
Athens Journal of Technology Engineering June 2014

119

Enhancing the EAST-ADL Error Model with

HiP-HOPS Semantics

By Septavera Sharvia



Yiannis Papadopoulos
†

DeJiu Chen
‡

Martin Walker


Wenjing Yuan
•

Henrik Lonn


EAST-ADL is a domain-specific modelling language for the

engineering of automotive embedded systems. The language has

abstractions that enable engineers to capture a variety of

information about design in the course of the lifecycle — from

requirements to detailed design of hardware and software

architectures. The specification of the EAST-ADL language includes

an error model extension which documents language structures that

allow potential failures of design elements to be specified locally.

The effects of these failures are then later assessed in the context of

the architecture design. To provide this type of useful assessment, a

language and a specification are not enough; a compiler-like tool

that can read and operate on a system specification together with its

error model is needed. In this paper we integrate the error model of

EAST-ADL with the precise semantics of HiP-HOPS — a state-of-

the-art tool that enables dependability analysis and optimization of

design models. We present the integration concept between EAST-

ADL structure and HiP-HOPS error propagation logic and its

transformation into the HiP-HOPS model. Source and destination

models are represented using the corresponding XML formats. The

connection of these two models at tool level enables practical EAST-

ADL designs of embedded automotive systems to be analysed in

terms of dependability, i.e. safety, reliability and availability. In

addition, the information encoded in the error model can be re-used

across different contexts of application with the associated benefits


Research Assistant, University of Hull, UK.

†
Professor, University of Hull, UK.

‡
Associate Professor, KTH Royal Institute of Technology, Sweden.


Lecturer, University of Hull, UK.

•
Chalmers University of Technology,Sweden.

SE, Volvo Technology, Sweden.

Vol. 1, No. 2 Sharvia et al.: Enhancing the EAST-ADL Error Model…

120

for cost reduction, simplification, and rationalisation of

dependability assessments in complex engineering designs.

Introduction

Model-based engineering has become increasingly important in managing

the ongoing advances in functionality and complexity of modern safety-critical

embedded systems. There is a growing development in domain-specific

modelling languages to support the design lifecycle from the early

requirements stage up to the detailed hardware and software designs. Such

languages aim to address the challenges arising from the management of

nominal system design, design refinement and evolution, as well as the safety

requirements and error behaviours.

EAST-ADL (EAST-ADL, 2014) is an Architecture Description Language

(ADL) which provides an integrated and systematic support for modelling of

automotive systems. EAST-ADL facilitates multi-level abstractions which

allow design and engineering concerns to be better managed. The specification

of the EAST-ADL includes an error model which describes potential failures

of the design elements. Specifications using the error model can be used to

assess of the effects and propagations of these failures through the system. To

perform this assessment, however, a connection between the modelling

language and a model-based safety analysis tool needs to be established.

Consideration for safety and reliability has been crucial throughout the

development of safety critical systems. Various model-based safety analysis

techniques (Joshi et al., 2006; Sharvia & Papadopoulos, 2011) have been

proposed and developed throughout recent years. These techniques can be

based on architectural decomposition of the system, e.g. the HiP-HOPS

technique (Papadopoulos, et al., 2001), or they may be based on formal

verification. such as the FSAP-NuSMV model checking approach (Bozzano &

Villafiorita, 2006). Both categories of technique aim to identify the causes of

failures, derive and refine safety requirements, and assist in the development of

safety solutions. Some techniques have been extended with additional

capabilities, e.g. HiP-HOPS is also capable of architectural optimisation and

automatic allocation of safety requirements.

Integration between emerging domain-specific languages and a mature

model-based safety analysis technique will be greatly beneficial in enabling

robust and consistent automotive system development and assessment. In this

paper, we extend the error model of EAST-ADL with the semantics of HiP-

HOPS to enable safety analysis to be performed on EAST-ADL models. This

extension will pave the road for exploiting many of the capabilities provided by

HiP-HOPS, including reliability analysis, availability analysis, safety analysis

through Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis

(FMEA), multi-objective optimization, and safety requirement allocation, all

using data gathered from the EAST-ADL model. The information contained in

the EAST-ADL error model can be re-used across different contexts of

Athens Journal of Technology Engineering June 2014

121

application with the associated benefits of cost reduction, simplification and

rationalisation of dependability assessments in complex engineering designs.

The integration requires translation of the models in the automotive

domain to models in the safety analysis domain, i.e., a transformation of the

EAST-ADL error model to a corresponding HiP-HOPS model. The concrete

source and destination models are both represented in XML-based formats,

which are EAXML and HiP-HOPS XML respectively. A translator tool has

been developed to perform the transformation between these models. This

involves a conceptual semantic mapping between the domains as well as

representation of the output in the target concrete syntax (i.e. HiP-HOPS). The

connection of these two models at tool level enables various dependability

analyses to be performed on practical EAST-ADL designs in an incremental

and iterative manner.

The remainder of this paper is structured as follows: Section 2 discusses

the different levels of abstraction in EAST-ADL, and their contribution to the

design lifecycle. The Error Model is introduced and the main elements of the

Error Model are briefly discussed. Section 3 discusses the main processes in

HiP-HOPS, as well as its contribution in providing automated safety and

reliability analysis. The main elements of the HiP-HOPS XML interface are

also presented. Section 4 presents the semantic mapping between EAST-ADL

and HiP-HOPS models. Then, the translation process and algorithm are

explained. Section 5 of this paper presents a small case study to illustrate the

transformation. Section 6 presents our conclusions and outlines future works.

EAST-ADL

EAST-ADL provides a comprehensive approach for the modelling of

automotive embedded systems. It captures requirements in a standardized form

and covers design aspects such as vehicle features, analysis functions,

communications, and software and hardware components. EAST-ADL

contains multiple layers of abstractions which allow the system to be modelled

from different viewpoints. The layers of abstractions are illustrated in the

figure below. This provides separation-of-concerns and enables effective

quality management. It also provides traceability relations which allow an

element to be traced from feature to components in hardware and software.

The four principle abstraction layers are the Vehicle level, Analysis level,

Design level and Implementation level (Blom, et al., 2012).

Vol. 1, No. 2 Sharvia et al.: Enhancing the EAST-ADL Error Model…

122

Figure 1. EAST-ADL Abstraction Level

The Vehicle level model provides the top-level definition of an embedded

system by capturing its externally visible functionality. The Technical Feature

Model at this level represents the content and property of the vehicle, without

going into its realization. For dependability engineering, this top-level system

description becomes the basis of the analysis of the safety objectives, for

example via Preliminary Hazard Analysis (PHA).

The Vehicle level is later refined at the Analysis level. The Functional

Analysis Architecture (FAA) at this level captures the underlying system input

and output functions as well as the control functions. It does not consider any

implementation details. For dependability engineering, the Functional Analysis

Architecture becomes the basis for the assessment of functional anomalies.

System safety objectives are mapped into more detailed functional safety

requirements.

The Analysis level is then refined for system realization, and the choices

of technologies for computation and communication are considered. This

implementation-oriented aspect is covered at the Design level. System models

at this level typically consist of a Functional Design Architecture (HDA) and

Hardware Design Architecture (HDA). The Functional Design Architecture

defines the grouping and partitioning of functions, and takes into account

aspects such as efficiency, legacy of usage, reusability, and hardware

allocations. It also specifies the structure of the system function to be

implemented. For dependability engineering, it becomes the basis for the

analysis of error behaviours of software and hardware components. This leads

to the refinement of functional safety requirements to more detailed technical

safety requirements. The Hardware Design Architecture describes the target

hardware platform and captures the constraints of the abstract functions to the

platform.

The Implementation level provides the specification of software

components based on AUTOSAR (AUTOSAR, 2013). Traceability is

supported at all levels from Implementation level to Vehicle level. For

dependability engineering, the technical safety requirements are further refined

into software and hardware requirements. EAST-ADL allows requirements to

be traced to the related design solutions, verification and validation cases, and

other interconnected requirements.

Athens Journal of Technology Engineering June 2014

123

EAST-ADL has also been recently extended with a Behavioural

Description Annex (Chen, et al., 2013) which captures various behavioural

concerns. This includes behavioural modelling and analysis, which are

important in requirement engineering, architectural design, and design

verification and validation.

Error Model

EAST-ADL allows safety requirements and concerns (such as hazards,

faults, and failures etc) to be modelled and analysed in parallel to the

development of the nominal system model. For this, an Error Model Type is

introduced to support the annotation and management of error behaviours, and

thus allow the traceability from error behaviours to system functions or

components.

