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Optimization of Active Muscle Force-Length
Models Using Least Squares Curve Fitting
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Abstract—The objective of this paper is to propose an
asymmetric Gaussian function as an alternative to the ex-
isting active force-length models, and to optimize this model
along with several other existing models by using the least
squares curve fitting method. The minimal set of coefficients
is identified for each of these models to facilitate the least
squares curve fitting. Sarcomere simulated data and one set
of rabbits extensor digitorum II experimental data are used
to illustrate optimal curve fitting of the selected force-length
functions. The results shows that all the curves fit reasonably
well the simulated and experimental data, while the Gordon-
Huxley-Julian model and asymmetric Gaussian function are
better than other functions in terms of statistical test scores
Root Mean Squared Error and R-squared. However the
differences in RMSE scores are insignificant (0.3 ∼ 6%)
for simulated data and (0.2∼ 5%) for experimental data.
The proposed asymmetric Gaussian model and the method
of parametrization of this and other force-length models
mentioned above can be used in studies on active force-length
relationships of skeletal muscles that generate forces to cause
movements of human and animal bodies.

Index Terms—Muscle force-length relationship, least
squares optimization, curve fitting, asymmetric Gaussian.

I. I NTRODUCTION

A NALYTICAL models of muscles are important for
comprehension and development of strategies for

motor control and for clinical restoration of motion to
paralyzed limbs through functional electrical stimulation
[1]. The function of skeletal muscles is to contract and
in so doing to apply a force against its environment [2].
The relationship between muscle lengths and generated
forces can be described by numerous existing models.
These models are ranged in formulations like cross-bridge
to phenomenological models of muscle force output as
a function of activation and muscle force-length-velocity
relationship [3].

Gordon et al. [4] used frog muscle fibers to investigate
the correlation between force and length in sarcomeres.
Edman and Reggiani [5] stimulated isolated frog fibers
to explore the sarcomere force-length relationship and
fitted polynomial function to represent experimental data.

Manuscript received April 15, 2015; revised June 30, 2015; accepted
August 05, 2015.

G. A. Mohammed is with School of Engineering, University of Hull,
Hull, HU6 7RX, UK, E-mail: g.a.mohammed@2010.hull.ac.uk, on leave
from the Faculty of Engineering, University of Koya, Kurdistan of Iraq.

M. Hou is with School of Engineering, University of Hull, Hull, HU6
7RX, UK, E-mail: m.hou@hull.ac.uk.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Copyright (c) 2014 IEEE. Personal use of this material is per-
mitted. However, permission to use this material for any other pur-
poses must be obtained from the IEEE by sending an email to pubs-
permissions@ieee.org.

Siebert et al. [6] used nonlinear regression to determine
the parameters of two different models of cat muscles
and found the one from the two which best fits the
experimental data. Also, Rassier [7] carried out a sequence
of experiments on isolated sarcomeres and half sarcomeres
of rabbit psoas muscles to investigate the mechanisms
of residual force enhancement associated with the force-
length relationship, with a fitted fourth-order polynomial
function representing the force-length relationship of sar-
comeres. Bahler et al. [2] tested rat muscles to explore the
dynamic properties of force-length-velocity relationship of
the muscle. Moreover, Winters et al. [8] used muscles
of rabbits to determine the isometric relationship between
muscle active force and length by using Hill’s two-element
model consisting of an active contractile element and a
passive elastic element connected in parallel.

To determine the active force-length relationship of
muscle fibers, in experiments the active force is obtained
by subtracting the predetermined passive force from the
measured total force. Nevertheless, in order to study
effects of muscle forces on movements, it is necessary
to consider the force-length relationship of whole muscle-
tendon complexes, for example, use of Hills three-element
model. Rode et al. [9] showed that different connection
schemes of the two elastic elements to the active element
can have significant effects on the active cat soleus force-
length relationship.

In the literature, there are quite a few mathematical
models for active muscle force-length relationship, such
as the Gordon-Huxley-Julian (GHJ) diagram [4] which is
a widely used piecewise linear model, for example in [6],
[10], cubic splines interpolation of the critical points of
the GHJ function [11], [12], sinusoidal wave [13], Bézier
splines [14], fourth-order polynomial function [5], [7] and
Gaussian function [13]-[15]. Besides, the Gaussian func-
tion is used in OpenSim, a software system for modeling
and simulations of musculoskeletal structures, as part of
Thelen’s muscle model [16].

