of the
ROYAL ASTRONOMICAL SOCIETY g

MNRAS 436, 1721-1740 (2013) doi:10.1093/mnras/stt1691
Advance Access publication 2013 October 3

Viscous Kelvin—Helmholtz instabilities in highly ionized plasmas

E. Roediger,1’2’3* R. P. Kraft,? P. Nulsen,? E. Churazov,* W. Forman,> M. Briiggenl

and R. Kokotanekova?:3-

' Hamburger Sternwarte, Universitit Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany
2Jacobs University Bremen, PO Box 750 561, D-28725 Bremen, Germany

3Harvard/Smithsonian Center for Astrophysics, 60 Garden Street, MS-4, Cambridge, MA 02138, USA
4Max-Planck-Institut fiir Astrophysik, Karl-Schwarzschild-Strasse 1, D-85741 Garching, Germany

S AstroMundus Master Programme, University of Innsbruck, Technikerstr. 25/8, 6020 Innsbruck, Austria

Accepted 2013 September 5. Received 2013 September 3; in original form 2013 July 19

ABSTRACT

Transport coefficients in highly ionized plasmas like the intracluster medium (ICM) are still ill-
constrained. They influence various processes, among them the mixing at shear flow interfaces
due to the Kelvin—Helmbholtz instability (KHI). The observed structure of potential mixing
layers can be used to infer the transport coefficients, but the data interpretation requires a
detailed knowledge of the long-term evolution of the KHI under different conditions. Here we
present the first systematic numerical study of the effect of constant and temperature-dependent
isotropic viscosity over the full range of possible values. We show that moderate viscosities
slow down the growth of the KHI and reduce the height of the KHI rolls and their rolling-up.
Viscosities above a critical value suppress the KHI. The effect can be quantified in terms of
the Reynolds number Re = U X /v, where U is the shear velocity, A the perturbation length and
v the kinematic viscosity. We derive the critical Re for constant and temperature-dependent
Spitzer-like viscosities, an empirical relation for the viscous KHI growth time as a function of
Re and density contrast, and describe special behaviours for Spitzer-like viscosities and high
density contrasts. Finally, we briefly discuss several astrophysical situations where the viscous
KHI could play a role, i.e. sloshing cold fronts, gas stripping from galaxies, buoyant cavities,
ICM turbulence and high-velocity clouds.

Key words: hydrodynamics —instabilities — plasmas — methods: numerical — galaxies: clus-
ters: intracluster medium — X-rays: galaxies: clusters.

1 INTRODUCTION

The classic Kelvin—Helmholtz instability (KHI) arises due to a shear
flow parallel to the interface between two inviscid incompressible
fluids. The fluids are in pressure equilibrium, but the shear veloc-
ity and possibly the density change discontinuously at the interface.
Small perturbations at the interface grow exponentially (Lamb 1932;
Chandrasekhar 1961; Drazin & Reid 2004), and the distorted in-
terface rolls up into the classic Kelvin—-Helmholtz (KH) rolls or
cat-eye patterns (see e.g. Fig. 1 later-on). As shear flows are ubiqui-
tous in astrophysical fluids, the KHI is a major agent for turbulence
generation and mixing.

Several special conditions or fluid properties can fully or partially
suppress the KHI, among them gravity, magnetic fields and viscos-
ity. Thus, if the dynamical conditions at a shear layer are known, the
presence or absence of the KHI can in principle be used to constrain
the properties of the fluid.
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This prospect is particularly interesting for the intracluster
medium (ICM) in galaxy clusters and hot haloes of galaxies. At
temperatures of up to a few keV, this gas is a highly ionized plasma,
and it is weakly magnetized (e.g. Ferrari et al. 2008; Bonafede et al.
2010). Its effective transport properties, i.e. thermal conduction and
viscosity, are still ill-constrained. If the ICM was not magnetized,
the transport coefficients due to Coulomb collisions would be large
(Spitzer 1956). For example, the importance of viscosity can be
expressed by the Reynolds number Re = U L /v, where U is a char-
acteristic velocity of the gas flow, L a characteristic length scale
and v the kinematic viscosity. The kinematic viscosity in an un-
magnetized plasma scales as v o< T°/2n~! (Spitzer 1956; Sarazin
1988), and for typical values of ICM temperature T1cy and electron
particle density n. the Reynolds number becomes

U L n
Re = 10 £ >
e =104, (400kms4) (IOkpc) (10*3cm*3>

T -5/2
% kTicem ‘ 1)
2.4keV
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We allowed for a reduced viscosity in equation (1) by including the
viscosity suppression factor f, < 1. In the presence of magnetic
fields the particle mean free path perpendicular to the field lines is
reduced dramatically, leading to anisotropic transport coefficients.
However, tangled magnetic fields could lead to a reduced isotropic
effective mean free path and transport coefficients on macroscopic
scales. Microscale instabilities might have even more dramatic ef-
fects on transport in the intracluster plasma (Rosin et al. 2011). Col-
lisionality in the ICM could be mediated by interactions between
magnetohydrodynamic waves and the particles. The resulting ef-
fective transport processes in the ICM could range from reduced
isotropic conduction and viscosity (Narayan & Medvedev 2001) to
anisotropic transport coefficients (Kunz et al. 2012), and the effec-
tive viscosity and thermal conduction may even experience different
suppression factors. Isotropic and anisotropic viscosities could af-
fect the KHI differently, e.g. in the latter case the orientation of the
magnetic field with respect to the interface may play a role. How-
ever, so far the nature of the effective viscosity is still unconstrained
observationally. Therefore, in this paper we focus on the effect of
an isotropic viscosity.

In the ICM, observable shear flows occur in different dynami-
cal contexts. Prominent examples are sloshing cold fronts (CFs),
upstream edges and tails of gas-stripped galaxies or merger cores,
or the surfaces of buoyantly rising cavities that have been inflated
by active galactic nuclei (AGN). The quality of the observational
data has become sufficient to show the structure of the shear lay-
ers. For example, the cluster Abell 496 (Dupke, White & Bregman
2007; Roediger et al. 2012a) has boxy CFs with kinks and doublets.
We identified distorted fronts also in the merging groups around
NGC 7619 and UGC 12491 (Roediger et al. 2012b). Several gas-
stripped elliptical galaxies falling into their host clusters have been
observed deeply. They all show an upstream contact discontinuity
and a tail of stripped gas, but their detailed structures differ. The
tail of M86 starts in a plume, bends and bifurcates (Randall et al.
2008). In M89 (Machacek et al. 2006) and M49 (Kraft et al. 2011)
the upstream edges have a ragged appearance with horns and kinks.
In contrast, the upstream edge of NGC 1404 (Machacek et al. 2005)
appears to be smooth. Numerous AGN inflated cavities have been
observed, despite the fact that in purely hydrodynamical simula-
tions they are disrupted by Rayleigh—Taylor instabilities (RTIs) and
KHIs. The presence or absence of substructure at these shear layers
indicates the presence or suppression of KHIs.

Several groups started investigating the impact of ICM properties
on such shear layers. Reynolds et al. (2005) and Guo et al. (2012)
demonstrated that buoyantly rising or even currently inflating cavi-
ties can be stabilized by viscosity. Dong & Stone (2009) pointed out
that in the case of anisotropic viscosity the evolution of the bubbles
depends on the magnetic field orientation because preferentially in-
stabilities parallel to the field lines are suppressed. Lyutikov (2006)
and Dursi & Pfrommer (2008) showed that magnetic draping can
stabilize the cavities, although Ruszkowski et al. (2007) stressed out
that this requires magnetic fields with coherence lengths larger than
the cavity size. Magnetic draping can also suppress instabilities at
gas-stripped galaxies (Dursi & Pfrommer 2008; Ruszkowski et al.
2012). Viscosity, however, could have a similar effect (Roediger &
Briiggen 2008). Sloshing CFs in hydrodynamical simulations are
distorted by KHIs, which can be reduced or suppressed by suffi-
ciently aligned magnetic fields (ZuHone, Markevitch & Lee 2011)
or viscosity (Roediger et al. 2013).

