

This expression defines that a deviation in the component output port (Omission-OutputPort) can 

be caused by an internal malfunction of the component (InternalFailure) or an omission in the 

component input port (Omission-InputPort). Component failure expressions are provided 

manually at the component level and focus on the output ports through which a component provides 

services to other components in the system. In the analysis process, each output port is systematically 

examined for potential deviations of port parameters from the intended normal behavior.  

This component failure behavior annotation, in addition to the topology of the system architecture, 

allows system-level failure logic to be developed and analyzed.  
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3.3 Fault Tree and FMEA Synthesis and Analysis  

The global view of the failure propagation in the system architecture can be captured by traversing 

and following the causal links defined in each component local failure logic. The process starts from a 

failure in a system output and systematically moves backwards towards system input components. 

The fault tree is incrementally generated by progressively replacing the input deviations for each 

component with the corresponding output deviations propagated by other components. The logical 

structure of the tree is determined by local failure logic and interconnections between components. 

This process produces a set of fault trees that represent the relationships between system output 

failures and their root causes in the system.  

Fault trees in HiP-HOPS can be analyzed qualitatively and quantitatively, and the results can be 

summarized in an automatically generated FMEA table. Traditional FMEA table shows only the 

direct effects of a single failure on the output components. But because of the way the FMEA is 

constructed by HiP-HOPS from a series of fault trees, it also captures the effects of a component 

failure when it occurs in conjunction with failures from other components. These are termed further 

effects of the component failure.  

Details on HiP-HOPS can be found in [10, 23, 24] . To facilitate readability, and without going into 

too much detail, here we discuss a small example. Figure 3 illustrates a simple standby-recovery 

system. It contains one input function called Input, and two processing functions called Primary and 

Standby. Primary receives and processes the value generated by Input. A redundant function Standby 

monitors the output of Primary, and when an omission failure at the output Primary is detected, 

Standby is initiated to replace Primary. Primary and Standby functions supply to the Normal and 

Backup system outputs respectively. 

For simplicity, Input, Primary and Standby functions have one internal malfunction each, called 

InputFailure, PrimaryFailure, StandbyFailure respectively. Table 2 presents the failure expression 

which describes the failure logic for functions Input, Primary and Standby. Failure logic has been 

simplified for the purpose of the example, therefore there is no analysis of commission or timing 

failures.  

 

Figure 3. Standby-recovery System 

Table 2: Failure Expressions for Standby-Recovery System 

Function Output Deviations  Failure Expressions  

Input Omission-pValue InputFailure 

Primary Omission-Out Omission-In OR PrimaryFailure 

Standby Omission-Out Omission-Monitor AND (Omission-In OR 

StandbyFailure).  

Components of the model are augmented with their respective failure logic within the modelling 

environment (e.g. this could be Matlab Simulink).  From these expressions, and the structure of the 

model, the HiP-HOPS safety analysis tool generates the fault trees shown in Figure 4 and FMEA 
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illustrated in Table 3. The FMEA shows that a failure of the input function Input causes omission of 

both the Normal and Backup outputs of the system, and it is therefore, a critical failure. On the other 

hand, a single failure of Primary causes only omission of the Normal output and therefore can be 

deemed as less critical. Finally, the failure of Standby does not have any direct effect on the system. It 

becomes significant only in conjunction with failure of Primary, which in this design provides the 

condition that precisely triggers the need to deploy Standby in the first place.  

 

Figure 4. Fault Tree for Standby System 

Table 3: FMEA Table for Standby-Recovery System 

Component Failure Mode Direct Effects Effects in Conjunction 

with [Other Events] 

Input InputFailure Omission-Normal  - 

Omission-Backup 

Primary PrimaryFailure Omission-Normal Omission-Backup 

[StandbyFailure] 

Standby StandbyFailure - Omission-Backup 

[PrimaryFailure] 

The FMEA indicates that failure of Input is indeed a direct cause of a critical system failure and 

should be prevented by design. The analysis shows that an independent failure of either Primary or 

Standby cannot cause a critical system failure. Emphasis of the design therefore has to be placed on 

how to protect these two functions from common cause failures (for example, failures caused by 

electromagnetic  interference).  

This small example demonstrates the ability of the synthesis tool to detect hazardous dependencies in 

the model, i.e. component failures that may cause simultaneous failure of hypothetically independent 

system functions. This may seem a trivial task in this example largely because the source of the 

dependency is very close to the affected functions but also because the model and associated failure 

logics are very simple. However, hazardous dependencies are not always as simple to detect 

especially those originating from remote data sources which are deeply embedded in the hierarchy of 

complex designs. The detection of such dependencies is, indeed, a hard task which justifies the need 

for efficient automated support.  

The FMEA table generally provides a list of components, failure modes, effects of the component 

failures on system outputs, and other contributing failures that in conjunction cause further effects. It 
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is also possible to include additional information, such as the severity of the affected output 

component, recommended treatments, and other general comments. The FMEA table essentially 

shows how internal failures of components can contribute to hazardous system output failures.  

Interpretation of the table allows failure information of the system to be checked against safety 

requirements, and safety measures to be devised when necessary. Focus is placed on the components 

whose failures contribute to catastrophic system failure, as they need to be prevented by design, or 

have their impacts minimized. While the design solution ultimately relies on sound engineering 

judgment, the identification of the criticality of each component assists the management of effort 

allocation and design modification. Modification of the system structure, for example through 

incorporation of redundant components, is often necessary. This brings about new components to the 

system, changes to the architecture, as well as introduction of new failure behavior modes and 

changes to the failure logic of the system. Subsequently, there is a need to iterate the process to 

regenerate and update FTAs and FMEAs.  

From this process, more-refined design and safety requirements can be derived. The identification of 

lower level failures leading to output failures can be evaluated, and this helps derive more refined 

design requirements. This will, in turn, result in fewer late design changes in comparison to traditional 

practice. 