Although none of these muscle models, including the
one to be introduced in this paper, has been derived from
first principles of bio-mechanics and bio-chemistry, the
GHJ model stands out as it was put forward by Gordon
et al. [4] on the basis of the sliding filament theory,
namely the cross-bridge hypothesis, whereby muscle force
is considered to be produced through actin and myosin
filaments sliding past each other. Interestingly, among
others, Herzog et al. [17] showed that using only the
lengths of the actin and myosin filaments in the GHJ
model yields good estimations of measured sarcomere
force-length relationship of cat skeletal muscles. It is no
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surprise that the GHJ model has gained wide acceptance
over decades.

From an analytic point of view, a piecewise linear
function such as the GHJ model includes four linear
segments to represent the ascending limb, plateau and
descending limb of the active force-length relationship.
The cubic splines model normally requires five or more
knots to form the active muscle force-length curve with
functional continuity up to the second order derivatives.
Bézier splines produce a curve that does not exceed the
control points which are representative of the data of mus-
cle force-length, and multiple B́ezier curves are normally
needed to fit a large amount of data. Polynomials are in
a simple form and can fit the data reasonably well with a
low order, while a fitted polynomial could have difficulties
in covering the whole length range. The Gaussian model is
a simple smooth function and widely used. However, the
main drawback of the standard Gaussian function is that
it cannot reflect the well-known asymmetry of the active
skeletal muscle force-length relationship on both sides of
optimal muscle length.

To fit a particular model with experimental data, the
models normally needs to be parametrized. For example,
piecewise linear functions, cubic splines and Bézier splines
have control points which need to be represented by a min-
imal set of parameters, while the standard Gaussian and
polynomial functions are already naturally parametrized.
After parametrization, these different mathematical models
can be optimized by using least squares optimization to
fit the observed data. In this way, these models can be
compared.

The objectives of this paper are the proposal of an
asymmetric Gaussian function which is superior to the
symmetric Gaussian function in terms of ability of fitting
observed force-length data, parametrization and optimiza-
tion of the most wisely used force-length functions by
using the least squares method. Simulated data and a
set of rabbits extensor digitorum II (EDII) data are used
to illustrate the proposed Gaussian model along with
optimization of various active force-length models.

II. M ETHODS

It is well known that curve fitting is the most important
application of the least squares method. Letf(l, p) be a
known function of l, parametrized inp consisting of a
minimal number of coefficients. The function is uniquely
determined once the parameter setp is known. Curve
fitting is to find the optimal parameter setp by minimizing
the sum of squared differences between measured values
f̄i of f and the values determined from the modelf(l̄i, p)
for measured values̄li of l. That is, givenn measurement
pairs (l̄i, f̄i), finding outp to minimize [18]

s(p) =

n
∑

i=1

(f̄i − f(l̄i, p))
2 . (1)

Several models of the active muscle force-length rela-
tionship in form off(l, p) are to be optimized with respect
to the least squares criterion.
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Fig. 1. Active force-length relationship

A. Gordon-Huxley-Julian Diagram

The isometric active force-length diagram of frog sar-
comeres as elucidated by Gordon et al. [4] can be de-
scribed by

f(l) = ai(l − li) + fi , li ≤ l ≤ li+1 (2)

for i = 1, 2, 3, 4, wheref and l are the force and length
of the sarcomere,ai represents the slope of the linear
function, and(li, fi) are the knots, as shown in Fig. 1.
The five knots with ten coordinate coefficients determining
the GHJ model can be specified with seven free positive
parameters(d1, · · · , d5, fa, fb) as, fori = 1, 2, 3, 4,

f1 = f5 = 0 , f2 = fa , f3 = f4 = fa + fb ,

l1 = d1 , li+1 = li + di+1 , ai =
fi+1 − fi

di+1
.

B. Polynomial

It is to fit just one fourth-order polynomial [5], [7],
namely

f(l) = b4l
4 + b3l

3 + b2l
2 + b1l + b0 (3)

over the entire length range with the observed data. This is
a smooth and very simple function, and no parametrization
is needed.