In all of these situations the KHI occurs in a complex dynamical
context. Shear velocities can vary in time and space, the shear layers
are curved and experience gravity. In order to provide a solid basis

for studies that include these complex dynamical contexts, here we
focus on the impact of an isotropic viscosity on the KHI in idealized
setups. Already the linear stability analysis of the viscous KHI is
complicated (see Section 2), and, to our knowledge, no previous
work investigated the long-term evolution of the viscous KHI. Here
we do so with a systematic numerical study. In particular, we

(i) show analytically that viscosity suppresses the KHI below a
critical Reynolds number;

(ii) investigate not only the onset of the KHI, but its long-term
evolution over several of linear growth times by means of hydro-
dynamical simulations. This is important because the dynamical
time-scales of the processes where we can observe the shear layers
operate on much longer time-scales than the linear growth time of
the KHI;

(iii) derive an empirical relation for the viscous KHI growth time
as a function of Reynolds number and density contrast;

(iv) show that also a strongly temperature-dependent Spitzer-like
viscosity can suppress the KHI.

The paper is organized as follows. In Section 2 we summarize
relevant previous results on the KHI and analytically derive a critical
Reynolds number below which the KHI is suppressed. Section 3
describes the simulation set-up and method. Section 4 reports the
results of the simulations, and Section 5 discusses implications of
our results. We summarize our findings in Section 6.

2 KHI IN VISCOUS FLUIDS - ANALYTIC
CONSIDERATIONS

The KHI arises due to a shear flow parallel to the interface between
two fluids. In the most simple case, two incompressible inviscid
fluids of densities pno and peoia but equal pressures are separated
by a planar interface. While the temperature is still irrelevant at this
point we choose this notation for consistency with later discussions
in the paper. We consider the 2D case and place the interface at
y = 0. Without loss of generality, the hot and cold fluid move
with velocities U/2 and —U/?2 parallel to the interface, i.e. they are
subject to a mutual shear flow. At the interface, both the velocity and
density change discontinuously (the densities can also be identical).
If a perturbation of length scale A is introduced at the interface, the
perturbation grows exponentially with a growth time of

VA
TKHinvisc — 27’[ U
A U !
= 3.9Myr VA 2
yrflOkpc (400kmsf‘) @
2
with A = P TPy g p g 3)
Peold Phot
and Dp — pcold.
Phot

This standard scenario and many variations e.g. the presence of
compressibility (see Appendix A), gravity, surface tension and mag-
netic fields have been discussed in textbooks (e.g. Lamb 1932;
Chandrasekhar 1961; Drazin & Reid 2004).

The case of viscous KHI is missing from the extensive discus-
sions in the textbooks because the background flow is not steady.
The standard approach of linear perturbation analysis assumes a
background state for the spatial distribution of fluid density p,
pressure p and velocity U. In the case of the KHI this is the
shear flow described in the beginning of this section. Then small
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perturbations u < U, and equivalents for other quantities, are added
to the background flow. Quantities like U + u are inserted into
the hydrodynamical equations, and these are linearized. Following
this approach for the KHI leads to a system of equations for the
perturbed quantities like in equations (6)—(10) in Junk et al. (2010)
or equations (A1)—(A6) in Kaiser et al. (2005). However, both of
these works made the additional assumption that the background
flow is steady, i.e. 9U /9t = 0. This is true only if the viscosity is
small. A non-negligible viscosity, however, smoothes out the shear
velocity gradient across the interface, i.e. 0U /0 # 0 even without
any perturbation. If this aspect is taken into account, the term ép %—l{
needs to be added to the left-hand side of equation (A1) in Kaiser
et al. (2005) and equation (6) in Junk et al. (2010), where §p is
the density perturbation. This term breaks the symmetry of the lin-
earized equations and makes the calculation of a dispersion relation
cumbersome.

Nonetheless, we can estimate the behaviour of the KHI at low and
high viscosities. Naturally, at low viscosities the KHI approaches
the inviscid case described above. A high viscosity must suppress
the KHI below certain length scales for the following reason: the
effect of viscosity is to smooth out the velocity gradient between
both fluid layers by momentum diffusion (see also Section B2). If,
however, in the classic KHI set-up the discontinuity in the shear
velocity is smoothed over a length scale £d above and below the
interface, the KHI is inhibited for wavelengths smaller than ~10d
(Chandrasekhar 1961, section 102). Consequently, a given viscosity
must suppress the KHI below a certain length scale. We can estimate
this limit quantitatively as follows.

In the inviscid case with a discontinuous shear velocity, a per-
turbation of wavelength A grows on the time-scale of Txpinvisc
(equation 2). During one xguinvisc, @ given viscosity v widens the
jump in shear velocity to the diffusion length I (f = TkHinvisc) =
+2,/VTkHinvisc around the interface. Consequently, all perturbations
with wavelengths <10/p(Tkuinvisc) cannot become KH unstable.
Thus, the growth of the perturbation of wavelength A will be sup-
pressed if

A< 1OID(TKHinvisc) = 20\/ VTKHinvisc O (4)
T AU or )
V > Verit = 7 —F7—
"7 200/A
AU
Re = — < Reyy ® 64V A. (6)
Vv

Here and in the following, we define the Reynolds number for the
KHI as

AU
Re=—, @)
v

where U is the shear velocity, i.e. the difference in velocity between
both layers, X the perturbation length and v the kinematic viscos-
ity. Note that in other work the length scale used in the Reynolds
number may refer to an initial width of the interface instead to the
perturbation length. Equation (6) shows that the KHI should be
suppressed not only for Reynolds numbers around 1, but already
for Reynolds numbers around 130, with a moderate dependence on
density contrast.

Viscosity continuously broadens the jump in shear flow, and the
choice of comparing the perturbation length scale A to the dif-
fusion length /p at t = Txpinvise 1S SOmewhat arbitrary. However,
two different considerations arrive at similar estimates. The viscous
broadening of the interface should dominate and suppress the KHI
if the viscous dissipation time-scale t, = L? /v is shorter than the
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KHI growth time. For the former, L is the length scale of velocity
gradients that need to be dissipated. As noted above, the KHI at
length scale X is suppressed if the shear flow jump is smoothed
over ~A/10; hence we use L = 1/10. This leads to

VA A L>  (A/10)

— = TKHinvisc > Ty = — = —————— Or (8)
2 U v v
Re < Reqi ~ 16VA, )

as the condition to suppress the KHI.

A third estimate comes from demanding that the height of the
unsuppressed KH rolls would lag behind the viscous broadening
of the shear flow jump up to the time the final height is reached.
The inviscid KHI saturates after ~47 gpinvisc, and the rolls reach
a height of typically < A/2, with small perturbations only A/4.
Consequently, the condition for a suppressed KHI is

)\/2 < lD(4TKHinvisc) =2 V V4tKHinvisc or (10)
Re < Reqit ~ 10VA. (1D

This third estimate is rather conservative. For example, assuming
A/4 as the height of the KH rolls leads to a four times higher
Re.i;, which is close to our first estimate. Thus, our estimates
agree within order of magnitude that viscosity should certainly sup-
press the KHI for Re < several 10s. Our simulations confirm this
general result. However, they show that the dependence on den-
sity contrast derived here is wrong because none of our estimates
takes into account that the viscous broadening of the shear flow
jump proceeds asymmetrically between two layers with different
densities.

Earlier work on viscous shear flows reaches similar conclu-
sions (e.g. Esch 1957; Amsden & Harlow 1964; Gerwin 1968).
Villermaux (1998) investigates the stability of a viscous shear flow
layer where the jump in velocity is already smoothed over a certain
width 2d. A given smoothing of the velocity jump does not only
prevent the KHI at small wavelengths but also reduces the max-
imum growth rate. The author stresses that, especially for small
initial widths, the viscous spreading can occur faster than the KHI,
and even if the KHI should still grow formally, it would not show
up because it is not the fastest process. By comparing the viscous
spreading rate to the KHI growth rate given the evolving viscously
spreading interface, Villermaux (1998) estimates the critical wave-
length A below which the KHI is suppressed as a function of
viscosity. In the limit of small initial widths, his equation (13) can
be rewritten as
)"crilU 27

—10a, 12
v b “ (12)

expressing his result in terms of our Reynolds number. The parame-
ters @ and b are factors of order unity, depending on the exact shape
of the smoothed velocity jump. This result agrees well with our
simpler order-of-magnitude estimates.

3 NUMERICAL SIMULATIONS - METHOD

3.1 Model set-up

We set up a 2D simulation box with a cool gas below y = 0 and
a hot gas above. The shear flow is set as constant velocities U/2
and —U/2 in x-direction, i.e. parallel to the interface, in the hot and
cold fluid, respectively. Our standard choice is a shear velocity U
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corresponding to Mach 0.5 in the hot layer. We introduce a sinu-
soidal perturbation in the velocity component v, i.e. perpendicular
to the interface, of amplitude vy and wavelength . The perturbation
is restricted to the layer around the interface and decreases away
from it as in Junk et al. (2010):

(7)o (-[2])
vy =vpsin| — Jexp| — | — . (13)
’ A oy

The scale parameter for the width of the perturbation layer is
o, = 0.3, the perturbation amplitude is vo = 0.1U. We veri-
fied that the suppression of KHI by viscosity does not arise due
to an insufficient perturbation (see Appendix D and Fig. D1). Our
simulation box has the size of (—A, A) and (—2X, 2A) x- and y-
direction, respectively. We verified that the simulation box is suf-
ficiently large in y-direction to ensure an unimpeded growth of the
KHI by re-simulating some cases with particularly tall KHI rolls
with a simulation box twice as high. The simulation box is periodic
in x-direction and has open boundaries in y-direction. We chose this
set-up over an all-periodic set-up because it is a better representa-
tion of real situations where the shear flow arises, e.g. at CFs. For
subsonic shear velocities relative to the hot layer the open bound-
aries lead to a mass and energy loss from the simulation volume of
less than 1 or 2 per cent over the course of the simulations, which
is irrelevant. We arrive at very similar results when using reflecting
boundaries in y-direction, but sound and shock waves originating
at the interface are reflected at the boundaries and make the evolu-
tion noisier. For supersonic shear flows mass losses are still below
4 per cent, but shocks leaving the simulation box lead to a loss of
total energy of up to 10 percent at high viscosities. Shock waves
carrying away energy from the shear layer is, however, a realistic
effect.

The set-up described so far employs discontinuities in density
and shear velocity at the interface. In low-viscosity simulations
this set-up is prone to secondary, unintended KHI modes at length
scales <A that are seeded by the numerical discretization. However,
the viscosity included in our simulations prevents these secondary
modes for most cases, and we use the straightforward set-up with
the discontinuous interface. This also ensures that the KHI has the
best-possible chance to grow and is not slowed down by an initially
smoothed interface. Only at high Re do the secondary modes appear.
There we follow the suggestion of McNally, Lyra & Passy (2012)
and slightly smooth the density and shear velocity jump according
to

Xcold - Xm eXP()’/w) if y = 01

X(y) = . (14
Xhot + X exp(—y/w) if y >0,

with X, = (Xcola — Xnot)/2 s

and X € {p, v, }.

The smoothing scale length is 1-2 percent of A, which does not
affect the growth of the intended mode. Secondly, we apply this
smoothing in simulations with high density contrasts and high vis-
cosity, where viscous dissipation would lead to excessive heating at
a discontinuous interface.

3.2 Code

We use the FLAsH code (version 3.3; Dubey et al. 2009). FLASH is
a modular block-structured adaptive mesh refinement code, paral-

lelized using the Message Passing Interface (mp1) library. It solves
the Riemann problem on a Cartesian grid using the Piecewise
Parabolic Method (PPM). We solve the viscous hydrodynamic equa-
tions (e.g. Landau & Lifschitz 1991; Batchelor 2000):

0

a'f + V - (pv) = 0 (continuity eqn.), (16)
dpv

- + V- (pvv) + V- II = 0 (momentum eqn.), (17
opE

5tV (PEV)+ V(I v) =0 (energy eqn), (18)

where p is the mass density, E the specific total energy and v the
gas velocity. We assume an ideal equation of state with y = 5/3.
The full pressure tensor I includes the viscous stresses:

H,‘k = (S,'kP — T with

ov; oy
Wik = 1 ( + —2/3 84V - v) . (19)
0x;  0x;

Here, p is the dynamic shear viscosity, and we neglect the second
viscosity. In the inviscid case with u = 0 we recover the Euler
equations, where only the isotropic pressure P appears in the mo-
mentum and energy equations. Viscous fluxes for momenta and
energy are computed explicitly. We verified the accuracy of the vis-
cosity module on two set-ups with analytic solutions: the viscous
flow between two stationary plates, and the viscous spreading of a
shear flow discontinuity (see Appendix B).

3.3 Types of viscosity

The nature of the viscosity in the ICM is unknown, it may be
constant or strongly temperature dependent. Thus, we investigate
the impact of a constant kinematic viscosity v and a Spitzer-like
kinematic viscosity vs, = A,T%?/n. The viscosity amplitude A,
is varied to achieve Reynolds numbers between ~10 and 10*, thus
sampling the range of possible Re in the ICM (see equation 1 and
Section 5.1). Because of its temperature and density dependence,
a Spitzer-like viscosity leads to strong dependence of the ratio of
Reynolds numbers in the hot and the cold layer on density contrast

D = pculd:
r Phot

_ pine
= D! (20)

In the case of a constant kinematic viscosity, the Reynolds number
is the same in both layers.

We discuss limits on plausible Reynolds numbers in the ICM
due to the related length of the mean free path and saturation of
momentum transport in Section 5.1.

3.4 Resolution

We use a uniform grid and a standard resolution of 128 cells per
perturbation length. In Appendix E we demonstrate convergence
of our results. Furthermore, in Appendix E we show that the FLASH
code captures the presence and size of KH rolls down to a resolution
16 grid cells per perturbation length. The internal structure of the
KH rolls, e.g. regarding mixing and velocity structure, requires a
higher resolution that ensures that the width, or thickness, of the
KHI mixing layer is resolved beyond the numerical diffusion length
of 2-3 grid cells.
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Figure 1. The top row shows snapshots of the tracer F for a fiducial Kelvin—Helmbholtz test. Initially, the tracer was F = 1 fory < O and F = 0 for y > 0.
Time-steps from left to right are labelled above each column. This simulation used a spatially constant kinematic viscosity v, a density ratio D, = 1 between
both layers, a shear flow of Mach 0.5 and a Reynolds number of Re = 1000 (see equation 7). Snapshots for other Re are shown in Fig. 2. The thin black lines
mark the ‘edges’ of the upper and lower fluid, used to measure the height of the KH rolls, see Section C1. The growth of the KHI rolls is shown in the top
panel of Fig. 3. The bottom row colour codes the vertical velocity vy in units of the sound speed c; at corresponding times, highlighting the vortices due to the
KH rolls. The temporal evolution of the maximum v), is shown in the bottom panel of Fig. 3. Note that the simulation box extends in y-direction from —2A to

22, i.e. beyond the size of the snapshots.

4 SIMULATION RESULTS

4.1 Fiducial KHI - density ratio 1, constant kinematic
viscosity, Reynolds number 1000

Fig. 1 displays the typical evolution of the KHI for the most simple
case with equal densities in both layers. A low viscosity is applied
to achieve Re = 1000. At this Reynolds number, the KHI at the
intended perturbation length is slightly slowed down by viscosity
but unintended secondary modes are absent, making this case in-
structive. Because of the uniform density throughout the simulation
box we use a tracer to visualize the two fluid layers. Initially, the
tracer was setto F' =1 for y < 0 and F = O for y > 0. The evolution
of the tracer fluid is displayed in the top row of Fig. 1. The bot-
tom row displays the distribution of v,, i.e. the velocity component
perpendicular to the initial interface.

The instability evolves in two phases, a growth phase followed by
a saturation phase. During the first ~3—47 gpinvisc the initial perturba-
tion leads to a wave-like distortion of the interface. Simultaneously,
Vymax, the maximum of the vertical velocity, increases to up to four
times the initial perturbation amplitude. At the end of this growth
phase the interface starts to roll up, leading to the classic KH roll
or cat-eye pattern over the next few Tgginyisc. In the following sat-
uration phase, these rolls continue to spin over many 7gpinyisc. 1he
low viscosity slowly dissipates the vortices, decreasing vymax. The
height of the rolls, or the thickness of the mixing layer, increases
until about 87 kyiuisc and then saturates as well. Given that we in-
troduced only a single perturbation mode with a length scale of half
the box width, the simulation box contains only two identical KHI
rolls. In a more realistic perturbation spectrum, small perturbations
start growing first, and with time larger and larger perturbations
dominate the appearance.

4.2 Constant kinematic viscosity

Next we investigate the effect of varying the viscosity. In this sec-
tion we apply a spatially constant kinematic viscosity, which leads
to equal Reynolds numbers in both layers regardless of density
contrast.

4.2.1 Density ratio 1

We start with the equal density case. Fig. 2 displays the evolution of
the instability for Reynolds numbers between 100 and 10*. Fig. 3
shows the evolution of the width of the KHI-induced mixing layer
(top), and of vymax (bottom). Section C explains how both quantities
are measured, and how the viscous KHI growth time is measured
from vypax(1).

As indicated above, the evolution of the viscous KHI is gov-
erned by the competition of the actual instability and viscosity. The
former increases the height of the KH rolls and leads to an expo-
nential growth of velocities in y-direction. Indeed, for Re = 104,
the exponential growth time of vy, recovers the analytic estimate
for the inviscid KHI growth time Tgpinvisc- Viscosity, on the other
hand, dissipates velocity gradients. A low viscosity cannot slow
down the widening of the mixing interface, but the rolling up of
the KH rolls. Already at Re = 1000 the rolls curl up slower than at
Re = 10* (Fig. 2). At Re = 300 only rudimentary rolls are formed,
and at lower Re the interface does not roll up at all. For Re < 300
also the width of the mixing layer, or height of the KH rolls, is
reduced. This visual impression from Fig. 2 is confirmed in the
upper panel of Fig. 3. The dissipation of velocity shear becomes
clear in the bottom panel of Fig. 3. Instead of a saturation of vymax
at late times like in the Re = 10" case, higher viscosities lead to an
approximately exponential decrease. The decay time is shorter for
lower Reynolds numbers, which translates into the reduced curling-
up of the KH rolls. Furthermore, the peak value of vy is re-
duced with increasing viscosity, and the initial exponential growth
of vymax is slowed down with decreasing Re. Below Re = 200 there
is no initial growth anymore, the instability is suppressed. This
agrees with the drastic reduction of the mixing layer width with
decreasing Re.

We summarize the influence of viscosity in Fig. 4 by plotting the
measured viscous KH growth times as a function of Reynolds num-
ber. The black crosses are for the equal density case. The viscous
growth time increases strongly from Re = 1000 down to Re = 300.
Below Re ~ 200 growth times are negative, i.e. the instability is
suppressed. Thus, the numerically derived critical Reynolds num-
ber is even about 50 per cent higher than the analytic estimate in
equation (6).
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Figure 2. Snapshots showing the tracer F for various Reynolds numbers (labels at top of each column) and three time-steps (labels on the left). These
simulations used a constant kinematic viscosity v, a density contrast D, = 1 and a shear flow of Mach 0.5. The KHI is significantly slowed down below
Re < 300. For Re < 200, the deformation of the interface is solely due to the initial perturbation, i.e. the KHI itself is suppressed. Fig. 3 compares the height
of the KH rolls and the evolution of the maximal vertical velocity. For Re = 10* we smoothed the initial interface over 1 percent of the perturbation length

scale to suppress secondary instabilities (see equation 14).

The dependence of the numerically derived growth times on
Reynolds number can be approximated by the empirical relation:

Reo

m) for Re > Reg, 21

TKHvisc — TKHinvisc (1 +
where Re, is the critical Reynolds number below which the KHI
is suppressed, and Rey scales the decrease of Txyyisc With Re. For
the case of equal densities the numeric values of Re.; = 220 and
Rey = 660 fit the simulation results as shown by the black line in
Fig. 4. The dependence of Re.,; and Re on density contrast is given
in equations (22) and (23) below.

4.2.2 Density contrasts up to 10

Figs 5 and 6 display tracer slices for the viscous KHI for den-
sity ratios D, = 2 and 10 between the two layers, respectively.
The unequal densities between both layers result in an asymmet-
ric evolution of the KHI. The fingers or filaments of cool gas are
thinner than the hot ones because the denser gas has more iner-
tia and is thus more difficult to displace. The KHI rolls extend
further into the hot layer than into the cold layer, and the growth
times of Vymax and vy, differ slightly. We took this into account
in Fig. 7 by measuring the height of the KH rolls above and below
the initial interface, and by distinguishing between vymax and vyyin
instead of using only vyn,x. At the higher density contrast of 10
and high Re, the late evolution of the KHI takes on more complex
dynamics.

The impact of viscosity is very similar as in the D, = 1 case. The
dissipation of velocity shears again leads to reduced rolling up of the
interface, slower growth times, decreasing heights of the KHI rolls
and finally suppression of the KHI at low Reynolds numbers. For
D, =2, the limiting Re is similar to the D, = 1 case. For D, = 10
the growth rates derived from vypax(f) and vypin(#) imply that the
KHI still grows initially for Re = 100. However, the height of the
distortions of the interface remains well behind the Re > 300 case,
and the interface does not roll up. Therefore we consider the KHI
suppressed in this case as well. Nonetheless, at the higher density
contrast, viscosity seems to be less able to slow down the KHI.
For example, at Re = 300, the derived growth time is only slowed

down by a factor of 3 compared to the inviscid case, whereas at
lower density contrast it was slowed down by a factor of almost
10. A closer look at the dynamics reveals that viscosity does not
only need to work against the KHI, but also against the increased
amount of momentum in the denser layer. We revisit this point in
Section 4.4.

We again summarize the influence of viscosity in Fig. 4 by
plotting the measured viscous KH growth times as a function of
Reynolds number. Symbols of different colours code different D,,.
Again, we can approximate Txpyisc(Re) by equation (21) but param-
eters Re.i; and Rey depending on D,,. The variation of Re.; and
Re, with density contrast can be approximated by

Reqic = 880/A, (22)

Reg = 1320/VA, (23)

where A depends on the density contrast D, as in equation (4).
Thus, equation (21) combined with equations (22) and (23) pro-
vides an empirical relation for the viscous KHI growth time as a
function of Re up to density contrasts of 10. This empirical rela-
tion is shown by lines of matching colour in Fig. 4. We note that
due to being based solely on the evolution of the v, extrema, this
empirical relation slightly underestimates the ability of the viscos-
ity to suppress the KHI at high density contrasts. For D, = 10 it
states Re.i = 73, but we discussed above that the KHI is already
suppressed for Re = 100. If viewed in detail, the suppression of the
KHI by viscosity is a gradual process, and the difference in Re,;
arises due to a different definition of when suppression of the KHI
is reached. Thus, the empirical relation is useful within a factor
of 1.5.

Our simulations find that Re;, slightly decreases with density
contrast, which is opposite of what was expected from all ana-
Iytical estimates in Section 2. The reason is that none of those
estimates takes into account that the diffusion of momentum into
the denser, cold layer will be slower due to the higher momen-
tum in the dense layer. The slower diffusion of momentum into the
cold layer leads to a slower widening of the shear flow discontinu-
ity into the cold layer, and hence only smaller instabilities can be

9102 ‘6T AfeniceH Uo |INH 1o A1seAIuN e /B10'S [euinolpuoxo'seiuw//:dny woJy pepeojumod


http://mnras.oxfordjournals.org/

v=const, Dp=1, Mach 0.5

05 T 4 T Te T
— Re=10 o
— Re=1000
04 Re=300 o 7
Re=200
— Re=150 o
03 F — Re=70 ., .
< =+ linear ,*
=
0.2 -
0.1
K3
i
E
>
=2

0 5 10 15 20 25
PekHinvisc

Figure 3. Temporal evolution of the height of the KH rolls (top) and of the
maximum velocity in y-direction, |vy|max (bottom). Different line colours
code different Reynolds numbers, see legend. Figs 1 and 2 display corre-
sponding snapshots. All runs are for a constant kinematic viscosity, D, = 1,
and shear flow = Mach 0.5. In the top panel, the expected linear increase of
the interface distortion as it would occur purely due to the initial perturba-
tion is shown as the black dotted line labelled ‘linear’. The smaller height
of the KH rolls for Re < 300 is due to viscosity. The maximum vy, shows an
initial exponential growth for Re Z 200. After ~5TKHinvisc» Vymax decreases
approximately exponentially due to viscous dissipation, i.e. faster for lower
Reynolds numbers. We fit the initial increase with exponential functions
that are shown as thin dashed lines of matching colour. The resulting growth
times are stated in the plot in units of Tghinvisc in corresponding colours.
The initial exponential growth time is the viscous KHI growth time (see
also Section 4.2.1, Fig. 4 and Appendix C). Note that we ignore the initial
fluctuations of vymax during the first TkHinvisc because they reflect sound
waves from the initialization and not the KHI growth.

suppressed — or, stated differently, a lower Re is required to suppress
a given perturbation.

4.3 Spitzer viscosity

The density dependence and strong temperature dependence of the
Spitzer-like viscosity introduce a strong difference of Reynolds
numbers between the hot and the cold layer. Density contrasts of 2 or
10resultin aratio of Reynolds numbers of 11 and 3160, respectively.
Consequently, the cold layer always will be more turbulent, and we
can expect that a higher viscosity is needed to suppress the KHI.
The Reynolds number stated in the following refers to the Reynolds
number in the hot layer, as this is the crucial one.
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12—y T DAt %
. i |I Dp=1 x
: My DP=2’ hot o
10k 1 o) Dy=2, col |
) o= ,cold m=m
F -
Do 0
ol i Dp=10 ® -
8 - ‘ Dp=1
: L o5
T 6 -
2 L o} 0o
: “‘} Dp=10 .......
4t j
s.
e
5 | |8
el T
: o
(0]
I ‘
0 Bt o
100 1000 10000

Reynolds number

Figure 4. Viscous KHI growth time as a function of Reynolds number and
density contrast, for the case of a spatially constant kinematic viscosity.
Colours code the density contrast, see legend. The symbols show the growth
times derived from the maximum and minimum v,. For density contrasts > 1,
open symbols show the growth time derived from the maximum vy, i.e.
velocities towards the hot layer, solid symbols show the minimum vy, i.e.
derived from the fastest velocity towards the cold layer. For equal densities,
the KHI evolves symmetrically, and only one symbol is shown. Lines show
the empirical relation given equation (21) combined with equations (22) and
(23). We mark the critical Reynolds number Rej, below which the KHI
does not grow at all, with vertical lines of matching colour.

Figs 8 and 9 display tracer slices for the Spitzer-viscous KHI. In
Fig. 10 we plot the evolution of the height of the KH rolls and of
Uymin and vymax for different Reynolds numbers. Qualitatively, the
same trends as before apply. Increasing viscosity slows down the
rolling up of the interface, its widening and finally suppresses the
instability.

For D, = 2 the Spitzer-viscous KHI evolves similarly to the
constant v case except for minor differences. The critical Reynolds
number is reduced to 30 compared to 200 in the equal kinematic
viscosity case. The KHI is first suppressed on the hot side, i.e. at Re
somewhat larger than Re; no cool fingers are drawn upwards, but
hot fingers can be drawn downwards.

At D, = 10, the high density contrast and the highly asymmetric
viscosity lead to an untypical and very irregular morphology of the
KH rolls also at high Re. At D, = 2, the viscosity on the cool side
can still add to the suppression of the KHI, whereas at D, = 10 the
cool side is always turbulent (Re > 1000). This leads to complex
flow patterns in the cool layer even if the Reynolds number is low.
The initial instability induces vortices in the high-Reynolds number
cold gas, which can remain there for a long time. This effect is
shown for Re = 10 (in the hot layer) in Fig. 11. Consequently, the
maximum and minimum v, are not a good tracer of an instability
anymore, because they mainly trace vortices in the cool gas. Thus,
using vymax and vymi, alone as a diagnostic for the growth of the KHI
leads to the impression that the instability is not suppressed at all
(right-hand panel of Fig. 10). The evolution of the height of the KH
rolls and the snapshots, however, show that the KHI is suppressed
for Re < 30. Thus, at high density contrasts, a Spitzer-like viscosity
puts the KHI in a hybrid state, where it is able to induce turbulence
in the cold layer, but does not mix both fluids.
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Figure 5. Tracer slices like in Fig. 2, but for constant kinematic viscosity v, density ratio 2 and shear flow of Mach number 0.5. For Re = 10* we smoothed
the initial interface over 1 per cent of the perturbation length scale to suppress secondary instabilities (see equation 14).
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Figure 6. Tracer slices like in Fig. 2, but for constant kinematic viscosity v, density ratio 10 and shear flow of Mach number 0.5. For Re = 10* we smoothed
the initial interface over 1 per cent of the perturbation length scale to suppress secondary instabilities (see equation 14).

4.4 High density contrast 100

4.4.1 Low viscosity

At even higher density contrasts, the dynamics of the KHI change
also at low viscosities. The inertia of the denser layer is enormous,
and the flow patterns in the cool dense gas hardly change over many
inviscid growth times. At such high density contrasts, the shear ve-
locity is highly supersonic with respect to the cold layer while still
subsonic in the hot layer. The cold gas keeps its motion parallel to
the interface and the initial perturbation velocity perpendicular to it.
Thus, the cold gas causes the interface between both layers to resem-
ble ‘growing mountains’, over which the wind of hot gas is flowing
(Fig. 12). The vertical extent of the mixing layer (height of KH rolls,
or distortions) closely follows the linear widening expected from
the initial perturbation velocity. Almost all turbulence is induced in
the hot gas that flows around the ‘mountains’ of cold gas. Vortices
on the lee side of the ‘mountains’ form on a time-scale ~\/c, where
c is the sound speed of the hot gas. With increasing density contrast
the KHI time-scale can exceed the vortex formation time-scale, and
the KHI will not dominate the gas flow anymore. Consequently, the

maximum or minimum v,, or any velocity patterns, are not a tracer
of the KHI anymore.

Interestingly, after about 3 7gynyisc, enough momentum has been
transferred from the huge reservoir in the cold layer to the hot gas
between the ‘cool mountains’, such that this hot gas between the
cool mountains moves along with the cool gas. Thus results in a new
shear flow interface at the level of the ‘top’ of the mountains, and
a second generation of KHI evolves. Slightly smoothing the initial
interface brings out this effect more clearly (right-hand column
of Fig. 12). Without the initial smoothing, numerous secondary
instabilities occur. However, the overall dynamics are similar with
and without the interface smoothing.

4.4.2 High viscosity

In the case of a constant kinematic viscosity, any instability or tur-
bulence is suppressed for Re < 100 (see Fig. 13). For a Spitzer-like
viscosity only the hot gas provides viscosity, and a lower Reynolds
number of Re < 10 is needed (Fig. 14). At Re = 10, the inter-
face resembles frozen KH rolls, but the instability is not evolving
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Figure 7. Same as Fig. 3, but for different density contrasts, see title of each column. Because of the unequal densities in the two layers, the KHI evolves
asymmetrical, and we plot two lines for each simulation. The solid lines show the evolution towards the hot layer (height of KH rolls above initial interface,
maximum of v ), the dash—dotted lines show the height of KH rolls below initial interface and the minimum of v,. Exponential growth times for the velocity
extrema are given in the bottom panels with the matching font colour. The first number refers to the solid line, the second to the dash—dotted. Qualitatively, the
behaviour is very similar to the constant density case, but for a density contrast of 10 a somewhat higher viscosity is needed to fully suppress the KHI.
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Figure 8. Tracer slices for simulations with Spitzer viscosity, density ratio 2 and shear flow of Mach number 0.5. Columns are for different Re (see top of
each column), where the Reynolds number is given for the hot (upper) layer. Re is 11 times higher in the cool (bottom) layer. For Re = 1000 and Re = 10*
we smoothed the initial interface over 1 and 2 per cent of the perturbation length scale, respectively, to suppress secondary instabilities (see equation 14).
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Figure 9. Tracer slices for simulations with Spitzer viscosity, density ratio 10 and shear flow of Mach number 0.5. Columns are for different Re (see top of
each column), where the Reynolds number is given for the hot (upper) layer. Re is formally 3000 times higher in the cool (bottom) layer. Fig. 11 shows a
zoom-in on the flow patterns for the Re = 10 case. For Re > 30 we smoothed the initial interface over 1 per cent of the perturbation length and for Re = 1000
over 2 per cent of the perturbation length to suppress secondary instabilities (see equation 14).
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Figure 10. Temporal evolution of the thickness of the KHI mixing layer (top) and of the v, velocity extrema. All runs are for a Spitzer viscosity and shear
flow = Mach 0.5. The two columns are for density contrasts 2 and 10, see label at top. Different line colours code different Reynolds numbers in the hot layer,
see legend. Exponential growth times for the velocity extrema are given in the bottom panels with the matching font colour. See Fig. 7 and Section 4.3 for
details.
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Figure 11. Details of the flow patterns for Spitzer viscosity, density contrast 10, shear flow Mach 0.5 and Reynolds numbers 10 and 3160 in hot and cold
layer, respectively. The left-hand column shows the colour-coded temperature in keV with velocity vectors overplotted. The right-hand column colour codes
vy /cs. The snapshots are at time-steps 2, 4, 10, 15 TxHinvisc from top to bottom. Note that all turbulence occurs in the cold gas.

anymore. Instead, the hot gas has reversed its direction of motion
near the original interface already.

4.5 Supersonic shear flow

In this section we investigate shear velocities that are mildly su-
personic also with respect to the hot layer. Figs 15 and 16 show
series of snapshots for a shear flow of Mach number 1.5 relative to
the hot layer and for different Re and for density contrasts 2 and
10, respectively. The ‘hills” cool gas now cause bow shocks in the
hot gas ahead of them. Because of the larger amount of momentum
available for dissipation the viscous heating is more prominent at
higher shear velocity and at higher viscosity. For all supersonic runs
we smoothed the initial interface over 1 percent of the perturba-
tion length scale to suppress secondary instabilities and to avoid
excessive viscous heating (see equation 14).

We applied the more interesting case of a Spitzer viscosity in
Figs 15 and 16. At high Reynolds number, the KHI still evolves
similar to the subsonic case. However, at such high velocities the
compressibility of the gas affects the growth rate of the KHI and the
classic estimate in equation (2) is not valid anymore (see review by

Gerwin 1968 and references therein). One consequence is that in the
2D case a shear flow above a certain critical Mach number stabilizes
the KHI. The case studied here is still below this limit. The viscous
suppression of the KHI proceeds very similar to the subsonic case.
At low density contrast (Fig. 15) the KHI is suppressed below
Re < 100, at a higher density contrast of 10 the critical Re is ~30
(Fig. 16). The instability again enters the hybrid state where some
vorticity is inserted in the cold layer.

5 DISCUSSION

We investigated the long-term evolution of the viscous KHI for the
case of a constant kinematic viscosity and a strongly temperature-
dependent Spitzer-like viscosity. We showed that viscosity sup-
presses the KHI below a critical Reynolds number and derived
the dependence of this critical Reynolds number on density con-
trast, shear flow velocity and constant or temperature-dependent
viscosity.

At high Reynolds numbers (>10*) and moderate density con-
trasts (<10), our simulations reproduce the results of earlier invis-
cid KHI simulations and of the analytical estimate. Most of those
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Figure 12. Snapshots for simulations with constant kinematic viscosity,
density ratio of 100, shear flow Mach 0.5 and Reynolds number 10*. The
colour codes log(T / keV), velocity vectors are overlaid. The left-hand col-
umn has an initially discontinuous interface, in the right-hand column the
interface is smoothed over 1/100 of the perturbation length. Rows from top
to bottom are for time-steps 0.5, 1, 2, 3, 4, 5 TkHinvisc- The motion of the
cold gas resembles ‘growing mountains’. The hot gas is flowing over this
distorted surface, developing turbulences. Hardly any turbulence is injected
in the dense cold gas.

simulations, however, concentrate on the early phase of the KHI
and use the numerically derived growth rate as a test for the code
performance. Junk et al. (2010) presented viscous KHI simulations
in order to determine the intrinsic viscosity of smoothed particle

hydrodynamics (SPH) codes, and compared to viscous grid simula-
tions with the FLASH code. They find a significantly weaker impact
of viscosity than reported here. However, their analysis focuses on
the onset of the instability only, i.e. long before the interface starts
rolling up.

Our simulations were run in two dimensions, where modes with
wave vectors inclined to the shear direction cannot exist. These can
be the fastest growing modes for transonic shear speeds and the only
unstable modes for supersonic shear (see Appendix A). However,
the effect of viscosity is not expected to be significantly different in
three dimensions because the viscous spreading of the shear flow
discontinuity proceeds in the same manner. The reduction of the
local shear velocity should affect all modes. The presence of the
third dimension allows for more complex morphologies of the KH
rolls. This effect, along with the influence of a realistic perturbation
spectrum, is relevant for the detailed structure of the mixing layer,
which will be the focus of a subsequent paper.

5.1 Plausible Reynolds numbers in the ICM

In the hydrodynamic paradigm, transport processes are related to
the mean free path An¢, in the medium. For example, the dynamic
viscosity is (Sarazin 1988)

1
n~ ng)\mfpv (24)

where ¢ the sound speed. In the hydrodynamic paradigm A, must
be much smaller than scales of interest. This condition put limits
on reasonable viscosities, or Reynolds numbers. For the KHI, we
could demand that the mean free path is much smaller than the
perturbation wavelength X, say,

Amty < A/10. 25)

With equations (24) and (7) this condition corresponds to
Re > 15 @ (26)
e> 15—,
0.5

where Ma = U /c is the Mach number of the shear velocity U. Thus,
our derived critical Reynolds numbers are in the hydrodynamic
regime where the required viscosity still implies a reasonable mean
free path.

A second issue to consider is a possible saturation of viscosity,
or more precisely, momentum transport. If the scale length of the
velocity gradient is smaller than the mean free path, momentum
transport as treated here becomes supersonic. As this is unrealistic,
it would saturate to a maximum momentum flux (Sarazin 1988).
Thus, for any given KHI set-up with shear velocity U, density p,
perturbation wavelength A and initial width of the interface w, we
can rewrite the condition w > Anyf, by using equation (24) to

Re % >~ 3Ma, @7

thus expressing the minimal Reynolds number where viscosity can
still act unsaturated. We note that Rew/A = wUp/u = Re,, the
Reynolds number related to the initial width of the interface. We
verified that an initial interface width of up to w = 0.031 influ-
ences the growth of the KHI only weakly. From w = 0.1A on the
initial smoothing of the interface alone drastically slows down the
KHI. Demanding w < 0.034, equation (27) requires Re > 100 Ma
to remain in the unsaturated viscosity domain. At smaller Re, our
simulations progressively overestimate the effect of viscosity. Con-
sequently, our results for the constant kinematic viscosity are un-
affected by the issue of saturation, because the KHI is already
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Figure 13. Snapshots for simulations with constant kinematic viscosity, a high density ratio of 100, shear flow of Mach 0.5 and different Re as given at the
top. The colour codes log(T'/ keV), velocity vectors are overlaid. We show the time-step 5 TkHinvisc- INOte the reversed flow direction in the hot layer near the
interface for Re < 100. For Re < 100 we smoothed the initial interface over 1 percent of the perturbation length scale to avoid excessive viscous heating at
the shear flow discontinuity (see equation 14).
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Figure 14. Same as Fig. 13 (density ratio of 100, shear flow of Mach 0.5), but with Spitzer viscosity. No smoothing of the initial interface is applied. Note the
reversed flow direction in the hot layer near the interface for Re < 100.
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Figure 15. Snapshots for simulations with Spitzer viscosity, density ratio of 2, shear flow of Mach 1.5 (relative to hot layer) and different Re as given at the
top. The colour codes 7'/ keV, velocity vectors are overlaid. We show the time-steps 10, 20, 40 in units of TkHinvisc. We note that the comparison to the KHI
growth time derived in equation (2) is only marginally meaningful, because this growth time assumes an incompressible gas, which is not true for supersonic
flows.

suppressed for Re ~ 100-200. In the case of a Spitzer-like viscos-
ity Reynolds numbers of ~30 are required to suppress the KHI
even without taking saturation effects into account. This critical Re
is only slightly below the saturation limit of equation (27), hence
we conclude that also a Spitzer-like viscosity has a significant effect
on the KHI. Given that the real behaviour of the ICM is even more
complex than the question of saturated or unsaturated momentum

transport, we refrain from investigating the details of a saturated
momentum transport here.

We note that the nature of the effective viscosity in the ICM is
still unclear, and the potentially large mean free path from Coulomb
collisions may not even be a concern. For example, Guo et al. (2012)
discuss in some detail the possible origin and amplitude of viscosity
and conclude that Spitzer-like amplitude plausible.
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Figure 16. Snapshots for simulations with Spitzer viscosity, density ratio of 10, shear flow of Mach 1.5 (relative to hot layer) and different Re as given at the
top. The colour codes 7'/ keV, velocity vectors are overlaid. We show the time-steps 5, 10, 20 in units of TkHinvisc-

5.2 Application to specific shear layers

For any given shear layer, the condition for the growth of the KHI,
Re > Re,, can be translated into a critical wavelength above which
the KHI can grow:

Recril U -
%> het = 30k
7 et pe g Ji <400kms—1>

ne -1 [ kTiem \?
. 28
x (10—3 cm—3) (2.4keV) %)

As a typical value, we used the more conservative Re.;; for Spitzer-
like viscosity here. We apply this relation to observed shear layers
in the ICM in the following subsections.

5.2.1 KHI at sloshing CFs

In Roediger et al. (2012b) we applied a relation like equation (28) to
sloshing CFs observed in several clusters and estimated whether or
not these particular shear interfaces are expected to be KH unstable.
In this work we used the too low critical Reynolds number based

on the dispersion relation of Junk et al. (2010). Hence we update
the estimates for A at these sloshing CFs with our improved,
higher Re.; in Table 1. At full Spitzer viscosity, the KHI should be
suppressed in the hottest cluster in this list, A2142, but KHIs could
occur in cooler systems. Indeed, A496 and NGC 7618/UGC 12491
show characteristically distorted CFs.

The above estimate includes solely the effect of viscosity. Slosh-
ing CFs, however, are special interfaces, and viscous suppression is
not the only effect on KHIs here. The gas flow patterns at sloshing
CFs lead to an enhanced temperature on the hotter side of the CFs
by about a factor of 1.3 compared to the azimuthal average (see
simulations; e.g. ZuHone, Markevitch & Johnson 2010; Roediger
& ZuHone 2012), which boosts the effect of viscosity by a factor
of ~2 compared to the estimates given in Table 1. Additionally,
modes above but close to the critical length scale are slowed down.
Furthermore, gravity slows down or suppresses long modes even
further. Finally, a sloshing CF itself, i.e. the shear interface, is a
dynamic phenomenon and not a stationary interface. Thus, KHIs
originating from a given perturbation have only a finite amount of
time to grow into recognisable patterns. For example, at the north-
ern CF in the Virgo cluster gravity suppresses KHI modes longer

Table 1. Full Spitzer viscosity should suppress the KHI for perturbations <Ai; (equation 28). This
table lists Acri¢ at the sloshing CFs in different clusters, along with assumed values for temperature
Ticm and electron density 7. on the hotter side, and shear velocity U at each CF. Furthermore, we
list for each CF its distance to the cluster/group centre rcr, and the scale of observed KHIs. Where
no observed scale is given, the CF is not obviously distorted and a dedicated investigation is needed
to determine upper limits on instability length scales.

Object T ne U Aerit I'CF Observed Aggr
(keV) (1073cm™3) (kms™ ")  (kpc)  (kpc) (kpc)

N7618/U12491¢ 1.2 25 200 4 20 15

Virgo? northern CF 2.5 2 300 22 90

A496¢ northern CF 42 8 400 15 60 20

A21427 south-east CF 8 10 400 60 70

A2142 north-west CF 8 2 600 200 360

“Roediger et al. (2012b).
”Roediger etal. (2011).
“Roediger et al. (2012a).
dMarkevitch et al. (2000).
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than 50 kpc. Our Virgo-specific simulations (Roediger et al. 2013)
demonstrate that, given the additional complexities of sloshing CFs,
already 10 per cent of the Spitzer viscosity suppresses the KHI along
the northern CF. Thus, in the context of sloshing CFs, the critical
length scales given in Table 1 are lower limits only.

5.2.2 KHI at gas-stripped elliptical galaxies and subcluster
merger cores

Galaxies moving through the ICM experience a ram pressure that
can remove part of their interstellar medium (ISM), leading to a tail
of stripped gas trailing behind the galaxy. Recent observations reveal
the complex structure of such stripping tails for both spiral galaxies
(Owers et al. 2012; Sun et al. (2010), Zhang et al., submitted) and
elliptical galaxies (e.g. for the Virgo ellipticals M89, Machacek
et al. (2006), Kraft et al., in prep., NGC 4472, Kraft et al. 2011,
and M86, Randall et al. 2008, and the Fornax elliptical NGC 1404,
Machacek et al. 2005). Churazov & Inogamov (2004) demonstrated
that already a tiny intrinsic width of the interface between the galaxy
gas and the ICM at the upstream side of such galaxies can suppress
local KHIs. Consequently, KHIs appear only at the sides of the
galaxy or along their tails, as confirmed by numerical simulations
(e.g. Iapichino et al. 2008). These KHIs at the sides and the tail are
a major agent to mix the cold stripped gas with the ambient ICM.
We applied equation (28) to several galaxies and calculated ex-
pected critical wavelengths for full Spitzer viscosity. The result,
along with assumptions regarding shear flow and gas densities in
the ICM, is listed in Table 2. For the Virgo ellipticals NGC 4552,
NGC 4472 and M86, the critical perturbation length exceeds the
current radius of the galaxies’ ISM atmospheres by a factor of sev-
eral, whereas for the Fornax elliptical NGC 1404 the radius of the
gaseous halo and the critical length is comparable. Thus, at full
Spitzer viscosity, none of the galaxies should experience KHIs at
its sides, and the tails should start mixing with the ICM only several
ISM radii downstream. If viscosity is suppressed at a comparable
level in all cases, NGC 1404 is most likely to experience KHIs.
The observations of these galaxies draw a mixed picture. M86
has a spectacular cold and 150 kpc long tail, suggesting a significant
suppression of mixing. NGC 4472 and NGC 4552 show distorted
upstream edges resembling KHIs on scales smaller than the crit-

Viscous KHI 1735

ical length scale. NGC 1404 has a smooth upstream edge, but a
filamentary and warm tail.

The shear flows at gas-stripped elliptical galaxies are in the in-
termediate density contrast regime 2 < D, < 10. Depending on the
nature of viscosity, the flow patterns may be particularly interest-
ing. If viscosity is Spitzer like, the galaxy stripping can occur in the
hybrid KHI regime where viscous damping suppresses the mixing
of the cool gas stripped from the galaxy, but the cool stripped tail
could be internally turbulent.

The cores of subclusters falling through their host clusters un-
dergo a scenario very similar to the gas-stripped galaxies. We in-
clude in Table 2 the Bullet Cluster and A3667. In the former case,
the small remnant merger core is surrounded by hot, shocked gas,
and we expect KHIs only on scales much larger than the merger
core. No obvious distortions in its upstream CF are observed. In
contrast, the CF in A3667 shows kinks on scales of ~200kpc (see
e.g. fig. 3 in Owers et al. 2009, also Mazzotta, Fusco-Femiano
& Vikhlinin 2002). This is roughly consistent with our expected
critical perturbation length of ~300 kpc.

5.2.3 High-velocity clouds

High-velocity clouds (HVCs) falling into the haloes of the Milky
Way or other galaxies are to some degree a scaled-down version of
elliptical galaxies falling into clusters. While the HVCs themselves
have a cold core of atomic gas, the galactic halo gas is an ionized
plasma like the ICM. Indeed, at full Spitzer viscosity, the infall of
HVCs leads to a similar low Reynolds number as for the galaxy

stripping:

Re =17 f ! 4 R
-\ 100kms—! 0.1 kpc

Te kTiew \ "
. 29
X(10*4cm*3) (O.lkeV) 9)

To our knowledge, HVCs have been studied only in the high
Reynolds number regime (e.g. Heitsch & Putman 2009; Pittard,
Hartquist & Falle 2010). The density contrasts between the cloud
surface and the halo gas can be high, 2100, but we would expect a
full Spitzer viscosity to have a stabilizing effect on instabilities at the

Table 2. Full Spitzer viscosity should suppress the KHI for perturbations <A (equation 28).
This table lists the critical wavelength A, for several gas-stripped elliptical galaxies and remnant
merger cores, along with the assumed ambient ICM temperature Tcym, ambient electron density ne
and galaxy infall velocity vg,. We assume a shear velocity at the side of the galaxy/merger core of
0.5 vga). Furthermore, we list for each galaxy/merger core the radius of its current ISM atmosphere

I'gas» and the scale of observed KHISs, Agni.

Object Ticm Ne Vgal Acrit T'gas Observed Agyr
(keV) (103 cm™3)  (kms™!) (kpc)  (kpc) (kpc)

NGC 4552 (M89)* 25 0.3 1700 50 3 3

NGC 4472 (M49)>  2-2.5 0.1-0.2 950-1500  50-270 20 10

MS86¢ 2.5 0.2 1700 76 25

NGC 14044 1.5 600 12 8

Bullet Cluster® 18 3 1350 440 20

A3667 8 0.8 700 420 300 200

“Machacek et al. (2006).
bKraft et al. (2011).
“Randall et al. (2008).
dMachacek et al. (2005).

“Owers et al. (2009), Markevitch et al. (2002) and Springel & Farrar (2007).
TOwers et al. (2009) and Vikhlinin & Markevitch (2002).
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cloud surface. The mixing between the stripped gas and the ambient
halo gas is of particular interest as it can be traced in various ion
lines (see Kwak, Henley & Shelton 2011, and references therein).
As discussed by Kwak & Shelton (2010) and Kwak et al. (2011), the
mixing and the interpretation of the observational data are complex
due to additional effects like radiative cooling and non-equilibrium
ionization. Our results indicate that even if the viscosity may not
fully suppress KHIs at scales of the cloud radius, it could be relevant
for the final mixing levels in the cloud tails, i.e. whether stripped
and ambient gas truly mix or whether cold clumps can remain. In
addition to viscosity, also thermal conduction (Vieser & Hensler
2007) and magnetic draping could be relevant for the evolution of
HVCs.

5.2.4 AGN cavities

In inviscid simulations, buoyantly rising AGN inflated bubbles are
disrupted by RTIs and KHIs. The simulations of Reynolds et al.
(2005) and Guo et al. (2012) demonstrated that a viscosity below
full Spitzer viscosity can stabilize both buoyantly rising cavities
as well as recently inflated cavities. The density contrast between
the gas exterior and interior of the simulated cavities is around
100. The AGN inflated cavities are thought to be filled with a
relativistic plasma whose viscosity is unconstrained either. Both of
the above simulations use a constant dynamic viscosity as a first
approximation in studying the stability of the cavities. Reynolds
et al. (2005) find viscosity stabilizes the buoyantly rising cavities
for Re < 250 (~1/4 Spitzer for their values), where their Reynolds
number refers to the size of their cavities. The resolved KHIs that
disrupt the cavities in their inviscid simulations are a factor of a few
smaller than the bubble size, hence the Reynolds number for these
dominant KHIs is of the order of 100 when they are suppressed.
This agrees with our prediction.

Guo et al. (2012) simulated the impact of viscosity on the stability
of the Fermi bubbles observed in our Galaxy. To this end, they
simulate the inflation of such bubbles in a viscous galaxy halo
gas by an AGN jet. Already for viscosities of 0.1-1 percent of
the Spitzer level, viscosity can prevent KHIs at the boundaries of
the inflated bubbles. The lower level of viscosity compared to the
Spitzer value is sufficient here because the bubble inflation causes
shock heating of the ambient gas, where the higher temperature also
boosts the viscosity. Given that their simulations cover the highly
dynamic cavity inflation phase, also the critical Reynolds number
will change with time. Using canonical values for their simulation
of shear velocity of 1000kms™! at the bubble boundary, a density
of 107% g cm™3 inside the bubble, 10~2% g cm™ outside the bubble,
a dynamic viscosity of 1 g cm™'s™! and perturbation length scale
of 2 kpc, results in Reynolds numbers of 6 and 60 in the hot and
cold layer, respectively. At this viscosity the KHI at the bubble
boundary is significantly suppressed in Guo et al.’s simulations.
Given the high density contrast and the dynamic context, this is in
rough agreement with our estimate.

Dong & Stone (2009) investigate the interplay of anisotropic vis-
cosity and magnetic field strength on rising cavities. They show that
the evolution of the bubbles depends significantly on the field ge-
ometry. For example, horizontal magnetic fields lead to bubbles that
are stabilized only along the direction of the field lines. They thus
would appear coherent when seen along a line-of-sight perpendic-
ular to the field lines, but disrupted otherwise. With toroidal fields
the bubbles transform into a stable ring. The situation of tangled
magnetic fields has not been studied.

5.2.5 Turbulence in the ICM

In hot clusters full Spitzer viscosity implies that important scales
such as Kolmogorov scale  ~ ReL—W or Taylor scale At ~ Rz—,L/Z may
be resolvable with the current generation of X-ray observatories.
Here L and Re are the integral scale the corresponding Reynolds
number. For example, in the Coma Cluster core T =~ 8.5 keV,
n. ~ 41073 cm~3. Using Spitzer viscosity, the Mach number ~0.25
and driving scale L ~ 500 kpc, yields  ~ 20 kpc and A+ ~ 170 kpc.
The scales above ~30 kpc can be probed via the surface brightness
analysis (e.g. