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Optimization of Active Muscle Force-Length
Models Using Least Squares Curve Fitting

G. A. Mohammed and M. Hou

Abstract—The objective of this paper is to propose an Siebert et al. [6] used nonlinear regression to determine
asymmetric Gaussian function as an alternative to the ex- the parameters of two different models of cat muscles
isting active force-length models, and to optimize this model and found the one from the two which best fits the
along with several other existing models by using the least . - .
squares curve fitting method. The minimal set of coefficients experlmgntal data..AIso, Rassier [7] carried out a sequence
is identified for each of these models to facilitate the least Of experiments on isolated sarcomeres and half sarcomeres
squares curve fitting. Sarcomere simulated data and one set of rabbit psoas muscles to investigate the mechanisms
of rabbits extensor digitorum Il experimental data are used of residual force enhancement associated with the force-
to illustrate optimal curve fitting of the selected force-length length relationship, with a fitted fourth-order polynomial
functions. The results shows that all the curves fit reasonably . ! . :
well the simulated and experimental data, while the Gordon- function representing the force-length relationship af sa
Huxley-Julian model and asymmetric Gaussian function are Comeres. Bahler et al. [2] tested rat muscles to explore the
better than other functions in terms of statistical test scores dynamic properties of force-length-velocity relationsbf
Root Mean Squared Error and R-squared. However the the muscle. Moreover, Winters et al. [8] used muscles
differences in RMSE scores are insignificant (.3 ~ 6%) ot yappits to determine the isometric relationship between
for simulated data and (0.2~ 5%) for experimental data. . . .

The proposed asymmetric Gaussian model and the method muscle act|\{e force and 'e”ch by using _H'" s two-element
of parametrization of this and other force-length models Model consisting of an active contractile element and a

mentioned above can be used in studies on active force-lengthpassive elastic element connected in parallel.
relationships of skeletal muscles that generate forces to cause Tg determine the active force-length relationship of
movements of human and animal bodies. muscle fibers, in experiments the active force is obtained
Index Terms—Muscle force-length relationship, least by subtracting the predetermined passive force from the
squares optlmlzatlon, curve flttlng, asymmetrlc Gaussian. measured total force. Nevertheless, in order to StUdy
effects of muscle forces on movements, it is necessary
|. INTRODUCTION to consider the force-length relationship of whole muscle-
NALYTICAL models of muscles are important fortendon complexes, for example, use of'Hllls three—element
. : model. Rode et al. [9] showed that different connection
comprehension and development of strategies for

.. . - schemes of the two elastic elements to the active element
motor control and for clinical restoration of motion to

paralyzed limbs through functional electrical stimulatio can have significant effects on the active cat soleus force-

[1]. The function of skeletal muscles is to contract an!fr:gﬂ:hrelﬁlonfhlp' th it f th tical
in so doing to apply a force against its environment [2]. r(; | ef |erat_ure, erle ?re qllj' € 3} evlv t_ma hema |cah
The relationship between muscle lengths and genera aels for active muscle force-iength refationship, suc

forces can be described by numerous existing modef the Gordon-Huxley-Julian (GHJ) diagram [4] which is

These models are ranged in formulations like cross-brid eW'de'y used piecewise linear model, for example in [6],

to phenomenological models of muscle force output 0], cubic sp!ines interpolatipn Of. the critical pgin_ts of
a function of activation and muscle force-length—velocitt € GHJ function [11], [12], smusc_)ldal wave [13]eder
relationship [3] plines [14], fourth-order polynomial function [5], [7] dn

' tg;aussian function [13]-[15]. Besides, the Gaussian func-

Gordon et al. [4] used frog muscle fibers to investigal ) din Opensi ft tem f deli
the correlation between force and length in sarcomeré@.n IS used In Upensim, a software system for modeling
nd simulations of musculoskeletal structures, as part of

Edman and Reggiani [5] stimulated isolated frog fibe ,
to explore the sarcomere force-length relationship a &1elens muscle model [16] , .
fitted polynomial function to represent experimental data. Although none of these muscle models, including the
one to be introduced in this paper, has been derived from
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surprise that the GHJ model has gained wide acceptance
over decades.