3.4 Translation of HiP-HOPS Results into State Machine  

3.4.1 Abstract State Machine  

To integrate the application of FLSA and model checking techniques constructively, we need to 

establish an effective association between the output of HiP-HOPS (i.e. FTA and FMEA results) and 

the input of model checking (i.e. state machine). Iterative application of the proposed process starts 

from an abstract state machine and gradually becomes more refined as additional details become 

available and incorporated to behavioral models that can be subject to verification. 

Abstract state machines (sometimes termed ‘mode charts’) are typically constructed at early stages, 

where dynamic behavior can be expressed as a set of different functional states of the system and 

transitions between them. A functional state (or mode) [25] is defined by the set of functions delivered 

by the system in this state. Generally, types of states used in the modeling of an abstract state machine 

in our approach include normal, degraded and failed states. The system is said to be in normal state 

when it delivers its predefined set of functions. A degraded state describes the condition where a 

system delivers part of the intended functionality safely, whereas a failed state refers to the condition 

where there is complete loss of function or the system behaves in an unpredictable or hazardous 

manner. This implies that in cases when the system loses even only part of its functions, if the lost 

function happens to be critical and has catastrophic effects on the system as a whole, the system is 

said to be in the failed state.  

If necessary, degraded and failed states can be further decomposed into subcategories according to the 

general fault classification criteria. For example, different types of faults can be categorized based on 

criteria such as activity (latent and active), duration (transient and permanent) or causes (random and 

generic) [26]. A latent fault is dormant, whereas an active fault is actively generating errors. A 

transient fault is temporary, whereas a permanent fault is lasting. A random fault may affect only a 

certain component, whereas a generic fault is systemic. Here, our interest leans towards time-based 

classification, where degraded and failed states can be categorized based on whether they are 

temporary or permanent. A degraded or failed state is temporary when action can be taken to restore 

the system back to a normal state, while permanent states occur when recovery is no longer possible.  

The FMEA results gathered from application of FLSA essentially show the effects of component 

failures, and then help decide whether the failures can be tolerated. Intolerable failures must be 

managed by appropriate modification of design or external detection, and recovery mechanisms must 

be put in place. Tolerable failures may be allowed to happen, often resulting in the loss of 
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functionality, but always in the context of a graceful transition to degraded-but-safe states of operation 

for the system. In the case of tolerable failures, FMEA results lead to design solutions that introduce, 

or reinforce, these new degraded states. Abstract state machines can therefore be constructed to show 

how graceful transition to the identified degraded states could be achieved, and how they can act as 

potential buffers to divert hazardous failures.  

An FMEA-ModeChart Assistance Table is  used to organize the construction of abstract state 

machines by identifying and organizing the key elements of the state machine – which include system 

states, severity of each state, output functions delivered, failure event(s) triggering the transition, and 

target states(s). Table 4 shows an example of simple FMEA-ModeChart Assistance Table on the basis 

of which an abstract state machine can be constructed .  

Table 4: Example of FMEA-ModeChart Assistance Table 

State Severity Functions Delivered Failure Events 

Causing Transition 

Target State 

Normal - Function F1 Omission F1 Degraded 

Normal - Function F2 Omission F2 Failed 

Degraded Marginal Function F2 Omission F2 Failed 

Failed Critical - - - 

When further behavioral information on  low level components becomes available in an incremental 

development process, it is possible to refine the transition events (particularly guards) in the abstract 

state machine. This allows good traceability between abstract and refined state machines as it 

improves the understanding on how transitions in a more refined level affect the higher level state of 

the system.  

The refined state machine can often be constructed directly from a HiP-HOPS model, as most 

information required for failure-relevant transitions can be obtained from the HiP-HOPS component 

failure annotations. Behavioral information, e.g. normal states and normal transitions between them 

which is not obtained from the HiP-HOPS model can be independently included.  

It is important to note that our state machines are not tied to any commercial state chart tools, and 

both abstract and refined state machines are directly represented as NuSMV model. Commercial state 

chart tools, for example Matlab Stateflow or Statemate, can be used to provide graphical description. 

Alternatively, converter tools, for example stm2smv [27], or mdl2smv [28] are available to convert 

state machines from these commercial tools into model checking input models (particularly, SMV 

models).  

Each component is represented as a module in NuSMV, and the information flow between 

components can be represented through the use of module parameters.  These parameters provide 

links between the output (port) of a source component to the input (port) of a target component. In a 

similar manner, these input parameters are also used to relay the failure propagation between 

components. Internal malfunctions too are defined within modules. Once an internal malfunction 

occurs, it is assumed to be persistent throughout the entire run, unless a restoration event is explicitly 

specified and triggered. All internal malfunctions are initialized as false (components are assumed to 

be in normal operating condition on the start of the run). Example of initialization of the internal 

malfunction called "Component1Failure" is init(Component1Failure):=0;. A failure 

expression defining the output deviation (obtained from a HiP-HOPS failure annotation) can be 

assigned within the module. Input deviations are specified in the module input parameters. The 

mapping between HiP-HOPS and NuSMV elements is summarized in Table 5:  
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Table 5: Elements Mapping Between HiP-HOPS and NuSMV  

HiP-HOPS  NuSMV  

System, Component Module  

Input deviation Module parameters 

Internal malfunction  Variables declarations 

Failure expression  Assign Constraint 

State, Transition Assign Constraint 

As a summary, the process of translating FTA/FMEA results into state machines is illustrated in 

Figure 5.  

 

Figure 5. Translation of FMEAFTA Results into State Machine 

3.4.2 Transition Events Refinement  

Refinement refers to the process of providing a system solution with more details or precision in an 

incremental development process. This includes the process of adding constraints and developing 

details of system and component attributes. The refinement of a model may affect both structural and 

behavioral elements of a system. The refinement of a design often traverses abstraction levels and 

captures subsystems. A systematic management of decomposition can help to provide good 

traceability. This in turn, allows designers and analysts to follow the evolution of the design more 

closely and establish connections between earlier and later design models. One way to achieve this is 

through clear communication and linking between events in the earlier abstract design and those in the 

later design. Well-established traceability is particularly useful in situations where errors are 

discovered through model checking later on. In this case it is possible to trace errors back to an earlier 

design decision and eventually investigate and re-evaluate their effects on high-level design 

assumptions and goals. A systematic refinement of transition events (particularly events relating to 

failure logic) contributes to a better traceability.  

One way to refine a transition event is by replacing it with the logical expression of its causal events. 

As the failure-related transition events are generally loss of functions or component malfunctions 

which form the top events of fault trees in HiP-HOPS, causal events can be effectively obtained and 

mapped from HiP-HOPS FTA/FMEA results. For each top event, its minimal cut sets essentially form 

the replacement expressions. This approach works well in a situation where focus is placed more on 

the verification of the abstract behavioral states of a system compared to the behavior of the refined 

individual subsystems enclosed within the system. This usually means that the verification process 

aims to explore the effects of the lower level subsystem failures on the modes changes at the higher 
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level. One advantage of adopting the results from FLSA is the easy representation of both deviations 

and component basic events in NuSMV as Boolean data types.  

Another approach to the refinement of transition events is through compositional annotations – i.e. by 

modeling each subsystem behavior in its own module. This approach captures the functional 

hierarchy by constructing independent state charts and NuSMV modules for each subsystem, which in 

turn allows nominal behaviors of each subsystem to be effectively modeled and considered in their  

contribution to system failures. To effectively link failure behavior to input modules and capture the 

structural information, transition events are expressed in a structure similar to HiP-HOPS failure 

annotations.  

3.4.3 Translation from HiP-HOPS to NuSMV Models   

The construction of NuSMV models from HiP-HOPS models can be achieved by mapping the failure 

information as discussed in section 3.4.1 (mapping between HiP-HOPS and NuSMV elements), a 

process which results in a failure-extended NuSMV model. The following steps outline the translation 

process from HiP-HOPS to a NuSMV model.  

For each HiP-HOPS component, a NuSMV module is created within which the following steps are 

performed:  

Step 1: Identify input parameters 

The input parameters of a NuSMV module are the input deviations of that component. The publically 

accessible HiP-HOPS XML specification of the system with its failure annotations and the data 

structures of the tool readily provide this information. 

Step 2: Declare the internal variables 

Internal  variables  which  can  be  assigned  automatically  from  HiP-HOPS  models typically 

include the internal malfunctions, output ports, and output deviations. These are declared as Boolean 

data type. 

Step 3: Specify initial values for the internal variables 

The initial value of internal malfunction and output deviations are set to false by default, reflecting the 

assumption that the system starts from a normal initiating state. 

Step 4: Define output deviations 

Each output deviation is defined according to the failure expression provided in HiP-HOPS 

annotation. It is described in terms of a logic that connects basic events and input deviations. 

Step 5: Specify next value for internal variables 

The next notion in NuSMV relates the current and next state variables to express transitions. As 

mentioned previously, once an internal failure occurs (set to true), the next value stays at true as it is 

persistent throughout the entire run. The next value of an output deviation can also be defined here 

in relation to current value of an internal malfunction and input deviations. 

In addition to modules which represent components in the system, a Main module is also constructed 

for each NuSMV model to: 

 Construct instances of all component modules. 
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 Define the connections between component modules. This is achieved by connecting  the  

parameters  of  each  component's  input  ports (and supplying them as input parameters) 

to the corresponding output ports of other modules which are connected to it. 

The refinement of the state machine transitions through minimal cut sets  works  by  constructing  one  

Main  NuSMV  module  to  include  the  internal malfunctions of all components. The initial state of 

the system is set to Normal, and all internal malfunctions are set to be false. The output deviation is 

defined in terms of its minimal cut sets generated from the FTA, as opposed to defining it in terms of 

input deviation and internal malfunctions.  

The refinement through compositional annotation can be achieved using the algorithm described 

above where one NuSMV module is constructed for each component. This way, the structural, 

hierarchical and failure propagation information is retained. This is particularly useful for refined state 

machine where establishing failure connections between components is crucial.  

The above process can be fully automated. However, to fully utilize the analysis capabilities of model 

checking, manual intervention may be required to include additional information which is not 

captured in the initial HiP-HOPS model. This additional information generally pertains dynamic 

behavior, and may include: 

 Description of states and transitions: different system states will need to be manually 

specified, e.g. various different normal states of the system that may entail different failure 

logic associated with them. These states are important in the understanding of system 

behavior and failure logic.  Such states can be separately analysed via HiP-HOPS as 

explained earlier. Normal transitions between these states, and their corresponding trigger 

events will need to be defined.  

 Requirement specification: the requirement specification needs to be manually provided by 

the analysts in terms of CTL or LTL.  

3.5 Model Checking and Verification of Safety Properties  

Once the state machines have been automatically or semi-automatically constructed and translated 

into a model checking input language, system requirements can be verified. A Model checker 

confirms whether the system model satisfies its properties, and produces counter examples if a 

property is breached. Based on the results of the model checking, analysis takes place to determine 

whether modifications are required in the design of the model or in the formulation of desired 

properties.  

System specifications and requirements can be expressed in temporal logic, in our case CTL 

(Computation Tree Logic). These requirements can be classified into different categories of 

properties, for example: reachability, safety, liveness and fairness properties [29]. Reachability 

properties define that a particular configuration φ (a state in the Kripke structure) of the model can be 

reached. Safety properties define that under certain conditions, configuration φ shall not occur. 

Liveness properties require that something ‘good’ must eventually happen. Fairness properties define 

that under certain conditions, states where configuration φ holds will occur infinitely often. Fairness 

properties are expressed in LTL, and in NuSMV, fairness constraints can be introduced with the 

inclusion of “FAIRNESS φ”.  

Considering the fact that the general application of model checking has been primarily targeted at 

mature design models, it is important to understand its value at earlier design stages. Case studies 

have been presented in [21] and [30] to demonstrate that formal models can be used effectively to find 

errors before the implementation of the system. One common error found through model checking is 

the inaccuracy in the original requirement (or how it was expressed). This generally leads to the 

modification of the requirement into a more accurate form. The importance of model checking in 

detecting hazardous interactions between system features (e.g. software components) is also 
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highlighted in [28]. These software components which control mechanical components are often 

developed in isolation, and their combination can sometimes result in unexpected or undesired system 

behavior. Model checking can be used to detect these hazardous combinations in the design stage.  

The benefit of the proposed integration of techniques in the above scheme is that HiP-HOPS analysis 

can guide the design of the system and its behavioral models by helping to identify degraded and 

failed states in response to failures and possible responses to such situations. Models of this behavior 

can then be subject to analysis via model checking. In our approach, more than one normal states and 

transitions between them can be the subject of the proposed analysis. Such states can in theory model 

the operating logic of the subsystems. We should note that this (normal) operating logic can also be 

faulty by design, i.e. contain bugs, and this is also subject to examination through model-checking. 

However, work on the verification of normal operating logic has already been the topic of extensive 

investigation and is therefore out of the scope of this paper, which is focused on how to extend such 

models with degraded and failed states and transitions to and from these states. 

3.6 A Generic and Abstract High-Level Example of Translation 

This section presents a generic and abstract high-level example to illustrate the translation from 

FTA/FMEA results to a state machine. Figure 6 shows a functional architecture which produces three 

output functions: F7, F8 and F9. For simplicity, we assume that every function has a single output 

failure - omission - and that this is caused by internal failure of the function or the omission of its 

input. Severity assessment is assumed to have identified that the severity of omission failure in output 

function F8 is hazardous, while the severities of failures in F7 and F9 are marginal.  

 

Figure 6. Example of Functional Architecture  

HiP-HOPS analysis of the model produces the fault tree shown in Figure 7 and identifies the root 

causes of omission failure in F8. The fault tree is analyzed and an FMEA table (as partly shown in 

Table 6) is generated. The FMEA table identifies those functions (function F2, function F3 and 

function F5) whose failures contribute to omission failure of function F8.  

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



 

Figure 7. Example Fault Tree 

Interpretation of the table allows the failure logic behavior of the functional architecture to be checked 

against safety requirements. By examining the FMEA table, safety measures can be devised. While 

the design solution ultimately relies on the engineer’s decision and experience, this identification of 

criticality for each function offers assistance in the management of effort allocation and design 

modification. For example, apart from identifying that focus should be placed on function F2, F3 and 

F5 due to their failure criticality, the fault tree also shows that function F5 is a single-point of failure 

that might need additional attention.  

Table 6: Excerpt of FMEA Table 

Function 

  

Failure Mode Effects  Contributing Failure  Severity  

Function F2 Internal Failure  Omission of Function 

F8  

Internal Failure in Function F3 Catastrophic 

Function F3  Internal Failure  Omission of Function 

F8 

Internal Failure in Function F2  Catastrophic 

Function F5  Internal Failure  Omission of Function 

F8 

- Catastrophic 

As previously explained in section 3.4.1, an FMEA-ModeChart Assistance Table can guide the 

construction of the state machine. The FMEA-ModeChart Assistance Table for this example is shown 

in Table 7. To construct the state machine, abstract states need to be identified. As an example for this 

simple system, the first state identified is System_Normal, where all output functions (function F7, F8 

and F9) are delivered. Each output function is susceptible to an omission failure which results in the 

inability of the system to deliver the particular function. As function F8 has been identified as a 

critical function, this brings us to the second state, System_Degraded. In System_Degraded mode, 

output function F8 is delivered regardless of the condition of function F7 or F9. System state goes to 

System_Failed when omission in function F8 occurs. It is also possible to include other degraded 

states to further define the delivery (or not) of function F7 or function F9 if necessary.  

Table 7: FMEA-ModeChart Assistance Table for the Example 

State Severity  Functions Delivered  Failure Events 

Causing Transition  

Target  Mode  

System_Normal - Function F7 Omission of Function 

F7  

System_Degraded 

Function F8  Omission of Function 

F8  

System_Failed  

Function F9 Omission of Function System_Degraded 
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F9   

System_Degraded Marginal  Function F8  Omission of Function 

F8  

System_Failed  

System_Failed Hazardous - - - 

The resulting state machine is shown in Figure 8 (a). As previously explained, the transition event for 

"Omission of F8" can be refined with its root causes (as identified through the FTA). This is 

illustrated in Figure 8 (b). Please note that emphasis of the example is placed on the root causes of F8. 

Omission of function F7 and F9 too can be refined accordingly when FTA is performed on these 

functions. As the system design develops and complexity grows, state machines can be enhanced and 

refined. Various components and subcomponents may be allocated to fulfill each of these functions. 

In turn, each of the components may have multiple states. The fault trees will develop to be more 

complex and so do the transition triggers. Representation of the state machine in a model checking 

input language allows safety properties to be verified throughout different levels of hierarchy. Model 

checking will play an important role in ensuring that safety properties are upheld throughout the 

interactions between system and component state changes.  

 

Figure 8. Example of State Machines 

4  Case Study: Brake-by-Wire System 

This case study demonstrates the application of the proposed integrated technique in the design of a 

brake-by-wire system. Brake-by-wire systems replace traditional automotive braking components 

with electronic sensors and actuators. The hypothetical brake-by-wire system used in this example is 

based upon a model presented in [31], but also draws from designs in [32] and [33]. The system 

consists of one vehicle-level processing function and four local-level wheel processing functions. The 

vehicle-level processing function reads in the braking command input from the driver, communicated 

through a braking pedal, and subsequently generates braking command for each local-level wheel 

processing function utilizing advance braking functions such as an Anti-Lock Brake System (ABS). 

Local-level wheel processing functions are located physically close to the wheels and control the 

provision of the braking energy. Upon receiving the braking command from the vehicle-level 

processing function, each local-level processing function calculates the value of the braking pressure, 

taking into consideration various local information, including actuator position and speed. The value 

of braking pressure is subsequently fed to an actuator which applies the pressure on the corresponding 

wheel of the vehicle.   

The initial discussion of the system and an early functional analysis are presented in [34]. There, 

omission and commission failure for basic breaking and ABS-assisted braking functions are analyzed. 

FLSA is used to identify critical components whose failure leads to hazardous system failure. The 
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analysis results lead to design recommendations and introduction of backup mechanisms. An abstract 

state machine is constructed – supported by FLSA results - to model and analyze system functional 

degradation.   

In this paper, we extend the analysis to illustrate the iterative application of the proposed method in a 

more detailed phase, more specifically in an architecture-allocated functional modeling phase. An 

architecture-allocated functional model extends a purely functional model by taking into account  

system architecture and representing the allocation of functions to architectural elements without 

going into fine details of the architecture. Figure 9 illustrates the architecture-allocated model of the 

system for the corresponding four wheels of the vehicle.  

This model extends the earlier functional model [34], and allocates functions to components. The 

Vehicle-level processing function is assigned to an ECU (Electronic Control Unit). Each local 

processing function is allocated to a BCU (Brake Control Unit) which, together with an actuator, are 

assigned to each wheel. It is common that multiple architectural components are assigned to perform a 

single function, or for a single component to be shared between multiple functions.  

Figure 9 illustrates the system model. It consists of input components Input_brakeDemand, 

Input_wheelSpeedSensor and Input_externalSensors; they provide the driver demand from the brake 

pedal, readings for the wheel speed, and external variable reading respectively. This information is 

passed to the ECU, which calculates and generates independent braking and ABS commands for each 

BCU. BCUs read the corresponding wheel actuator position and speed sensor, and provide the correct 

value of braking pressure applied by each actuator. Abbreviation FL indicates front-left wheel, FR 

indicates front-right wheel, RL indicates rear-left wheel, and RR indicates rear-right wheel. The 

HydraulicBackup component has been introduced to provide emergency braking in the presence of 

failure that affects electrical-based functions. Table 8 summarizes the input and output flow 

explanation for the system.  

 

Figure 9. Architecture-allocated Functional Model for BBW System 
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Table 8: BBW Input and Output Flow Explanation  

Component Input Input Explanation  Output Output Explanation 

Input Brake Demand  - - D  Provide input brake demand from 

driver to ECU, Hydraulic Backup and  

all BCUs 

Input Wheel Speed 

Sensor  

-  - D  Provide information on wheel speed to 

ECU  

Input External Sensor  - - D  Provide information on external 

variables to ECU  

ECU in1 Input brake demand 

from driver 

out Provide braking command to BCUs 

 in2 Information on wheel 

speed 

out1 Provide ABS command BCUs  

 in3 Information on external 

variables 

BCU (for all four 

wheels)  

in1 Braking command from 

ECU 

out Provide local wheel braking command 

to actuators 

 in2 Actuator position and 

speed  

 

 

in3 Braking command from 

brake pedal 

 in4 ABS command from 

ECU 

Actuator Position and 

Speed Sensor (for all 

four wheels) 

- - out1 Provide information on local  actuator 

position and speed to BCUs 

Actuator (for all four 

wheels) 

in1 Information on braking 

pressure to be applied 

out1 Application of braking pressure 

Hydraulic Backup in1 Input brake demand 

from driver 

out Provide braking pressure from 

hydraulic component 

 FL,FR, 

RL, RR  

Monitoring of each 

actuator output 

In earlier work [34], the omission and commission failure of the basic braking function and ABS-

assisted braking function are analyzed. In this paper, focus is placed on the BCU and the delivery of 

each wheel braking pressure as part of the entire brake-by-wire structure, as well as on exploring the 

relationship between the delivery (and failure of the delivery) of this function from different wheels.  

The system delivers four braking functions, which are handled by a BCU delivering commands to the 

actuator of each wheel. The longitudinal symmetry of the design means that the potential single 

functional failures on each side of the car and their effects on the system are similar to those on the 

other side of the car. For this analysis, single functional failure and multiple combinatorial failures are 

investigated.  

4.1 FFA and Severity Assessment 

In line with the proposed technique, the process starts from failure severity assessment. The following 

section explores the analysis of functional failures.  
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4.1.1 Analysis of Single Functional Failure  

The initial severity assessment of omission and commission failures are presented in [34], and here 

we introduced a new type of failure, LockedWheel, and investigate the effects of this failure on the 

system. LockedWheel failure occurs when a wheel experiences rapid deceleration (causing it to lock) 

and stop much more quickly than the vehicle could. This is usually prevented by the ABS anti-lock 

function which alternately reduces the pressure to the brake until it sees acceleration, and increases 

pressure until it sees deceleration again. This is performed within a very short period of time, resulting 

in the slowing down of the wheel matching the deceleration rate of the vehicle.  

Table 9 presents the FFA for the braking of the front-left wheel where the effects of the wheel locking 

with or without braking intention are examined.  

Table 9: FFA for Front-left Wheel 

Component Failure Type Effects on 

System  

Severity Detection Recommendation 

FL_BrakingPressure Locking-Com.  

Permanent 

wheel lock 

when there is 

no braking 

intention 

Vehicle tends to 

drift to side. 

Severe loss of 

control as 

maximum brake is 

applied 

Critical Comparison of 

pedal input and 

pressure sensor 

feedback  

Transform commission 

failure of brake pressure 

into omission of brake 

pressure  

FL_BrakingPressure Locking-Om.  

Permanent 

wheel lock 

when there is 

braking 

intention 

Vehicle tends to 

drift to side. 

Severe loss of 

control as 

maximum brake is 

applied  

Critical  Comparison of 

pedal input and 

pressure sensor 

feedback 

ABS algorithm to 

prevent permanent 

locking 

 

The table shows that the wheel locking failure is of critical severity. As it is assumed that it occurs 

when ABS feature is absent and recovery of the single wheel is not possible, in the following section 

we explore how simultaneous wheel locking can, in some cases, potentially reduce the instability of 

the vehicle. 

4.1.2 Analysis of Multiple Functional Failure   

The conjunction of two to four locking failures is examined next. As the system incorporates four 

braking functions (one for each wheel) and there are six corresponding failure modes for each 

function, there appears to be a large number of possible combinations. However, a systematic analysis 

of unique combinations yields a relatively small number, due to the symmetry of the brake-by-wire 

system. 

Certain failure combinations are also inapplicable because they can only occur in mutually exclusive 

conditions. Here, analysis of the L-Braking failure is performed in a scenario where the locking 

occurs when brake pressure is required. A summary of FFA presented in [35] focuses on the analysis 

regarding wheel locking and concluded that:  

 Severity of single wheel locking failure is critical and affects the stability and steerability of 

the vehicle. 

 Severity of two locking failures in diagonal wheels is less severe because stability is 

improved.  
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 Severity of three locking failures is critical.  

 Locking in all four wheels is identified as less severe than locking in three, or in some cases, 

two wheels.  

This is based on the assumption that the vehicle is driven on a straight road. From these FFA results, 

hypothetical recovery mechanisms can potentially be implemented by incorporating the ability to 

perform intentional locking. The intentional locking of a diagonal wheel can be performed in response 

to a single wheel locking failure, and intentional locking of all four wheels can be used as a recovery 

mechanism to reduce the severity of a failure of three wheels.  

4.1.3 Intentional-Locking Mechanism 

Working with the assumption that the recovery plan to unlock the wheel is not possible, the ability to 

intentionally lock the wheel can be potentially incorporated as an additional function to each BCU. 

An additional module, Diagonal Locking (DL), is used to monitor the output of each BCU to detect 

locked wheel (L-Braking) and subsequently activate the locking of the corresponding diagonal wheel. 

This DL module can be implemented as part of the ECU or as a separate independent component. It is 

also possible to further analyze the failure to provide this intentional locking (e.g. omission and 

commission failure of DL). To maintain the simplicity of this example, however, we assume that DL 

only propagates failures, and focus the analysis on degradation phases that the system experiences in 

the occurrence of wheel locking, ensuring that required safety properties hold during these phases. 

Figure 10 illustrates the data flow from component DL to BCU.  

 

Figure 10. Diagonal Locking (DL) Controller 

4.2 Local Failure Logic  

Information of the internal malfunction and output deviation is provided for each component. BDBE, 

WSBE, and ESBE represent the internal malfunctions which cause omission failure for components 

Input_brakeDemand, Input_wheelSpeedSensor, and Input_externalSensor respectively. Internal 

malfunctions for ECU include ECUBE which causes omission failure, ECUBEc which causes 

commission failure, ECUBEabs which causes omission of ABS feature, and ECUBEabsC which 

causes commission of ABS feature.  

The internal malfunction which causes omission failure for components ActPositionSpeedSensor is 

represented by LSBE. The internal malfunctions of BCU include BCUBE which causes omission 

failure, BCUBEc which causes commission failure, and LockBE which causes the locked wheel 

failure. LockBE represents an internal malfunction in the BCU algorithm causing maximum brake 

pressure to be applied. 

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 



The newly introduced component DL, and the actuator and BrakingPressure components are assumed 

to only propagate failures.  

In this example, as it is assumed that the supervision of relevant parameters (e.g. wheel speed) and the 

processing of ABS commands are performed by the ECU, failure in ECU is sufficient to cause failure 

in producing the correct ABS command. The LockedWheel (L-Braking) failure occurs when LockBE 

occurs in the BCU and, at the same time, the ECU fails to produce the necessary 

command/information to instruct the ABS to prevent locking (O-ABScmd). Of course, sudden hard 

braking from the driver may also cause wheels to lock. It is possible to introduce a new event to 

model this, and include the event in the analysis. However, to maintain simplicity in this example, 

only LockBE is included. Subsequently, the failure logic for the LockedWheel failure in BCU can be 

expressed as:  

L-Braking = LockBE AND O-ABScmd 

4.3 FTA and FMEA  

Following the introduction of intentional-locking mechanism through DL, it is important to 

understand the dynamics between failures of different wheels - as DL is activated in response to 

failure(s). The application of FTA and FMEA aims to derive root causes of the locking failure (L-

Braking) of each wheel. This in turns enables us to study how failures from different wheels 

propagate to cause the intentional-locking of the diagonal wheel.  

Based on the failure annotations, Table 10 shows a list of the minimal cut sets for L-Braking failure 

for front left wheel. The basic event is preceded with the component name. As part of the analysis 

result in the earlier work, ECU is assumed to be equipped with a redundant backup mechanism to 

prevent single-point failure. Therefore ECU consists of component PrimaryECU and StandbyECU.  

Table 10: Fault Tree Analysis Results 

Minimal cut sets for L-Braking Explanation  

 

FL_BCU.LockBE AND 

Input_wheelSpeedSensor.WSBE 

 

Internal locking malfunction in BCU AND Internal malfunction in 

Wheel Speed Sensor 

FL_BCU.LockBE AND 

Input_externalSensors.ESBE 

Internal locking malfunction in BCU AND Internal malfunction in 

External Sensors 

ECU.PrimaryECU.ECUBEabsC AND 

ECU.StandbyECU.ECUBEabsC AND 

FL_BCU.LockBE 

Internal ABS-commission malfunction in Primary ECU AND Internal 

ABS-commission malfunction in Standby ECU AND Internal locking 

malfunction in BCU 

ECU. PrimaryECU.ECUBEabsC AND ECU. 

StandbyECU.ECUBEabs AND 

FL_BCU.LockBE 

Internal ABS-commission malfunction in Primary ECU AND Internal 

ABS-ommission malfunction in Standby ECU AND Internal locking 

malfunction in BCU 

ECU. PrimaryECU.ECUBEabs AND ECU. 

StandbyECU.ECUBEabsC AND 

FL_BCU.LockBE 

Internal ABS-ommission malfunction in Primary ECU AND Internal 

ABS-commission malfunction in Standby ECU AND Internal locking 

malfunction in BCU 

ECU. PrimaryECU.ECUBEabs AND ECU. 

StandbyECU.ECUBEabs AND 

FL_BCU.LockBE 

Internal ABS-ommission malfunction in Primary ECU AND Internal 

ABS-ommission malfunction in Standby ECU AND Internal locking 

malfunction in BCU 

4.4 Construction of State Machine 

In the early functional analysis [34], the identification of root causes of omission of braking function 

led to the introduction of backup mechanisms (e.g. hydraulic backup component, and redundancy in 

vehicle-level processing function). This information, along with information on the delivery of 
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functions (e.g. basic braking pressure and assisted braking), are used to guide the construction of an 

abstract state machine. The state machine records the delivery of main function and the degraded 

states where non-critical function is loss or sacrificed. System abstract states can be categorized into: 

Normal, Permanent_Degraded1, Permanent_Degraded2, and Failed.   

Here, we extend the state machine to reflect the inclusion of intentional-locking mechanism, and to 

further study dynamic behavior, particularly of DL. The information to construct these refined state 

machines is directly obtained from the HiP-HOPS model.  

The updated abstract states include the following states:  

 Normal state: where both basic braking and ABS braking functions are delivered. Braking 

function in normal mode is delivered through the primary source, i.e. the Electrical module. 

 Permanent_Degraded3 state: where braking function is delivered by the Electrical module, 

ABS braking function can no longer be delivered, but intentional-locking is available. 

 Permanent_Degraded1 state: where braking function is delivered by the Electrical module, 

but the ABS braking and intentional-locking cannot be delivered. 

 Permanent_Degraded2 state: where braking pressure is delivered by Hydraulic module, ABS 

function is not delivered. 

 Failed state: where no braking pressure is delivered.  

The transition from Normal to degraded Permanent_Degraded3 state occurs when omission failure in 

ABS braking occurs, where intentional-locking can be activated on locked wheel failure. The 

transition from Permanent_Degraded3 to Permanent_Degraded1  occurs when DL is unavailable, for 

example, when an omission failure occurs in DL itself. The system moves to Permanent_Degraded2 

when braking pressure cannot be delivered by electrical components, activating the hydraulic backup 

module. Failure in both the hydraulic and electrical mechanisms will cause the system to enter the 

Failed state. Figure 11 illustrates the abstract state machine.   

 

Figure 11. BBW Abstract State Machine 

In addition to this, it is also possible to extend the analysis to include a component-level state machine 

which shows the dynamic behavior of the DL controller. This will allow us to understand how locking 

failures from different wheels - triggered by the root causes of L-Braking (identified from 

FTA/FMEA) - affect the changes in the system states and the activation of intentional diagonal 

locking. In its normal state, the DL module function is to monitor the occurrence of locking in any 

wheel and, when detected, to instantiate the locking of the diagonal wheel. It is possible for the DL 

module to have the following modes:  

1. Normal: when there is no wheel locking 
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2. TDn_Critical_X: represents a Temporary Degraded state - when locking occurs in wheel(s) X 

with total n number of lockings occurring in the vehicle 

3. PDn_X: represents a Permanent Degraded state - when locking occurs in wheel(s) X with total 

n number of lockings occurring in the vehicle 

X represents vehicle wheel(s): FL, FR, RL, RR. X ⊆ {FL, FR, RL, R}. The states are mainly 

categorized based upon the n number of wheels locked (intentionally or not). Temporary Degraded 

(TD) modes are marked as critical because they only occur where either one or three of the wheels are 

locked, which has critical effects. These modes are temporary because the entry behavior (which is 

executed immediately once the mode is entered) triggers event “X DiagonalLock” which locks the 

corresponding diagonal wheel X, and therefore causes the system to move to a less-critical Permanent 

Degraded mode. Figure 12 describes this relationship and the transitions between the states.  

 

Figure 12. State Machine for DL Controller 

The events that trigger the state transitions are signals from individual BCUs to indicate wheel 

locking. This locking can be caused by an intentional locking command from DL or unintentionally as 

a result of L-Breaking.   

State machines for other components were constructed. They reflect the hierarchical structure, and 

enable the generation of the NuSMV model which captures all the relevant modules that trigger 

corresponding transition events in BCU.  

Figure 13 illustrates the state machine for component BCU of Front Left wheel which shows the 

connections between component state changes.  The transition from Normal to Locked state in the 

wheel can be triggered by LockBE failure and omission of ABS command, or by intentional diagonal 

locking. The transition in ABS from Normal to Failed state may be caused by the omission of 

ECUabs failure, which is propagated from the ECU component. This then triggers the omission of 

ABS command. Transition within ECU from Normal state into the state where ABS is unavailable is 

shown to be caused by omission failure in its input, which is propagated from its input of external 

sensors and wheel speed sensor, and ABS related internal malfunctions within the ECU. External and 

Wheel Speed Sensor components change from their Normal state into a Failed state when their 

corresponding internal malfunctions ESBE and WSBE occur.   
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Figure 13. Hierarchical Failure Modelling in BCU FL   

The construction of these state machines, particularly the refinement of the transitions events is 

systematically guided by HiP-HOPS models. To effectively link failure behavior to input modules and 

capture structural information, transition events are expressed in a structure similar to HiP-HOPS 

failure annotations. 

4.5 Verification of safety properties  

Once the mode charts and NuSMV models have been constructed, requirements can be verified via 

model checking. Among the requirements, safety properties are of primary concern in safety-critical 

systems. The process in this example aims to ensure that the extended model and the introduction of 

intentional locking mechanism uphold the system safety requirements.  

Possible safety requirements which can be verified in this example are:  

SR1: Intentional locking of diagonal wheel shall not always lead to hazardous state  

This safety property aims to ensure that the activation of diagonal locking will not, in itself, cause 

unintentional locking which leads to hazardous states.  

To do this, the “hazardous” state is defined as the condition either where one wheel locks or where 

three wheels lock, i.e. the occurrence of either TD1_Critical_X or TD3_Critical_X respectively:  

Hazardous := case  

States = TD1_Critical_FR |States = TD1_Critical_RL | States = 

TD1_Critical_FL | States = TD1_Critical_RR |States = TD3_Critical_FRRLRR 

|States = TD3_Critical_FLRRFR | States = TD3_Critical_FLRRRL : 1;  

1: 0;  

esac; 

The activation of DL (DLActive) is defined as the condition when any of the wheels has been 

diagonally locked intentionally:  

DLActive := FLdiagonalLock | RLdiagonalLock | FRdiagonalLock | 

RRdiagonalLock; 

We aim to verify that the diagonal locking function itself will not always lead to hazardous state. This 

can be expressed in CTL as the following, and this has been verified to be true by the model checker:  
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SPEC !AG(DLActive -> Hazardous); 

Another example of property which can be investigated by model checker is  

SR2: In situations where the number of locked wheel failures is not one or three, the system shall not 

enter the hazardous mode  

SPEC AG((!(Counter = 1) & !(Counter = 3))->!Hazardous)); 

This property does not hold and the model checking traces demonstrate that the locking failure of two 

non-diagonal wheels at one point leads to the locking of three wheels, which is hazardous. With the 

current arrangement of DL, however, this means that the locking of two non-diagonal wheels should 

always eventually lead to the locking of all four wheels. In the NuSMV model, variable 

TwoParallelWheelsLocked is assigned to represent the locking of two non-diagonal wheels. This state 

of reachability can be verified through the following modified properties:  

SR3: In situations where two non-diagonal wheels are locked, all four wheels shall eventually be 

locked 

AG(TwoParallelWheelsLocked -> AF(States = PD4_AllWheelsLocked)); 

This property is verified to be true by the model checker, and therefore we are assured that the non-

diagonal locking of two wheels will also lead to locking of all four wheels (which is less severe).  

The next property aims to ensure that the intentional locking should only be instantiated when the 

ABS function is not working, as in its presence the ABS would be expected to manage the prevention 

of wheel locking:  

SR4: Intentional locking of diagonal wheel shall not be instantiated when ABS function is working 

For this, we define a condition ALLOFF where no diagonal locking is taking place. Every time when 

the ABS is present (omission of ABS does not occur), ALLOFF should be true.  

SPEC AG ((O-ABScmd = 0) -> ALLOFF); 

This is verified to be true by the model checker.  

Another example of property that one could check is the system failure recoverability, for instance, 

whether intentional diagonal locking will always eventually result in the system moving from the 

hazardous state to a less-severe (non-hazardous) state. This aims to ensure that DL fulfills its function 

as a fail-safe mechanism. Less-severe states refer to the condition where either only two diagonal 

wheels are locked or all four wheels are locked, which brings us to the next requirement – which has 

been verified to be true:  

SR5: Intentional locking of wheels shall always lead the system to a less-severe state  

SPEC AG (DLActive -> !Hazardous);  

The verification of these properties helps highlight the ability to assess dynamic behavior in the DL 

controller and to verify safety properties which cannot be managed with FLSA.  

It is important to note that the example and modification are hypothetical and simplified. The example 

aims to illustrate the application of the proposed integration, and does not cover the detailed design. 

The discussion on safe and optimum intentional-locking timing and rate is out of the scope. Other 

advanced feature which assist braking, for example, Electronic Brake Distribution (EBD) as part of 
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the ABS, are not covered. Instead, the example shows how the proposed integrated technique can in 

principle assist the design, development, and safety assessment process to achieve a more robust and 

fault-tolerant design.  

5 Conclusion  

The ability to perform early safety analysis which can guide the design of safety critical systems has 

become increasingly important. In this paper, we presented a method which facilitates the combined 

application of two prominent MBSA techniques, namely FLSA in the form of HiP-HOPS and model 

checking, from an early stage. The method exploits the strengths of both techniques, and 

systematically utilizes the results of FLSA analysis for construction of design models for the system 

that are subject to formal verification. This allows identification of design weakness and verification 

of safety requirements, and contributes to a more-robust design process. An example of a brake-by-

wire system was presented to demonstrate the application of the proposed method. We illustrated how 

the application of HiP-HOPS identified root causes for locked wheel failures, and how HiP-HOPS 

models and results also systematically assist the construction of the state machines for a control 

component, which can then be verified using NuSMV. 

This paper has demonstrated that the output of FLSA can guide the construction of input for model 

checking. In early design, abstract state machines created via FLSA can be used to assist systematic 

design of degraded modes and fault tolerant strategies. In more detailed design, state machines can be 

used to model and analyze detailed dynamic behavior of system elements, and allow detailed safety 

requirements to be verified (which is a challenge in FLSA). This essentially brings the capabilities of 

model checking into an earlier design stage, allowing the results to have a greater influence in design 

decisions. The degree of automation enabled by the underpinning techniques allows the analysis to be 

iterated, and contributes to a more-rigorous safety assessment. Future work includes application of the 

proposed concept in the context of design using emerging architecture description languages such as 

AADL [6] and EAST-ADL [7].   
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