The composition of the Error Model Type is achieved through the Error

Model Prototype. The Error Model Prototype represents the instantiation of an

Error Model in a specific context and reflects the composition of the nominal

system design. Each Error Model allows description of anomalies in term of

estimated faults and failures. A Fault Failure entity is used to declare the

actual value of an anomaly, usually with a certain enumeration type, for

example {omission, commission}. The modelling of failure propagation is

facilitated through ports. A Fault InPort describes the faults a target can

receive from its environment or other Error Models. a Failure OutPort

describes the failures which may occur and propagate to the environment or

other Error Models. These ports can be traced to the corresponding

communication ports of functions or components in the nominal system

architecture.

An Error Model Type may have both Internal Faults and Process Faults.

An Internal Fault represents an internal malfunction which causes errors when

activated, whereas a Process Fault represents a permanent systematic fault. The

Error Model Type may also contain Failure Logic, which is used to describe

how output failures of a system function or component occur in relation to its

internal faults or faults propagated from its inputs. The formalism used to

express the Failure Logic depends on the analysis techniques being applied.

Fault Failure Propagation Links are used to describe error propagations

across Error Models. These propagation links connect an output failure port

(i.e., Failure OutPort) with an input fault port (i.e., Fault InPort) with shared

variable semantics.

Figure 2 illustrates the domain model for the Error Model:

Vol. 1, No. 2 Sharvia et al.: Enhancing the EAST-ADL Error Model…

124

Figure 2. Domain Model for the EAST-ADL Error Model Type (EAST-ADL,

2014)

HiP-HOPS

Hierarchically Performed Hazard Origin and Propagation Studies (HiP-

HOPS) (Papadopoulos, et al., 2001)is a safety analysis technique which

automatically performs Fault Tree Analysis (FTA) and Failure Mode and

Effect Analysis (FMEA) on the basis of a system model. HiP-HOPS models

the propagation of failures by synthesizing hierarchical component failure logic

into a network of fault trees. There are three main phases in HiP-HOPS:

 a model annotation phase, during which the analyst annotates the

system architecture with component-level descriptions of failure

behaviour;

 a fault tree synthesis phase, during which HiP-HOPS

automatically synthesizes system-level fault trees to model the

propagation of failures through the system;

 and the analysis phase, during which HiP-HOPS performs FTA

and FMEA analyses on the basis of the failure propagation model

it has generated.

The model annotation phase provides information on how each individual

component can fail. This local failure information takes the form of a set of

logical expressions which are manually added to each component. These local

failure expressions describe how failures of the component's outputs can be

caused by a combination of failures received at the component's inputs and/or

by failure modes (internal malfunctions) of the component itself. Common

Athens Journal of Technology Engineering June 2014

125

cause failures are also supported, as are failures propagated via other means,

e.g. from allocated components. In this way it is possible to model more

sophisticated scenarios — for instance, the effects on a software function when

the hardware processor executing that function fails.

The synthesis phase produces an interconnected network of fault trees

which link system-level failures (i.e., failures of the system's output functions)

to component-level internal failures by using the model topology and

component failure information. These fault trees show how the component

failures propagate from one component to another and how ultimately they

may affect the wider system, whether individually or in combination with other

component failures.

In the analysis phase, the synthesized fault trees are analysed and an

FMEA is generated. Both qualitative and quantitative analysis can be

performed depending on the amount of information provided. Qualitative

analysis is performed to obtain a list of minimal cut sets, which represent the

necessary and sufficient combinations of failure modes required to cause every

system failure in the model. A multiple failure mode FMEA is also produced,

which shows both direct effects of failure modes on the system as well as the

further effects of the failure modes (i.e., the effects a failure mode can have on

the system when it occurs in conjunction with other failure modes). Results are

available in a variety of formats, including spreadsheets and HTML files that

can be conveniently displayed through a web browser.

In a design development lifecycle, the automated nature of HiP-HOPS

supports an iterative and efficient safety analysis approach. FTA and FMEA

are both traditionally performed as a manual process, and in the context of

large complex systems, they may become laborious and error-prone. The

automatic synthesis of FTA and FMEA information by HiP-HOPS alleviates

the pressure for safety analysts and helps ensure that safety analysis results are

synchronized with each new iteration of the system design model. The results

from these analyses help identify the weak points in the system designs and

allow problems to be addressed earlier in the design lifecycle. This contributes

to a more robust, consistent, and effective process.

HiP-HOPS can also assist in the making of design decisions by providing

capability for multi-objective optimization to achieve more efficient

architectural configurations. Design decisions often need to address conflicting

requirements, e.g. the requirement to maximize dependability and minimize

cost. When multiple possible architectures involving different subsystem

configurations and component alternatives can fulfil these various

requirements, a large number of different design options become available.

Identification of the most dependable design with the lowest cost will therefore

involve a large search space, often one too large to be explored manually.

Furthermore, there is often no single 'optimal' design solution, especially when

requirements conflict (as dependability and cost often do). In this case the

designer must find a suitable solution which achieves a satisfactory trade-off

between dependability and cost. Multi-objective optimization is valuable in

such situations as it rapidly identifies balanced trade-off solutions. HiP-HOPS

Vol. 1, No. 2 Sharvia et al.: Enhancing the EAST-ADL Error Model…

126

automates this optimization process and therefore helps with the identification

of a suitable or optimal architecture design. More discussion on multi-objective

optimization can be found in Adachi et al. (2011) and Mian et al. (2014).

HiP-HOPS Error Model

The HiP-HOPS error model follows the semantics defined in (Walker, et

al., 2013). The top most element of the HiP-HOPS error model structure is the

Model, which represents all views of the system under analysis and thus

encapsulates all other data. Within the Model is a hierarchical structure of

subsystems and components, represented in figure 3 below:

Figure 3. Model Representation in HiP-HOPS (Walker, et al., 2013)

Each Model can contain one or more Perspectives of a system. A

Perspective is a particular view of a system. This allows separation of concerns

between software and hardware perspectives in the same way that EAST-ADL

has a separate FDA and HDA models in its Design level. It is also possible to

create a HiP-HOPS model with a single, default perspective containing both

hardware and software elements if preferred.

Within each Perspective is a top-level System element, representing the

system being studied. The System contains a set of Components and a set of

Lines connecting these components together. Components may contain their

own System elements (via Implementations), which in turn contain

subcomponents, and thus subsystem hierarchies can be represented.

Athens Journal of Technology Engineering June 2014

127

Components are the main elements of the system hierarchy and describe

concrete components or abstract functions in the system.

Connections between Components are modelled by means of Ports and

Lines. Each Component has a set of input and output Ports which define the

interface for that Component. These Ports can then be connected to Ports of

other Components by one or more Lines. Generally speaking, Ports are defined

as either inputs or outputs, although HiP-HOPS also supports bi-directional

ports (i.e., serving as both inputs and outputs).

A Component must also define one or more Implementations. These

represent different concrete implementations or versions of a given component

or function, i.e., different ways of fulfilling the functionality defined by the

Component's interface. For example, components from different manufacturers

could be represented by different Implementations in HiP-HOPS. Different

Implementations may have different child Systems, allowing complex

alternative hierarchies with different structural or behavioural characteristics to

be modelled.

The Implementation is the model element that contains the failure data

(and thus different Implementations of a Component may have different failure

behaviour as long as it still meets the interface for that Component). In general,

failure data is represented as a set of Basic Events and a set of Output

Deviations.

Basic Events are the basic failures of a system and typically represent

individual component failure modes. They are defined internal to a component

and may contain optional quantitative failure information (e.g. failure rates and

repair rates).

An Output Deviation represents an error or fault propagated from an

output of a component. They are defined by a failure class and a specific

output Port; failure classes represent different types of failure possible at a

given output. For example, one may have omissions and commissions of a

given output, or value failures such as "too high", "too low", "too early", "too

late" etc, all associated with each output port.

The other aspect of an Output Deviation is its cause, which is represented

by a Boolean expression that links Input Deviations (i.e., failures propagated to

the inputs of the Component) and internal failure modes of the component. For

example, an Output Deviation "omission of signal" from a given component

may be caused by internal failure of that component or a corresponding

omission of input to that component: thus "Omission-Signal = InternalFailure

OR Omission-Input".

If an Output Deviation is flagged as a system output, then it serves as an

Output Deviation for the system as a whole and will act as the starting point of

an analysis by becoming the top event of a fault tree.

Vol. 1, No. 2 Sharvia et al.: Enhancing the EAST-ADL Error Model…

128

Transformation of EAST-ADL Models to HiP-HOPS Models

Semantic Mapping between EAST-ADL and HiP-HOPS

The first step in the model transformation process is to establish the

semantic mapping between the two models. This enables the entities in the

EAST-ADL model to be translated to corresponding elements in the resultant

HiP-HOPS model.

The semantic mapping between EAST-ADL and HiP-HOPS is

summarized in the following table 1:

Table 1. Semantic Mapping between EAXML and HiP-HOPS XML

EAST-ADL HiP-HOPS

Error Model Type System

Error Model Type.Parts.Error Model Prototype System or System.Component

Error Model Type. ExternalFault.Fault In Port System.Component.Ports

Error Model Type.Failures. Failure Out Port System.Component.Ports

Error Model Type.

FaultFailureConnectors. Propagation Link
System.Lines

Error Model Type. Internal Fault

System.Component.

Implementation.FailureData.

BasicEvent

Error Model Type.

ErrorBehaviour.ErrorBehaviourDescription.Failure

Logic Expression

System.Component.

Implementation.FailureData.

OutputDeviation

The transformation concerns a number of different aspects: the structural

transformation, transformation of component specific behaviour, and the inter-

component failure propagation. EAST-ADL models and HiP-HOPS models are

structurally different. A successful transformation must preserve the semantics

of the original model but change the structure of the model to match the target

model format. (Biehl, et al., 2010) highlights the fact that EAST–ADL follows

the concept of initially declaring types and referencing to the declaration from

each point of use; HiP-HOPS however, couples declaration of a type and its

usage. In HiP-HOPS, the types are declared at the same point as they are used,

and therefore during transformation, the declarations have to be included at

every point of usage. This is particularly demonstrated in the transformation

between EAST-ADL Error Model Prototype (EMP) and HiP-HOPS

Component, in which the Error Model Type (EMT) defines the ports, internal

connection, and error behaviour, while the EMP obtains this information from

the EMT it was instantiated from. In HiP-HOPS, these are declared for each

Component.

Transformation Process

The transformation process starts by iterating through the list of Error

Model Types (EMT) in the EAST-ADL model. One of the user input

parameters identifies the top-level EMT which will be used as the basis of the

Athens Journal of Technology Engineering June 2014

129

analysis. Information on other EMTs are parsed and stored in the model as they

will be referenced by an Error Model Prototype (EMP).

Although EMT maps to a HiP-HOPS System in general, the top-level

EMT is processed slightly differently. This is because a HiP-HOPS System

contains only list of components and the lines defining the connection between

these components. The top-level EMT, however, would also contain Fault

InPorts and Failure OutPorts. To model this, a top-level Component is created

to represent the top-level EMT.

This top-level EMT becomes the basis for the construction of HiP-HOPS

System. The EMPs contained within the EMT represent the system

decomposition. The referenced EMT for each of these EMP is subsequently

checked and if it further contains decomposition, it becomes a subsystem and is

processed recursively. If it does not have further decomposition, a HiP-HOPS

Component is created. The construction of HiP-HOPS Components requires

information on the ports and failure data.

Input and output ports of the Component can be obtained from Fault InPort

and Failure OutPort of the referenced EMT. Failure Data in HiP-HOPS is

contained as part of the implementation. Implementation contains information

about the failure data of the Component. These are represented as HiP-HOPS

Basic Events and Output Deviations. The Basic Event is obtained from the

EMT Internal Fault, and the Output Deviation is obtained from the EMT

Failure Logic. Multiple Failure Logics are parsed into different Output

Deviation accordingly.

While this shows the mapping of EMT to HiP-HOPS Component,

information on the name of the Component and its connectivity inside the

System is obtained from the EMP. This is because unlike the internal structure

(ports and internal connectors) and failure information of the referenced EMT,

which can be reused, the name and connection of the Component depend on its

usage context.

The connectivity of Components inside a HiP-HOPS System is decided by

the EMP connections. HiP-HOPS Lines connect Components in the same

subsystem together. Each Line element contains a list of Connections which

define the connection logic for each port connected to the line. Each

Connection has a port name and port Expression. Port Expression is a logical

expression containing names of other ports on the line, Boolean expression or

specific values. A HiP-HOPS Line and Connection are obtained from the Fault

Failure Propagation Link of an EMT. The Fault Failure Propagation Link

connects Failure OutPort with Fault InPort. During the transformation, Failure

OutPort (source of failure) is mapped to the port expression, and the Fault

InPort (destination) is mapped to port.

The transformation algorithm can be briefly summarized as follows:

Create top-level component for top-level Error Model

Create HiP-HOPS System for the EMT

Vol. 1, No. 2 Sharvia et al.: Enhancing the EAST-ADL Error Model…

130

For every EMP contained in this EMT

Check if the referenced EMT further contains EMP, If yes:

Create HiP-HOPS System for the referenced EMT

(recursive). This is a subsystem.

Create HiP-HOPS Component for the EMP, adding the

subsystem to the Implementation of Component.

Add the HiP-HOPS Component to HiP-HOPS System.

If not

Create HiP-HOPS Component for the EMP.

Add the HiP-HOPS Component to HiP-HOPS System.

Create HiP-HOPS Lines elements based on Fault Propagation

Link

Add Components and Lines to System

Create HiP-HOPS Component

Create HiP-HOPS Port

Create HiP-HOPS Implementation

Add Port and Implementation to Component

Create HiP-HOPS Port

Create HiP-HOPS Implementation

Create HiP-HOPS Basic Event

Create HiP-HOPS Output Deviation

Add Basic Event and Output Deviation to Implementation

Concrete Representations of the Models: EAXML and HIPX

The transformation from the EAST-ADL model to a HiP-HOPS model is

performed through the translation between their corresponding concrete

representations. EAXML (Blom, 2013) is an XML-based exchange format for

EAST-ADL models. The EAXML schema is auto-generated from the EAST-

ADL meta-model, and it contains the serialized form of the EAST-ADL meta-

model instances. HIPX is an XML-based exchange format used as input to

HiP-HOPS and directly represents the HiP-HOPS model structure described

earlier. A successful transformation of EAST-ADL to HiP-HOPS therefore

requires transforming an EAXML file into a HIPX file.

A translator tool called EAXML2HIPXML has been developed to perform

this transformation. The translator tool was written in Java and constructs

internal representations of both models. It performs four main tasks: reading of

the EAXML file, constructing an internal representation of the EAST-ADL

model, transforming the EAST-ADL model to HiP-HOPS model, and writing

the output HiP-HOPS XML file.

Reading the EAXML File

The Java DOM (Document Object Model) API is used for the parsing of

the XML documents. It is a hierarchy-based parser that loads the XML content

Athens Journal of Technology Engineering June 2014

131

into a tree structure and creates an object model of the XML document. The

translator tool then creates an internal representation of the EAXML model. It

starts by reading through the list of Error Model nodes contained in the model,

and for each of these Error Model nodes, information on its Fault InPort,

Failure OutPort, Internal Fault, Failure Logic, Error Model Prototype, and

Fault Failure Propagation Link is obtained.

Fault InPort, Failure OutPort, and Internal Fault are referenced by unique

names. Multiple failure logics are separated by the semicolon “;” delimiter.

The Error Model Prototype represents the hierarchical decomposition for the

Error Model, and contains a reference to the Error Model it instantiates from.

In the EAXML model, this reference contains the full path of the EAST-ADL

dependability package. This has been trimmed, and the instantiated Error

Model is referenced by Error Model name. The Fault Failure Propagation Link

connects Failure OutPorts with Fault InPorts. Both Failure OutPort reference

<FROM-PORT-IREF> and Fault InPort reference <To-PORT-IREF>

references contain information on the port reference and the Error Model

Prototype reference. These are transformed and stored into a simplified form of

“Component.Port” which will be easily fitted and recognized in HiP-HOPS

model.

Writing the HIPX File

The HiP-HOPS XML Document is produced based on the schema defined

in (Walker, et al., 2013). The HiP-HOPS XML file supports all the features and

capabilities of HiP-HOPS. The HiP-HOPS XML file can also be zipped into an

archive file; HiP-HOPS can read both the full XML file and the packaged zip

file. The elements in HiP-HOPS XML are discussed in the previous section.

The DOM parser is used to produce the file. HiP-HOPS elements are

systematically represented as the XML elements and hierarchically appended/

structured.

Case Study

This section presents an example of a small standby system modelled

using EAST-ADL. The simple architecture aims to illustrate the transformation

process and the safety analysis capabilities obtained from the transformation.

This system contains a pInputs component which provides inputs (this could be

sensor reading for example) for the system, a primary component pPrimary

which processes the inputs and produces a certain output or performs a

function, and a standby component pStandby which performs identical function

as pPrimary. These components both contain a subcomponent called ps111.

The output from pPrimary and pStandby are supplied to another component

called pCombiner. In a normal working condition, pCombiner will process and

produce output based on information received from pPrimary. When a failure

is detected on pPrimary (for example, absence of its input to pCombiner),

pCombiner switches to use information from pStandby instead.

Vol. 1, No. 2 Sharvia et al.: Enhancing the EAST-ADL Error Model…

132

Figure 4. Standby System Model

In EAST-ADL, this is modelled through top-level error model S1, which

contains prototypes pInputs, pPrimary, pStandby, and pCombiner. These

prototypes are instantiated from other error models. pInputs is instantiated from

Inputs, pPrimary and pStandy are instantiated from s11, and pCombiner is

instantiated from Combiner. As s11 contains subcomponent s111, prototypes

pPrimary and pStandby contain prototype ps111. The following figure

illustrates the EAST-ADL system hierarchy:

Figure 5. EAST-ADL Model of the System

Athens Journal of Technology Engineering June 2014

133

Information on the corresponding error behaviour has been included in the

model. The following table summarizes the internal faults and failure logics for

each of the error models. The failure logic defines how failures in the output

can happen in relation to the internal fault and failure in the inputs. To maintain

simplicity, each error model is assigned to have one internal fault. Output

failure in Inputs is caused directly by its internal fault. The output failure in s11

and s111 can be caused by either internal fault or propagated input. The output

failure in Combiner can be caused by failure in the input it receives from FL

together with either a monitoring fault (causing the failure to be undetected and

standby not activated) or failure of its FR input. An error model prototype

inherits the error behaviour of the corresponding error model it was instantiated

from. SystemFailure is directly linked to Failure-CombinedFailure in

pCombiner.

Table 2. List of Component Internal Faults and Failure Logics

Component Internal Fault Failure Logic

s11 s11InternalFault
Failure-s11Out = Failure-

s11In OR s11InternalFault

s111 s111InternalFault

Failure-s111Out = Failure-

s111In OR

s111InternalFault

Combiner MonitoringFault

Failure-CombinedFailure =

Failure-FL AND

(MonitoringFault OR

Failure-FR)

Inputs InputBE
Failure-FL= InputBE;

Failure-FR = InputBE;

This model has been automatically translated into a HiP-HOPS model

through the translator tool. The hierarchy between prototypes are flattened and

information on the error behaviour is included in the HiP-HOPS model in the

appropriate format.

Once the HiP-HOPS model is constructed and annotated with failure

information, FTA and FMEA can be performed. Figire 6 displays the resulting

fault tree. The analysis results of the FTA is a list of minimal cut sets (as

shown in figure 7) which identify the combination of component failures which

cause the top-level failure. This list of minimal cut sets allows safety analysts

to quickly identify single-point failures (in this case, the internal fault inputBE

in Inputs is a single point of failure). Single point failure(s) are usually

unacceptable in safety-critical systems. Critical or undesired combinations also

highlight weak points in the system design. Their early identification

subsequently allows these weak points to be targeted and addressed. For

example, a design modification can be made to introduce fault-tolerant

mechanisms, or a design decision can be made to use high-reliability

implementations on critical components.

Although the structure of this example is small, and the minimal cut sets

are relatively straight forward, the nature of the integration allows the

Vol. 1, No. 2 Sharvia et al.: Enhancing the EAST-ADL Error Model…

134

automated benefits to be applied in larger, more complex systems, where

manual analyses are often not feasible.

Figure 6. Fault Tree for Standby System

Figure 7. Minimal Cut Sets from FTA

Conclusions

With the increasing importance of model-based system design in modern

engineering, there is a growing demand for an integrated safety analysis within

Athens Journal of Technology Engineering June 2014

135

the development tool chain. This paper investigated the translation between the

domain-specific modelling language EAST-ADL and the HiP-HOPS advanced

dependability analysis tool.

The transformation between the two models was performed on tool level

via the corresponding EAXML and HiP-HOPS XML interfaces. A translator

tool has been developed, the transformation algorithm between the models was

discussed, and a small example to demonstrate the transformation has been

presented in this paper.

The work presented here enables various capabilities of HiP-HOPS, e.g.

dependability analyses (i.e. safety, reliability, and availability) to be performed

on automotive system models constructed in EAST-ADL. This benefits the

system design and development by enabling the iterative and incremental

safety analysis process throughout the lifecycle.

Future work in this area include improving the translator tool with

automated model transformation techniques, for example, by using Eclipse-

based ATLAS Transformation Language (ATL) ((Jouault, et al., 2008), or

Epsilon Transformation Language (Kolovos, et al., 2008). Work is also in

progress to enable seamless integration to the larger EAST-ADL Tool

Platform, EATOP (Reiser & Voget, 2012).

References

Adachi, M. et al., 2011. An Approach to Optimization of Fault Tolerant Architectures

using HiP-HOPS. In: Software Practice and Experience. s.l.:John wiley & Sons,

Ltd, pp. 1303-1327.

Arnold, A., Gerald, P., Griffault, A. & Rauzy, A., 2000. The Altarica Formalism for

Describing Concurrent Systems. Fundamenta Informaticae, Volume 34, pp. 109-

124.

AUTOSAR, 2013. [Online] Available at: http://www.autosar.org/ [Accessed 20 July

2014].

Biehl, M., DeJiu, C. & Torngren, M., 2010. Integrating Safety Analysis into the

Model-based Development Toolchain Embedded Systems. LCTES, pp. 125-131.

Blom, H., 2013. EAST-ADL XML Schema, s.l.: s.n.

Blom, H. et al., 2012. EAST-ADL- An Architecture Description Language for

Automotive Software- Intensive Systems, s.l.: s.n.

Bozzano, M. & Villafiorita, A., 2006. The FSAP/NuSMV Safety Analysis Platform.

Internal Journal on Software Tools for Technology Transfer, Volume 9, pp. 5-24.

Chen, D. et al., 2013. System Modelling with EAST-ADL for Fault Tree Analysis

through HiP-HOPS. York, s.n.

EAST-ADL, 2011. EAST-ADL Domain Model Specification, Vesion M.2.1.9. [Online]

Available at: www.maenad.eu [Accessed 20 07 2014].

EAST-ADL, 2014. EAST-ADL Domain Model Specification, Vesion M.2.1.12.

[Online] Available at: www.east-adl.info/Specification.html [Accessed 30 07

2014].

Joshi, A., Heimdahl, M. P., Miller, S. P. & Whalen, M. W., 2006. Model-Based Safety

Analysis, Hampton: NASA Langley Research Centre.

Jouault, F., Bezivin, J. & Kurtev, I., 2008. ATL: a Model Transformation Tool . In:

Science of Computer Programming. s.l.:s.n., pp. 31-39.

http://www.autosar.org/
http://www.maenad.eu/
http://www.east-adl.info/Specification.html

Vol. 1, No. 2 Sharvia et al.: Enhancing the EAST-ADL Error Model…

136

Kolovos, D., Paige, R. & Polack, F., 2008. The Epsilon Transformation Language. In:

Theory and Practice of Model Transformations. s.l.:s.n., pp. 46-60.

Mian, Z. et al., 2014. Model Transformation for Multi-Objective Architecture

Optimization of Dependable Systems. In: Dependability Problems of Complex

Information Systems. s.l.:Springer, pp. 91-110.

Papadopoulos, Y., McDermid, J., Sasse, R. & Heiner, R., 2001. Analysis and

Synthesis of the Behaviour of Complex Programmable Electronic Systems in

Condition of Failure. Reliability Engineering and System Safety, Volume 71, pp.

229-247.

Reiser, M. & Voget, S., 2012. EATOP-EAST-ADL Tool Platform, s.l.: s.n.

Sharvia, S. & Papadopoulos, Y., 2011. Integrated Application of Compositional and

Behavioural Safety Analysis. Dependability and Complex System , Volume 97,

pp. 179-192.

Walker, M., Parker, D. & Papadopoulos, Y., 2013. HiP-HOPS XML Input Format,

s.l.: University of Hull.