From an analytic point of view, a piecewise linear
function such as the GHJ model includes four linear
segments to represent the ascending limb, plateau and
descending limb of the active force-length relationship.
The cubic splines model normally requires five or more
knots to form the active muscle force-length curve with
functional continuity up to the second order derivatives.
Bézier splines produce a curve that does not exceed the : Lol sl da
control points which are representative of the data of mus- Length
cle force-length, and multiple &ier curves are normally _

. . Fig. 1.
needed to fit a large amount of data. Polynomials are i
a simple form and can fit the data reasonably well with a
low order, while a fitted polynomial could have difficulties
in covering the whole length range. The Gaussian modelAs Gordon-Huxley-Julian Diagram
a simple smooth function and widely used. However, the . . . .

: ; L The isometric active force-length diagram of frog sar-

main drawback of the standard Gaussian function is that .
. . comeres as elucidated by Gordon et al. [4] can be de-
it cannot reflect the well-known asymmetry of the actlvg ribed b
skeletal muscle force-length relationship on both sides 3f y
optimal muscle length.

To fit a particular model with experimental data, the
mOdeIS. “Ofma”y nee_ds to be .parall”netrlze,d. For e_xamp%gr 1 =1,2,3,4, where f and! are the force and length
piecewise linear functions, cubic splines arekzr splines .
have control points which need to be represented b amOf- the sarcomereg; represents the slope of the linear

P P y H]nction, and(l;, f;) are the knots, as shown in Fig. 1.

imal set of parameters, while the standard Gaussian apd .. : . . -
. . : e five knots with ten coordinate coefficients determining
polynomial functions are already naturally parametrize

After parametrization, these different mathematical niode e GHJ model can be specmedfwf[h seven free positive
can be optimized by using least squares optimization parametersds, -, ds, fa, fy) @S, fori = 1,2,3,4,

I:It the observed data. In this way, these models can be Fm om0, fomfur fomfomFfotfo.
ompared.

The objectives of this paper are the proposal of an |, =d,, I, =1l;+dip1, a;= M
asymmetric Gaussian function which is superior to the dit1
symmetric Gaussian function in terms of ability of fitting
observed force-length data, parametrization and optimiza i
tion of the most wisely used force-length functions b)l?' Polynomial
using the least squares method. Simulated data and & is to fit just one fourth-order polynomial [5], [7],
set of rabbits extensor digitorum Il (EDII) data are useflagmely
to illustrate the proposed Gaussian model along with
optimization of various active force-length models.

Force

Active force-length relationship

f)=ai(l =)+ fi, L <1 <lita 2

F) = bal* + b3l® + bol® + bl + by (3)

[I. METHODS over the entire length range with the observed data. This is

It is well known that curve fitting is the most importanta Smooth and very simple function, and no parametrization
application of the least squares method. Ifét,p) be a IS needed.
known function ofl, parametrized irp consisting of a
minimal number of coefficients. The function is uniquely
determined once the parameter geis known. Curve C. Cubic Splines
e alLe CUbic spline model consists of piecewise third-order

F. of f and the values determined from the modél;, p) polynomials [11], [12]. Each of the polynomials passes
f(;r measured valuek of L. That is, givern measuretr’nent two adjacent knots with continuous first and second order

pairs (7, f,), finding outp to minimize [18] derivatives, and is in form of (3) but withy = 0 over

li <1 < ljyq fori = 1,---,4, wherel;s are those
noo_ _ ) defined in (2). Since the natural cubic spline is used [19],
s(p) = Z(fi = flip)”. D) allthe sixteen4 x 4) parameters of the cubic spline model

=1 are uniquely determined by the five knots specified in the

Several models of the active muscle force-length rel&HJ model and the requirements on thé-continuity of
tionship in form of (I, p) are to be optimized with respectsplines. This means that the cubic spline model is also
to the least squares criterion. parametrized by the seven coefficients of the GHJ model.
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D. Bézier Curve

A Bézier curve is a parametric curve considerably

used in two-dimensional computer graphics to generate
a smooth curve defined by a set of control points and it is
C?-continuous. A set of quintic &ier curves have been
used to represent active force-length relationship [14{, b
not in curve fitting context.

