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Abstract 
Human footfall is an attractive source of energy for harvesting for low power applications. However, the 

nature of footfall is poorly matched to electromagnetic generators. Footfall motion is characterised by 

high forces and low speeds while electromagnetic generators are normally most efficient at relatively 

high speed. This paper proposes a novel mechanism for converting the low speed motion of footfall to a 

higher speed oscillating motion suitable for electromagnetic power generation. The conversion is 

achieved using a cantilever beam which is deflected by the footfall motion using a special ‘striker’ 

mechanism which then allows the cantilever to oscillate freely at a relatively high speed. An 

arrangement of permanent magnets attached to the cantilever cause an alternative magnetic field and a 

stationary coil converts this to a usable voltage. The paper describes the mechanism and provides a 

mathematical model of its behaviour which allows the system parameters to be optimised and its 

performance predicted. The performance of a prototype device is presented and it is shown that this is 

capable of generating up to 60mJ per step and that the conversion efficiency is up to 55%. 
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Footfall energy harvesting devices 
Various human activities offer the potential for energy harvesting with a wide range of available 

power levels and ease of conversion. Harvesting of energy from human sources was considered by 

Starner (1996) who concluded that available energy ranged from around 7mW from finger motion 

during typing to 67W for lower limb movement. This paper also considered the effect that 

extracting this energy would have on the subject and concluded that inconvenience to the subject 

could only be avoided if significantly lower power levels were extracted. A particularly attractive 

source of energy in this context is foot fall or heel strike since normal walking involves dissipation of 

significant energy in the shoe and walking surface and so the user might be unaware or 

unconcerned if some of this energy were converted to electrical energy. It may readily be calculated 



that a subject weighing 60kg must apply a force of at least 588N through the foot during walking 

(The peak force is typically 25% above body weight during walking and up to 2.75 - 3 times body 

weight during running (Trew & Everett, 2001)). If this is accompanied by a 10mm deflection of the 

floor or shoe, then the available energy is 5.88J and assuming one complete stride per second, an 

available power of 5.88W per foot.  

Footfall occurs at an approximately fixed frequency but is characterised by a series of impacts 

rather than continuous motion. Given that power delivery during heel strike occurs in a small part 

of the overall gait period, a significant challenge is to devise mechanically robust devices able to 

convert the energy in an efficient manner without being large or heavy. Starner and Paradiso (2004) 

considered a number of shoe insert energy harvesting devices. They predicted that an insert 

constructed from 40 plies of PVDF positioned to extract energy from the flexing of a shoe sole 

should be capable of generating 5W when deflected by 5cm by a 52kg user. The device they 

constructed was smaller than that used as the basis for these predictions and possessed fewer 

PVDF layer. The measured peak power from this device was 15mW with an average, over the entire 

gait cycle, of 1.3mW. A second device, based on a PZT unimorph, was developed to capture energy 

from heel strike. This was found to deliver a peak power of 60mW and an average of 1.8mW. A 

further development of this device used two unimorphs arranged back-to-back and achieved an 

average power of 8.4mW. It was noted that this represented an efficiency of mechanical to 

electrical energy conversion of only around 1%. The efficiency of piezoelectric conversion is 

improved if the device is operated at its resonant frequency and so consideration has been given to 

methods to convert the low frequency footfall energy pulses to higher frequencies matched to 

piezo resonance. Antaki et al (1995) used a passive hydraulic pulse amplifier to effect this frequency 

conversion and obtained average power of up to 700mW during walking while Hagood et al, (1999) 

used an active valve to chop the hydraulic flow at the resonant frequency of a PZT resonator.  

A heel strike device based on Electro Active Polymers (EAPs) capable of developing 0.8J/step, 

indicating a power of around 2W at normal walking speed if fitted to both feet has been reported in 

(SRI International, 2002) and (Pelrine et al, 2001). The durability of EAP materials has been a matter 

for concern (SRI International, 2002).  