C. Cubic Splines

The cubic spline model consists of piecewise third-order
polynomials [11], [12]. Each of the polynomials passes
two adjacent knots with continuous first and second order
derivatives, and is in form of (3) but withb4 = 0 over
li ≤ l ≤ li+1 for i = 1, · · · , 4, where lis are those
defined in (2). Since the natural cubic spline is used [19],
all the sixteen (4×4) parameters of the cubic spline model
are uniquely determined by the five knots specified in the
GHJ model and the requirements on theC2-continuity of
splines. This means that the cubic spline model is also
parametrized by the seven coefficients of the GHJ model.
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D. Bézier Curve

A Bézier curve is a parametric curve considerably
used in two-dimensional computer graphics to generate
a smooth curve defined by a set of control points and it is
C2-continuous. A set of quintic B́ezier curves have been
used to represent active force-length relationship [14], but
not in curve fitting context.

The five knots that specify the GHJ model are used in
this paper with four extra points added into the middle of
the five knots in order to have totally nine control points.

These nine points are given bypi =

[

l̃i
f̃i

]

, for i =

1, · · · , 9, with
[

l̃2i−1

f̃2i−1

]

=

[

li
fi

]

, i = 1, · · · , 5

[

l̃2i
f̃2i

]

=
1

2

[

l̃2i−1 + l̃2i+1

f̃2i−1 + f̃2i+1

]

, i = 1, . . . , 4

Five Bézier curves joint together are used to ensure better
fit with respect to observed data, two of them are of degree
one and the remaining three of degree two. The joint
Bézier function is given by

p(t) =

[

l(t)
f(t)

]

, 0 ≤ t ≤ 1 (4)

with

a) in section(l̃1, l̃2): p(t) = p1 + t(p2 − p1);
b) in section(l̃2i, l̃2(i+1)): p(t) = (1 − t)2p2i + 2(t −

t2)p2(i+1) + t2p2(i+1), for i = 1, 2, 3;
c) in section(l̃8, l̃9): p(t) = p8 + t(p9 − p8).

E. Asymmetric Gaussian

To accommodate the asymmetric nature of the active
force-length relationship on both sides of the optimal
length, an asymmetric Gaussian function is proposed.
Parametrized by five coefficientsc0, · · · , c4 with c0, c1
andc2 being positive, andc3 andc4 positive or negative,
this function is given by

f(l) = −c0 + c1e
−

(

l−c2
c3+c4l

)2

. (5)

Coefficient−c0 shifts the function down,−c0 + c1 is the
maximum isometric force,c2 is the optimal length, and
(c3 + c4l)

2 is associated with the width of the function
variable on both sides of the optimal length.

Fig. 2 is a plot of function (5) and defines a new set of
coefficients (la, lb, lm, fm, r) parametrizing the function.
Compared with the parameter set(c0, · · · , c4), the new
parameters have clear physical meanings. Apparently,lm
and fm are respectively the optimal length and force,la
and la + lb are respectively the minimal and maximal
lengths, andr is the slope of the curve atla. The mapping
relations between these two sets of parameters are given
in Appendix. It is usually convenient to specify initial
values for (la, lb, lm, fm, r), and then through the inverse
mapping, initial values of(c0, · · · , c4) can be obtained for
least squares optimization.
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Fig. 2. Asymmetric Gaussian function

F. Simulated Data

To illustrate curve fitting of the force-length models
described so far, simulated data were generated by using
the original GHJ model for the whole range of length. Real
experimental data of sarcomere force-length relationships
would be ideal, nevertheless the data reported in the
literature are usually sparse and do not cover the whole
length range.

Since the GHJ diagram was determined from the ex-
perimental data on multiple muscle fibers over length
segments, it is better understood as a representative model
of multiple sarcomeres. This leads to a particular way of
generating simulated data. In this study, the original GHJ
model is used to to generate 10 other GHJ F-L functions
through parameter variations by adding a sequence of
noise to each of the seven parameters defining the GHJ
model. Each of the ten individual GHJ functions was used
to generate 20 simulated data by adding a sequence of
noise to a pre-specified sequence of lengths, and another
to the corresponding forces calculated from the GHJ mode.
The sequences of noise are normally distributed with
standard deviationσ = 0.13 and meanµ = 0. In this way,
200 simulated data were generated in total. Furthermore,
a second set of simulated data has been generated using
the asymmetric Gaussian function defined in (5) and by
repeating the same procedure described above.

The GHJ model was originally presented as tension-
length relationship. To be consistent with force measure-
ments of the experimental data discussed later, tension
(km/cm2) is converted to force (N) by multiplying the ten-
sion by the gravitational acceleration (9.81 m/s2) and the
myofibril cross section area (8.659×10−7cm2) calculated
from the frog myofibril mean diameter (1.05µm) in [20].

G. Experimental Data

The experimental data of the force-length relationship
of rabbits extensor digitorum II (EDII) muscles [8] are
used in curve fitting of the force-length models discussed
in this paper. This set of data were collected from the
experiments on the rabbits EDII muscles from 14 animal
subjects.
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H. Goodness Of Fit

Goodness of fit measures how well the fitted mathemati-
cal model agrees with the observed data. Two usual criteria
the root mean square error (RMSE) and R-square (R2) are
used for evaluation of fitness of the various force-length
models with simulated and real data.

I. Software Tool

Matlab 2013b is used in the software coding for the
curves fitted using least squares method. Also, the results
have been checked directly by using the curve fitting
toolbox cftool in Matlab.

III. R ESULTS AND DISCUSSION

The results for all five fitted functions (GHJ, asymmetric
Gaussian, cubic splines, Bézier curve and polynomial)
with the simulated data of sarcomeres force-length are
shown in Fig. 3. As summarized in Table I, with the
smallest RMSE and the biggest R2 scores, the GHJ
function best fits the simulated data generated from the
original GHJ model. The difference between the RMSEs
of the fitted GHJ and asymmetric Gaussian models is
only (0.37%), while the difference between the RMSEs
of the fitted GHJ and other models is around(3∼6%).
However, it is not to say that there is a major difference
among fitted functions. In general, any one of these fitted
functions could be regarded as a good characterization of
the sarcomeres force-length relationship with respect to
the simulated data. The values of the scaled optimal force
fm (N) and optimal sarcomere lengthlm (µm), and the
number of parameters used in a specific function are also
included in Table I.

TABLE I
FITTED FUNCTIONS USING SIMULATED SARCOMERE DATA

GENERATED FROM THEGHJ MODEL

Fitted function RMSE R2 Para. fm (N) lm
×10−7 No. ×10−7 (µm)

GHJ Diagram 0.270 0.854 7 2.25 2.13
Asym. Gaussian 0.271 0.852 5 2.30 2.05

Cubic splines 0.279 0.844 7 2.22 2.07
Bézier Curve 0.278 0.846 7 2.27 2.15
Polynomial 0.287 0.834 5 2.20 2.18

To see effects of different simulated data sets on out-
comes of curve fitting, the second set of simulated data
generated from the asymmetric Gaussian model is used.
Table II summarizes the outcomes of the fitting of the same
previous five functions. It is noticeable that the asymmetric
Gaussian function with the smallest RMSE and biggest R2

best fits the new simulated data compared with other fitted
functions. This suggests that the least squares method is
a reliable tool to pick up the best function fitting with
simulated and experimental data.

The statistical test results of the fitted curves with
EDII muscle experimental data [8] are shown in Fig. 4.
As summarized in Table III, the GHJ function has the
RMSE roughly similar to that of the asymmetric Gaussian
function, and their RMSE values are slightly different from

F
or
ce

(N
)

Length(µm)

Fig. 3. Fitted functions with simulated sarcomere data generated from
the GHJ model

TABLE II
FITTED FUNCTIONS USING SIMULATED SARCOMERE DATA

GENERATED FROM THE ASYMMETRICGAUSSIAN MODEL

Fitted Functions RMSE R2

×10−7

GHJ Diagram 0.440 0.727
Asym. Gaussian 0.428 0.739
Cubic Splines 0.452 0.712
Bezier Curve 0.490 0.661
Polynomial 0.462 0.695

those of the cubic spline and Bézier function, whereas
the polynomial function has the biggest RMSE value
among the fitted curves. Again, the difference between the
RMSEs of the fitted GHJ and asymmetric Gaussian models
is very small (0.2%), while the difference between the
RMSEs of the fitted GHJ and other models is noticeable
(2∼5%). Furthermore, the polynomial function diverts
away from its descending limb end shown in Fig. 4,
which is consistent with the phenomena found in [7]. In
general, the five fitted functions as shown in Fig. 4 have
approximately the same goodness of fit and there is no
significant difference between them in fitting with respect
to observed data, except for the polynomial function. The
values of the optimal forcefm (N) and optimal muscle
length lm (mm), and the number of parameters used in a
specific function are also included in Table III.

TABLE III
FITTED FUNCTIONS WITH EDII MUSCLE DATA

Fitted RMSE R2 Para. fm lm
No. (N) (mm)

GHJ Diagram 2.698 0.841 7 19.75 56.77
Asym. Gaussian 2.704 0.840 5 20.23 56.32
Cubic Splines 2.749 0.835 7 19.76 56.41
Bézier Curve 2.745 0.836 7 19.48 56.68
Polynomial 2.821 0.824 5 19.54 56.67

Other aspects of comparing these fitted functions in-
clude examination of the degrees of their smoothness,
complexity of computer coding and the number of pa-
rameters used. First, the GHJ function isC0 continuous,
cubic spline and B́ezier areC2-continuous whilst the
asymmetric Gaussian and the polynomial functions are
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Fig. 4. Fitted functions with EDII muscle data

smooth functions withC∞-continuity. Second, the asym-
metric Gaussian and polynomimal are a single function
compared with the multiple segmental functions of GHJ,
cubic splines and B́ezier curves. The polynomial is the
simplest function without need of parametrization. Third,
the asymmetric Gaussian and polynomial functions have
five free parameters whereas the other three functions need
seven parameters. Additionally, the optimal isometric force
fm and optimal lengthlm can be automatically found
from the fitted curves and or from the optimal parameters.
Note that the GHJ model has been normalized by the
optimal force and length and hence parametrized with
five parameters and fitted using non-linear regression [6].
Experimental data are naturally not normalized. Although
normalization of the data byfm and lm would reduce the
number of free coefficients parametrizing a force-length
function as often done in the published reports, it is not
recommended for curve fitting because truefm and lm
are never precisely known. Normalization of a particular
set of data based on approximate values offm and lm
before curve fitting will normally reduce fitness of the
fitted functions with respect to the whole set of data.
Nevertheless, if needed, it is straightforward to normalize
a fitted functiony = f(l, p) simply asȳ = f(lm l̄, p)/fm,
where ȳ and l̄ are respectively the normalized force and
length.

The asymmetric Gaussian function appears to be new
as it has not been found in the literature across scientific
disciplines. In probability theory and statistics, the skew
normal distribution [21] is an asymmetric function, built
as a product of the normal distribution function and its
cumulative distribution function. The skew normal func-
tion is hence complicated than the asymmetric Gaussian
function, and more importantly the former has too few
parameters to fit muscle force-length data. Another modi-
fied Gaussian function in probability theory and statistics
is the split normal distribution [22] which combines two
normal distributions with different standard deviations on
both sides of the center of the distribution. Although the

split normal function could fit well muscle force-length
data, it is a two-segmental function and no longer smooth
at the junction of the two half normal functions.

Finally, it has been seen that the4th-order polynomial
shows divergence towards the further end of the length
range. Because of that an increase of the polynomial
order would not be considered appropriate. However, by
introducing an extra parameter in the asymmetric Gaussian
function, the modified Gaussian model is able to outper-
form the GHJ model. For example, fitting of the modified
asymmetric Gaussian function

f(l) = −c0 + c1e
−

(

l−c2
c3+c4l+α(l)

)2

with α(l) = c5l
2 or α(l) = c5/l, is able to reduce

the RMSE from 2.692 to 2.654 which is less than all
others RMSE of fitted curves using EDII experiment
data. A similar effect was also observed when fitting this
modified asymmetrical Gaussian with the simulated force-
length data, where the RMSE is reduced from 0.271×10−7

to 0.264×10−7. However, the suggested formats have
an extra parameter and do not appear as simple as the
originally proposed asymmetric Gaussian function.

IV. CONCLUSION

The asymmetric Gaussian proposed in this paper is a
simple and smooth function for active muscle force-length
relationships. This function appears to be novel and may
also have potential in other applications.

By using the least squares method, the asymmetric
Gaussian model along with the well-known Gordon-
Huxley-Julian diagram and other models such as cubic
splines, B́ezier curve and polynomial have been optimized
and compared with respect to fitting of simulated data and
one set of experimental data. The results show that the
Gordon-Huxley-Julian diagram and asymmetric Gaussian
best fit the simulated and experimental data in comparison
with other models studied in this paper. The differences
between these models in terms of root mean square errors
are however insignificant (0.2∼5%) for experimental EDII
data and (0.3∼7%) for simulated data.

Only five coefficients parametrize the asymmetric Gaus-
sian, while other models (except for the fourth-order poly-
nomial) considered in this paper require seven coefficients.
By including an extra parameter, but at the expense of hav-
ing slightly increased complex, the asymmetric Gaussian
model can clearly outperform all other models considered
in this study.

APPENDIX

A. Parameter mapping

The forward mapping of the asymmetric Gaussian func-
tion from parameter set(c0, · · · , c4) to (la, lb, fm, lm, r)
is

lm = c2 , fm = −c0 + c1 ,

la =
c2 − ac3
1 + ac4

, lb = −la +
c2 + ac3
1− ac4

,

r = −2c0(c3 + c2c4)
la − c2

(c3 + c4la)3
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with a =
√

ln c1
c0

. Note that in all cases of fitting force-

length data,c1 is greater thanc0. This ensures thata is a
well defined real number.

The inverse mapping is given by

r =
4c0(la + lb − lm)

lb(lm − la)
ln

(

fm + c0
c0

)

,

c1 = fm + c0 , c2 = lm ,

c3 =
lb(lm − la)

alb
− lac4 , c4 =

2la + lb − 2lm
alb

,

where c0 needs to be numerically solved from the first
equation which is implicit inc0, and the remainingcis are
then readily obtained.

B. The optimal parameters of fitted functions with simu-
lated data

1) GHJ diagram:d1 = 1.157, d2 = 0.525, d3 = 0.266,
d4 = 0.276, d5 = 1.420, fa = 1.949×10−7, fb = 0.296×
10−7.

2) Cubic splines:d1 = 0.997, d2 = 0.262, d3 = 0.171,
d4 = 1.442, d5 = 0.928, fa = 0.584×10−7, fb = 0.644×
10−7.

3) Bézier curve:d1 = 1.108, d2 = 0.510, d3 = 0.400,
d4 = 0.247, d5 = 1.308, fa = 1.927×10−7, fb = 0.339×
10−7.

4) Asymmetric Gaussian:c0 = 0.144 × 10−7, c1 =
2.437e × 10−7, c2 = 2.041, c3 = 0.474, c4 = 0.200
(la = 0.953, lb = 3.254, lm = 2.052, fm = 2.300×10−7,
r = 1.091× 10−7).

5) Polynomial: b4 = 0.345× 10−7,
b3 = −2.617× 10−7, b2 = 5.308× 10−7,
b1 = −0.405× 10−7, b0 = −2.824× 10−7.

C. The optimal parameters of fitted functions with EDII
muscle empirical data

1) GHJ diagram: d1 = 51.748, d2 = 3.027, d3 =
1.601, d4 = 0.782, d5 = 5.872, fa = 17.788, fb = 1.958.

2) Cubic splines: d1 = 51.226, d2 = 2.891, d3 =
1.332, d4 = 1.998, d5 = 6.292, fa = 13.640, fb = 5.061.

3) Bézier curve:d1 = 52.026, d2 = 2.438, d3 = 1.525,
d4 = 1.161, d5 = 5.672, fa = 16.54, fb = 3.348.

4) Asymmetric Gaussian:c0 = 0.712, c1 = 20.940,
c2 = 56.323, c3 = −4.336, c4 = 0.146 (la = 50.715,
lb = 15.321, lm = 56.323, fm = 20.228, r = 1.088).

5) Polynomial: b4 = 0.012, b3 = −2.788, b2 = 235.4,
b1 = −8795, b0 = 1.227e+ 5.
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