The five knots that specify the GHJ model are used in
this paper with four extra points added into the middle of
the five knots in order to have totally nine control points.

Force

These nine points are given by = [ L } for i = Length
. fi Fig. 2. Asymmetric Gaussian function
1,---,9, with
Ii-1 l; . .
i HEEE i=1-.5 F. Simulated Data
f2z71 7
[ la; ] _ 1 [ lai—1 + l2iga ] i—1 4 To illustrate curve fitting of the force-length models
J2i 2| faic1+ faina Y described so far, simulated data were generated by using

{Qre original GHJ model for the whole range of length. Real

Five Bezier curves joint together are used to ensure betex erimental data of sarcomere force-length relatiorsshi
fit with respect to observed data, two of them are of degreep 9 P

. ~.would be ideal, nevertheless the data reported in the
one and the remaining three of degree two. The joi
L Co iterature are usually sparse and do not cover the whole
Bézier function is given by

length range.

p(t) = { 1(t) } 0<t<1 (@) Since the GHJ diagram was determined from the ex-
f@ |’ - - perimental data on multiple muscle fibers over length
. segments, it is better understood as a representative model
with . ; .
] . of multiple sarcomeres. This leads to a particular way of
a) in section(ly, ly): p(t) = p1 + t(p2 — p1); generating simulated data. In this study, the original GHJ
b) in section(lzi, lzi+1)): p(t) = (1 —1)°p2i + 2(t — model is used to to generate 10 other GHJ F-L functions
2)Pa(is1) + P2(ivn), fOr i =1,2,3; through parameter variations by adding a sequence of
c) in section(ls, ly): p(t) = ps + t(py — ps)- noise to each of the seven parameters defining the GHJ

model. Each of the ten individual GHJ functions was used
to generate 20 simulated data by adding a sequence of
noise to a pre-specified sequence of lengths, and another
To accommodate the asymmetric nature of the actiyg the corresponding forces calculated from the GHJ mode.
force-length relationship on both sides of the optimathe sequences of noise are normally distributed with
length, an asymmetric Gaussian function is proposegtandard deviatior = 0.13 and mear = 0. In this way,

E. Asymmetric Gaussian

Parametrized by five coefficients, ---, ¢4 With o, ¢1 200 simulated data were generated in total. Furthermore,
andc; being positive, and; andc, positive or negative, 3 second set of simulated data has been generated using
this function is given by the asymmetric Gaussian function defined in (5) and by
_(ﬂ)z repeating the same procedure described above.
fl) = —co+cre \Fedl (®)  The GHJ model was originally presented as tension-

Coefficient—c, shifts the function down—co + ¢, is the length relationship. '_I'o be conS|ster_|t with force measure-
d ments of the experimental data discussed later, tension

maximum isometric forceg, is the optimal length, an . L
(c3 + c4l)? is associated viith the width of the function('.(mlcrn?) is converted to force (N) by multiplying the ten-

variable on both sides of the optimal length. sion f't:)y'lthe gravitaii'onal acceéegagt;%n_pf]zl ﬁ)/?n? tthz
Fig. 2 is a plot of function (5) and defines a new set C%rpyo Ithn ;:ross se:c:_l;o_rr area (d'. i Cl ) cacu goe
coefficients {,, iy, lm, fm,r) parametrizing the function. rom the frog myofibril mean diameter (1.&m) in [20].

Compared with the parameter sgb,--- ,c4), the new

parameters have clear physical meanings. Appareitly,

and f,, are respectively the optimal length and forée, G. Experimental Data

and [, + [, are respectively the minimal and maximal

lengths, and- is the slope of the curve &t. The mapping  The experimental data of the force-length relationship
relations between these two sets of parameters are giwdnrabbits extensor digitorum Il (EDIl) muscles [8] are
in Appendix. It is usually convenient to specify initialused in curve fitting of the force-length models discussed
values for {,,ly,lm, fm,7), @and then through the inversein this paper. This set of data were collected from the
mapping, initial values ofc, - - - , c4) can be obtained for experiments on the rabbits EDII muscles from 14 animal
least squares optimization. subjects.
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H. Goodness Of Fit x107

Goodness of fit measures how well the fitted mathemati- © zm“';‘m data
cal model agrees with the observed data. Two usual criteria seym. Gotmaian
the root mean square error (RMSE) and R-squarg éRe Cubic Splines
used for evaluation of fithess of the various force-length Bezier Curve
models with simulated and real data.

Paolynomial

|. Software Tool

Matlab 2013b is used in the software coding for the
curves fitted using least squares method. Also, the results
have been checked directly by using the curve fitting 0
toolbox cftool in Matlab.

2 Length(um) 45

Fig. 3. Fitted functions with simulated sarcomere data geeéraom
Ill. RESULTS ANDDISCUSSION the GHJ model

The results for all five fitted functions (GHJ, asymmetric
Gaussian, cubic splines,&Bier curve and polynomial) TABLE Il
with the simulated data of sarcomeres force-length are FITTED FUNCTIONS USING SIMULATED SARCOMERE DATA
shown in Flg 3. As summarized in Table I|. with the GENERATED FROM THE ASYMMETRICGAUSSIAN MODEL
smallest RMSE and the biggest® Rscores, the GHJ

function best fits the simulated data generated from the Fited Functions| - RMSE R
original GHJ model. The difference between the RMSEs GHJ Diagram 0.440 | 0.727
of the fited GHJ and asymmetric Gaussian models is Asym. Gaussian 0.428 | 0.739
. . Cubic Splines 0.452 0.712
only (0.37%), while the difference between the RMSEs Bezier Curve 0490 | 0.661
of the fitted GHJ and other models is arou(8~6%). Polynomial 0462 | 0.695

However, it is not to say that there is a major difference
among fitted functions. In general, any one of these fitted
functions could be regarded as a good characterizationtbése of the cubic spline andéBier function, whereas
the sarcomeres force-length relationship with respect tiee polynomial function has the biggest RMSE value
the simulated data. The values of the scaled optimal foragong the fitted curves. Again, the difference between the
fm (N) and optimal sarcomere length, (zm), and the RMSEs of the fitted GHJ and asymmetric Gaussian models
number of parameters used in a specific function are alisovery small (0.2%), while the difference between the
included in Table I. RMSEs of the fitted GHJ and other models is noticeable
(2~5%). Furthermore, the polynomial function diverts
TABLE | away from its descending limb end shown in Fig. 4,
FITTED FUNCTIONS USING SIMULATED SARCOMERE DATA which is consistent with the phenomena found in [7]. In
GENERATED FROM THEGHJMODEL . . . . .
general, the five fitted functions as shown in Fig. 4 have
approximately the same goodness of fit and there is no

Fitted function RMSE R? Para. [ fm (N) I L . . .
x10~7 No. | x10=7 | (um) significant difference between them in fitting with respect

GHJ Diagram | 0.270 | 0854 | 7 225 | 213 to observed data, except for the polynomial function. The
Asym. Gaussian| 0.271 0.852 5 2.30 2.05 . .

Cubic splines | 0.279 | 0.844 | 7 555 1 507 values of the optimal force,, (N) and optimal muscle
Bézlier quvle 0278 | 0846 | 7 227 | 215 lengthl,,, (mm), and the number of parameters used in a

Polynomia 0287 [ 0834 ] 5 220 | 218 specific function are also included in Table III.

To see effects of different simulated data sets on out- TABLE Il

comes of curve fitting, the second set of simulated data FITTED FUNCTIONS WITHEDII MUSCLE DATA

generated from the asymmetric Gaussian model is used.

Table Il summarizes the outcomes of the fitting of the same ~ ""*° RMSE | R® | Para ol s

previous five functions. It is noticeable that the asymretri GHJ Diagram | 2698 [ 0841 | 7 | 19.75]| 56.77
Gaussian function with the smallest RMSE and biggést R —contaimes 57350635 1975 cet

best fits the new simulated data compared with other fitted ~Bézier Curve 2.745 | 0.836 | 7 | 19.48 | 56.68
functions. This suggests that the least squares method is —Polynomia 2821 [ 0824] 5 | 1954] 5667

a reliable tool to pick up the best function fitting with

simulated and experimental data. Other aspects of comparing these fitted functions in-

The statistical test results of the fitted curves witklude examination of the degrees of their smoothness,
EDIlI muscle experimental data [8] are shown in Fig. 4complexity of computer coding and the number of pa-
As summarized in Table Ill, the GHJ function has theameters used. First, the GHJ function(8 continuous,
RMSE roughly similar to that of the asymmetric Gaussiacubic spline and Bzier are C?-continuous whilst the
function, and their RMSE values are slightly different fronrasymmetric Gaussian and the polynomial functions are
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304 split normal function could fit well muscle force-length
©  EDI Muscle data data, it is a two-segmental function and no longer smooth
_______ f:;md‘ggifgian at the junction of the two half normal functions.
...... Gubic Splines Finally, it has been seen that tdéh-order polynomial
___________ EEEEL%‘QES shows divergence towards the further end of the length

range. Because of that an increase of the polynomial
order would not be considered appropriate. However, by
introducing an extra parameter in the asymmetric Gaussian
function, the modified Gaussian model is able to outper-
form the GHJ model. For example, fitting of the modified
asymmetric Gaussian function

Force (N)
&

l—c

5 2
fl)=—co+ cle_(m)

with a(l) = c¢5l% or a(l) = cs/l, is able to reduce
i the RMSE from 2.692 to 2.654 which is less than all
Length(mm) others RMSE of fitted curves using EDIl experiment
data. A similar effect was also observed when fitting this
Fig. 4. Fitted functions with EDII muscle data modified asymmetrical Gaussian with the simulated force-
length data, where the RMSE is reduced from 02707
to 0.264<10~7. However, the suggested formats have
smooth functions withC>-continuity. Second, the asym-an extra parameter and do not appear as simple as the
metric Gaussian and polynomimal are a single functiagriginally proposed asymmetric Gaussian function.
compared with the multiple segmental functions of GHJ,
cubic splines and &zier curves. The polynomial is the IV. CONCLUSION
simplest function without need of parametrization. Third, The asymmetric Gaussian proposed in this paper is a
the asymmetric Gaussian and polynomial functions hagémple and smooth function for active muscle force-length
five free parameters whereas the other three functions neefthtionships. This function appears to be novel and may
seven parameters. Additionally, the optimal isometricéor also have potential in other applications.
fm and optimal lengthl,, can be automatically found By using the least squares method, the asymmetric
from the fitted curves and or from the optimal parameter&aussian model along with the well-known Gordon-
Note that the GHJ model has been normalized by thuxley-Julian diagram and other models such as cubic
optimal force and length and hence parametrized witiplines, Bzier curve and polynomial have been optimized
five parameters and fitted using non-linear regression [@nd compared with respect to fitting of simulated data and
Experimental data are naturally not normalized. Althougbne set of experimental data. The results show that the
normalization of the data by,,, and/,, would reduce the Gordon-Huxley-Julian diagram and asymmetric Gaussian
number of free coefficients parametrizing a force-lengthest fit the simulated and experimental data in comparison
function as often done in the published reports, it is netith other models studied in this paper. The differences
recommended for curve fitting because trig and,,, between these models in terms of root mean square errors
are never precisely known. Normalization of a particulaare however insignificant(2~5%) for experimental EDII
set of data based on approximate valuesfgfand/,, data and §.3~7%) for simulated data.
before curve fitting will normally reduce fithess of the Only five coefficients parametrize the asymmetric Gaus-
fitted functions with respect to the whole set of dataian, while other models (except for the fourth-order poly-
Nevertheless, if needed, it is straightforward to norngaliznomial) considered in this paper require seven coefficients
a fitted functiony = f(1,p) simply asy = f(I,.l,p)/fm, By including an extra parameter, but at the expense of hav-
where and [ are respectively the normalized force anihg slightly increased complex, the asymmetric Gaussian
length. model can clearly outperform all other models considered
The asymmetric Gaussian function appears to be néwthis study.
as it has not been found in the literature across scientific
disciplines. In probability theory and statistics, the gke
normal distribution [21] is an asymmetric function, builA. Parameter mapping
as a product of the normal distribution function and its The forward mapping of the asymmetric Gaussian func-
cumulative distribution function. The skew normal function from parameter sefco, -+ ,c4) t0 (la, lo, fns b, T)
tion is hence complicated than the asymmetric Gaussign
function, and more importantly the former has too few

APPENDIX

parameters to fit muscle force-length data. Another modi- ~ m = ¢ fm =—co+ 1,

fied Gaussian function in probability theory and statistics 7, — 2=, _ _; 4 ©2+a%
is the split normal distribution [22] which combines two 1 +acq 1 —acq
norma! distributions with different. stgndgrd deviations o = —2¢o(cs + aca) —2— Ca .

both sides of the center of the distribution. Although the (3 + cala)
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with ¢ = , /In g—; Note that in all cases of fitting force-

length datag; is greater tham,. This ensures that is a  [1]
well defined real number.
The inverse mapping is given by
[2]
_ 400(la + 1y — lm) In fm +co
B lb(lm - la) Co ' [3]
61:f77L+CO7 CQZZ'mv
oy llm=la) o Hat =2 gy
aly aly

where ¢y needs to be numerically solved from the first[s]
equation which is implicit incg, and the remaining;s are
then readily obtained.

(6]
B. The optimal parameters of fitted functions with simu—m
lated data
1) GHJ diagram:d; = 1.157, ds = 0.525, d3 = 0.266, (8]
dy = 0.276, d5 = 1.420, f, = 1.949x1077, f, = 0.296 x
1077,
2) Cubic splines:d; = 0.997, do = 0.262, d3 = 0.171, 9]
dy = 1.442, ds = 0.928, f, = 0.584x 1077, f, = 0.644 x
1077,
3) Bézier curve:d; = 1.108, d = 0.510, d3 = 0.400, [10]
dy = 0.247, ds = 1.308, f, = 1.927x 1077, f, = 0.339 x
1077,
4) Asymmetric Gaussiancg = 0.144 x 1077, ¢ = [11]
2.437e x 1077, ¢5 = 2.041, ¢3 = 0.474, ¢4 = 0.200
(la = 0.953, Iy = 3.254, Ly, = 2.052, fr, = 2300 x 1077, o
r=1.091 x 1077).
5) Polynomial: by = 0.345 x 107, 113
by = —2.617 x 1077, by = 5.308 x 1077,
by = —0.405 x 1077, by = —2.824 x 1077,
[14]
C. The optimal parameters of fitted functions with EDII
muscle empirical data
[15]
1) GHJ diagram: d; = 51.748, dy = 3.027, d3 =
1.601, dy = 0.782, d5 = 5.872, f, = 17.788, f, = 1.958. (16]
2) Cubic splines:d; = 51.226, do = 2.891, d3 =
1.332, dy = 1.998, d5 = 6.292, f, = 13.640, f, = 5.061.
3) Bézier curve:d; = 52.026, dy = 2.438, d3 = 1.525, [17]
ds = 1.161, d5s = 5.672, f, = 16.54, f, = 3.348.
4) Asymmetric Gaussiancy = 0.712, ¢; = 20.940, [18]
co = 56.323, c3 = —4.336, ¢4, = 0.146 (I, = 50.715,
I, = 15.321, 1,,, = 56.323, f,, = 20.228, r = 1.088). [19]
5) Polynomial: by = 0.012, bg = —2.788, by = 235.4, [20]
by = —8795, by = 1.227¢ + 5.
[21]
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