Electromagnetic conversion is probably the most well established method of electrical generation 

and electrical machines can offer a high level of efficiency. Given the design and material 

constraints imposed on electrical machines, they typically possess a limited range of speeds at 

which they operate efficiently. The majority of machines are most efficient when operated at high 

speeds and low force/torque. Thus there is an inherent mismatch with footfall which exhibits 

relatively high force but low average speed. One method for improving this matching is through the 

use of gears (Hayashida, 2000) but this introduces significant inefficiency and increasing the gear 

ratio used typically increases the losses. In addition, since gears do not provide any energy storage 

capability, the matching must be performed during the footfall impact. This implies that the gears 



must be capable of transmitting the full impact force. To be capable of handling such forces, gears 

generally need to be large and typically have associated large frictional losses.  

One approach to ameliorate the problems associated with the high impact forces found in footfall is 

to attempt to store the energy so that the conversion between mechanical and electrical energy 

can be performed over a longer period, thus making use of physically smaller devices. Mechanical 

energy may be stored in springs, moving masses, in fluid flow or a fluid pressure vessel. Kymissis et 

al (1998) demonstrated a system composed of gears, a spring and flywheel used to drive a 

generator which was able to produce an average of 250mW from a 3cm deflection of the heel 

during normal walking. It was noted that this device was obtrusive for the user.  

In addition to in-shoe energy harvesting devices, a smaller number of floor mounted systems have 

also been described in the literature, the majority of which are based around piezo conversion. The 

systems considered include an energy harvesting dance floor (Sustainable Dancefloor, 2013) and 

‘POWERLeap’ which uses energy generated as people walk across a pavement to produce light 

(Powerleap, 2013).  

Japanese Railways and Keio University have developed a ticket gate electricity generation system 

which relies on a series of piezo elements embedded in the floor under the ticket gates. A total of 

90m2 of piezo power generation mat were laid down in Tokyo station and the device was reported 

to generate 1mJ per step from a single generator (Takefuji, 2008). The design and performance of 

these systems is not presented in details in the literature. 

A mechanism developed by the authors (Gilbert & Balouchi, 2014) based on mechanical analogues of 

electrical switched mode power supplies (Gilbert et al, 1996), has been used for harvesting footfall 

energy. In this device energy supplied during compression is stored in a spring and is transferred 

through a one-way clutch to a flywheel and generator. Since the impact energy is initially 

transferred only to the spring, it is not necessary to use such large and robust gears as would be 

required for direct conversion during the heel strike impact. The device allows a deflection of 10mm 

and is capable of producing an output energy of 45mJ per step.  

The mechanism presented in this paper is based around a vibrating cantilever mechanism with 

electromagnetic conversion from mechanical to electrical energy. Cantilever based devices have 

been widely considered for the conversion of mechanical vibration to electrical energy, either using 

electromagnetic transduction (Glynn-Jones et al, 2004), (Shearwood & Yates, 1997), (Beeby et al, 

2006) or piezoelectric materials (Sodano et al, 2004) however the authors are not aware of vibrating 

cantilever devices being used for footfall energy harvesting.  

The aim of the work described in this paper is to achieve higher levels of output power while 

remaining unobtrusive to the user. The paper is organised as follows: the structure and operation of 

the device is presented and then a model of its behaviour, relating the input displacement to the 

output energy, is developed. This model is used as the basis for selecting system parameters to 



maximise the conversion efficiency. Experimental results for a prototype system, attached to a 

staircase, are presented. The behaviour of this system is discussed and the potential to increase the 

output energy outlined. 

Proposed system 
In order to achieve high conversion efficiency for footfall energy harvesting, a new mechanism is 

proposed. The proposed system consists of a cantilever beam, which is deflected as a result of the 

pedestrian footfall and then vibrates. This vibration causes a set of permanent magnets, attached near 

the end of the cantilever, to move relative to a stationary coil, causing the magnetic field to vary, thus 

inducing a voltage in the coil. 

In order to produce the initial deformation of the cantilever a ‘striker’ or trigger mechanism, as shown in 

Figure 1 and Figure 2 is used. The striker is driven in a reciprocating vertical motion by the footfall and 

the tip of the striker follows an approximately trapezoidal trajectory, initially contacting the cantilever in 

its neutral position, forcing it downwards and then retracting to allow the cantilever to vibrate freely. 

Once the pedestrian’s foot is lifted and the input moves back up, driven by a return spring, the striker tip 

bypasses the cantilever and is then re-primed owing to contact with the upper end stop. The cycle can 

then repeat.  

 

Figure 1 Cantilever and 'Striker' Mechanism Trajectory. The magnet and coil assembly are not included to aid clarity 
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Figure 2 Striker Mechanism Structure and Dimensions 

If the striker tip is initially in position 1 and the input is pushed downwards then the tip will move in a 

straight line to position 2, the lever will then contact the lower end stop and the tip will retract, moving 

along an arc to point 3. Once the input is allowed to return upwards, the striker tip will move in a 

straight line to point 4, at which point the lever will contact the upper end stop, forcing the tip back to 

position 1. Thus the trajectory of the tip is approximately trapezoidal.  

To determine the range of movement of the striker tip, consider the dimensions shown in Figure 2, i.e. 

two links of length l1 and l2 offset by an angle θ with an input reciprocating distance of ±D and end stops 

set symmetrically a distance ΔD less than the reciprocating distance. Also assume that 𝛥𝐷 ≪ 𝑙1 so that 

the striker moves through small angles. The straight line segments of the trajectory (1→2 and 3→4) 

correspond to the case where the lever is not contacting the end stops. This matches the distance 

between the end stops, 2(𝐷 − ∆𝐷) and so the vertical side length ℎ = 2(𝐷 − ∆𝐷). The arcs (2→3 and 

4→1) occur when the lever is in contact with the end stops and the striker is rotating around the pivot. 

Consideration of the trigonometry of the arrangement allows an expression to be derived for the width, 

𝑤 ≈ 2∆𝐷
𝑙1

𝑙2
𝑠𝑖𝑛(𝜃). Using these expressions, it is possible to choose the striker dimensions to maximise 

the cantilever deflection while producing sufficient horizontal movement, w, to ensure clearance 

between the striker and cantilever. 

The generator (not shown in Figure 1) consists of permanent magnets mounted on a ‘U’ shaped bracket 

attached to the cantilever, with a stationary coil placed between them as shown in cross section in 

Figure 3. Alternatively, the coil may be mounted on the cantilever and move between stationary 

magnets. 
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Figure 3 Generator attached to end of cantilever 

Modelling and design optimisation 
In order to predict the performance of this system and to guide the selection of system parameters, it is 

necessary to develop a dynamic model of the cantilever and generator. The first mode of vibration in a 

uniform cross section cantilever subject to small deflections may be described by the equation: 

 𝑚𝑒𝑓𝑓�̈� = −𝑘𝑥 − 𝑏�̇�  (1) 

Where x is the displacement of the cantilever tip, the effective mass is 𝑚𝑒𝑓𝑓 = 𝑚𝑡𝑖𝑝 + 33
140⁄ 𝑚𝑏𝑒𝑎𝑚. 

(Timoshenko, 1937) in which 𝑚𝑏𝑒𝑎𝑚 is the mass of the cantilever beam and 𝑚𝑡𝑖𝑝 the mass at the beam 

tip, k is the effective stiffness of the cantilever and b represents the damping.  

The damping is composed of mechanical damping and damping due to useful electrical power being 

supplied to the load. The open circuit voltage induced in the coil is 𝑉 = 𝑘𝑒�̇� where ke is the emf constant 

of the generator. Assuming the coil has a resistance RC and is connected to a load resistance RL then the 

current in the coil is: 

 𝑖 =
𝑘𝑒�̇�

𝑅𝐶+𝑅𝐿
  (2) 

This causes a reaction force in the cantilever equal to 𝑘𝑡𝑖 where 𝑘𝑡 is the force constant of the 

generator, which is equal to ke. The damping coefficient is thus: 

 𝑏 = 𝑏𝑚 + 𝑏𝑒 = 𝑏𝑚 +
𝑘𝑒

2

𝑅𝐶+𝑅𝐿
 (3) 

Where bm is the mechanical damping coefficient and be the electrical damping coefficient. Thus the 

dynamics of the cantilever beam may be written as:  
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 𝑚𝑒𝑓𝑓�̈� = −𝑘𝑥 − (𝑏𝑚 +
𝑘𝑒

2

𝑅𝐶+𝑅𝐿
) �̇� (4) 

For an initial tip displacement x0 and zero initial velocity, Equation 4 may be solved for 𝑥(𝑡) as: 

 

 𝑥(𝑡) =
𝑥0

𝛽
𝑒−𝜔𝜉𝑡𝑠𝑖𝑛(𝜔𝛽𝑡 + 𝜙) (5) 

 

Where 𝜔 = √
𝑘

𝑚𝑒𝑓𝑓
, =

(𝑏𝑚+
𝑘𝑒

2

𝑅𝐶+𝑅𝐿
)

2𝜔𝑚𝑒𝑓𝑓
 ,  𝛽 = √(1 − 𝜉2), and 𝜙 = 𝑐𝑜𝑠−1(𝜉). The velocity is then: 

 

 �̇�(𝑡) = 𝑥0
𝜔

𝛽
𝑒−𝜔𝜉𝑡{−𝜉𝑠𝑖𝑛(𝜔𝛽𝑡 + 𝜙) + 𝛽𝑐𝑜𝑠(𝜔𝛽𝑡 + 𝜙)} (6) 

 

Thus the velocity, and hence the generated voltage, is a decaying sinusoid.  

Using Equations 2 and 6 and the fact that the power delivered to the load is 𝑝(𝑡) =  𝑖2𝑅𝐿, the energy 

supplied to the load following a single initial displacement is found to be: 

 

 𝐸𝑜𝑢𝑡 = ∫ 𝑝(𝑡)𝑑𝑡
∞

0
=

𝑘𝑥0
2

2

𝑅𝐿𝑘𝑒
2

𝑏(𝑅𝐶+𝑅𝐿)2 (7) 

 

Given that the mechanical energy initially stored in the cantilever is 𝐸𝑖𝑛 =
𝑘𝑥0

2

2
 it is straightforward to see 

that the efficiency of converting this mechanical energy to electrical energy is: 

 

 𝜂 =
𝐸𝑜𝑢𝑡

𝐸𝑖𝑛
=

𝑅𝐿𝑘𝑒
2

𝑏(𝑅𝐶+𝑅𝐿)2
  (8) 

 

Or, substituting from Equation (3) 

 

 𝜂 =
𝐸𝑜𝑢𝑡

𝐸𝑖𝑛
=

𝑅𝐿𝑘𝑒
2

(𝑏𝑚+
𝑘𝑒

2

𝑅𝐶+𝑅𝐿
)(𝑅𝐶+𝑅𝐿)2

  (9) 



 

The load resistance for maximum efficiency can be determined from 
𝑑𝐸𝑜𝑢𝑡

𝑑𝑅𝐿
= 0 as 

 �̂�𝐿 = √
𝑅𝐶(𝑏𝑚𝑅𝐶+𝑘𝑒

2)

𝑏𝑚
 (10) 

And the peak efficiency is: 

 

 �̂� =
�̂�𝐿𝑘𝑒

2

(𝑏𝑚+
𝑘𝑒

2

𝑅𝐶+�̂�𝐿
)(𝑅𝐶+�̂�𝐿)2

 (11) 

 

It is interesting to note that the optimum load resistance does not correspond to the matched load 

condition (RL = RC) used to give maximum power transfer or the matched damping (bm = be) used in 

continuously excited vibration based energy harvesting devices (Beeby et al, 2006). 

It may be seen that if 𝑏𝑚 → 0 and �̂�𝐿 → ∞ then 𝜂 → 1. Unfortunately, we cannot arbitrarily control the 

mechanical damping but should aim for a cantilever material which has a low loss coefficient such as 

spring steel (Ashby, 2010). For a given value of 𝑏𝑚 it appears that we should aim to make 𝑅𝐶  as small as 

possible and 𝑘𝑒 as large as possible. A figure of merit for the generator system may be defined as: 

𝛾 =
𝑅𝐶

𝑘𝑒
2 

where we wish 𝛾 to be as small as possible. The relationship between 𝛾, bm and the efficiency is shown 

in Figure 4. It can be seen that the efficiency increases for decreasing 𝛾 and bm.  

 



 

Figure 4 Effect of Mechanical Damping and gamma on Efficiency 

 

Unfortunately, it is not feasible to control 𝑅𝐶  and 𝑘𝑒 independently since they are both determined by 

the coil configuration and the wire used. In particular, the value of 𝑘𝑒 increases if the number of turns in 

the coil is increase but to fit a larger number of turns within a given size of coil, it is necessary to reduce 

the wire diameter and this, in turn, increases the resistance of the coil. For a given size of coil, the coil 

resistance is minimised if a low resistivity material is used for the wire while 𝑘𝑒 is maximised if the coil 

operates in a strong magnetic field. Alternatively, 𝛾 may be reduced by increasing the size of the coil, 

provided the magnetic field is extended to cover all of the area in which the coil moves. 

Experimental evaluation 
A prototype cantilever system has been constructed as shown in Figure 5. In order to aid access, this is 

mounted on a staircase rather than under a floor. One step of the staircase is able to pivot and the 

striker mechanism is coupled to the step near its front edge. Thus the mechanism is actuated wherever 

the pedestrian stands on the step. 
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Figure 5 Prototype Cantilever System attached to Staircase 

The characteristics of the system may be altered in that the cantilever length, thickness and material 

may be changed and the magnet and coil arrangement adjusted. The positions of the end stops can also 

be adjusted. The results discussed here are for the parameter values listed in Table 1. Three lengths of 

cantilever have been considered, as listed. These parameters have been derived using a mixture of 

direct measurement and fitting of simulated behaviour to experimental data. In the case of the 

mechanical damping ratio, a single figure is difficult to determine since, particularly for the shorter 

cantilevers, the striker causes deflection beyond the elastic region resulting in a large initial damping 

which then reduces once the deflection returns to the purely elastic region. The figures presented in 

Table 1 are representative of the overall damping behaviour. The parameters of the electrical generator 

are given in Table 2. 

Parameter Symbol Value 

Cantilever Breadth b 20mm 

Cantilever Height  h 3mm 

Cantilever Length l l1 =127mm l2 =178mm l3=254mm 

Initial deflection x0 5mm 10mm 11mm 

Beam Input Energy Ein
 0.21 J 0.30 J 0.098 J 
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adjuster 
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adjuster 



Resonant Frequency ω ω 1 = 299.2 ω 1 = 174.5 ω 1 = 89.2 

Mechanical Damping 𝜉 𝜉1 =0.0227 𝜉2 =0.0198 𝜉3 =0.0049 

Spring Constant k 17050 N/m 5980 N/m 1620 N/m 

Table 1 Prototype System Parameters 

 

Parameter Value 

Coil Diameter 30mm 

Coil Length 12.5mm 

Wire Diameter 0.35mm 

Number of Turns 1100 

Coil Resistance 11Ω 

Effective Magnetic Field Strength 0.16T 
Table 2 Generator Parameters 

It can be seen that the shorter cantilever is stiffer and has a higher resonant frequency but also has 

higher damping. The initial displacement for the shorter cantilever is limited to avoid plastic 

deformation. The peak voltage generated is different for each cantilever due to the different resonant 

frequencies and displacements but is in the range 4-8V.  

The electrical energy delivered to the load as a function of load resistance is shown in Figure 6. It can be 

seen that there is good agreement between the experimental and simulated behaviour. It can also be 

seen that the load resistance for maximum output energy is higher for the longer cantilevers which have 

lower mechanical damping, as predicted from Equation 11. The maximum output energy is 

approximately 60mJ for the 178mm long cantilever. If it is assumed that the stair is deflected once per 

second then the average power would be 60mW. Considering the volume of the cantilever and the 

generator, but excluding the striker, this corresponds to a power density of approximately 1000W/m3 

which is comparable to the estimated power density of other footfall harvesters described in the 

literature (Gilbert & Balouchi, 2008). 



 

Figure 6 Experimental and Simulated Output Energy for Differing Length Cantilevers and Varying Load Resistance 

Figure 6 shows the output energy for different cantilevers but, owing to the different cantilever lengths, 

and hence stiffness, the input energy in each case is different, as shown in Table 1. A more consistent 

comparison is provided by the efficiency plots shown in Figure 7. 

 

Figure 7 Efficiency for Differing Length Cantilevers and Varying Load Resistance 
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It can be seen that the longer cantilever provides significantly greater efficiency, up to a maximum of 

approximately 55%. It should be noted that this is the efficiency of the cantilever converter alone and 

does not include any losses in the mechanism coupling the striker to the floor/staircase. In the case of 

the prototype system described here, the losses in this coupling are significantly higher than losses in 

the cantilever itself and so the overall efficiency is poorer. However, the prototype was not designed to 

extract the maximum energy from users but re-design of the cantilever (as discussed in the next section) 

would allow greater energy capture and greater overall efficiency. 

Discussion 
Human footfall offers a significant amount of energy available for harvesting. If a pedestrian is assumed 

to weigh 60kg and the harvesting device undergoes a deflection of 10mm then the energy available in 

each step is approximately 6J, assuming a constant 60N is applied during the deflection stage. A more 

realistic situation is that the reaction force increases in proportion to the deflection and so the stored 

energy would be half of this value (𝐸 =
1

2
𝑓𝑜𝑟𝑐𝑒 × 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡) hence 3J. This is approximately 50 

times greater than the maximum output energy achieved in the prototype device. There are two 

reasons for this disparity. Firstly, there are significant losses due to friction in the striker mechanism, 

however, the second reason is that the cantilever used was not designed to store this amount of energy 

and since storing potential energy is the first stage in the conversion process, if the cantilever cannot 

store the required energy, it will not be able to convert it.  

The potential energy storage capacity of a cantilever beam depends on the volume of material and its 

yield strength. For a cantilever with uniform cross section, subject to a force applied at the free end, the 

maximum stored energy density is 
𝐸𝑛𝑒𝑟𝑔𝑦

𝑉𝑜𝑙𝑢𝑚𝑒
=

𝜎𝑓
2

18𝐸
 where 𝜎𝑓 is the yield stress of the cantilever material 

and 𝐸 is it’s Young’s modulus (Ashby, 2010). In the case of spring steel, 
𝜎𝑓

2

𝐸
≈ 10𝑀𝐽/𝑚3 (Ashby, 2010) 

and so a steel cantilever is capable of storing approximately 550kJ/m3. Thus, to store the 3J available for 

a typical pedestrian would require a cantilever volume of 5.5 × 10−6𝑚3. This figure may be compared 

to the volume of the longest cantilever used in the prototype which has dimensions of 3𝑚𝑚 × 20𝑚𝑚 ×

254𝑚𝑚 giving a volume of 15 × 10−6𝑚3. In the prototype, this beam receives approximately 100mJ 

and delivers 55mJ to the load. Given that it is easily capable of storing 3J, it may be inferred that it could 

deliver approximately 1.65J. Again, assuming a footfall rate of 1 step per second and considering only 

the cantilever and generator volume, this would correspond to a power density of 27500W/m3, a figure 

which is well above any figure in the published literature (Gilbert & Balouchi, 2008). It may be that 

achieving such a high power density would not be possible since a greater power output would be 

require larger components in the generator but these figures indicate that further development of the 

device is worthwhile.   

An interesting point to note is that in this device, the material of the cantilever performs a dual role: as a 

potential energy store (in the form of elastic deformation of the material) and as a kinetic energy store 

(in the form of a moving mass). This may be compared with the device described in Gilbert and Balouchi 

(2013), in which a spring is used as a potential energy store and a separate flywheel is used as a kinetic 



energy store. Using the same material to perform both functions suggests that the device described in 

this paper could achieve a higher energy density. 

Conclusions 
A novel device has been presented which is capable of converting human footfall into electrical energy 

in a simple and efficient manner. The system is composed of a cantilever beam which is made to vibrate 

by a striker mechanism. This striker mechanism is coupled to a movable stair as part of a staircase but 

could also be connected to a movable floor panel. The vibration of the cantilever causes movement of 

permanent magnets around a coil, thus generating electrical power. It has been shown that it is possible 

to model the behaviour of the system and identify parameters to maximise the efficiency of the energy 

conversion. Experimental results for the prototype system demonstrate that the device is capable of 

delivering an average power of 60mW and that the conversion efficiency of the cantilever mechanism 

can be as high as 55%. Analysis of the energy storage capacity of the cantilever indicates that this 

approach could offer significantly higher output power and power density than other footfall energy 

harvesters described in the literature. 
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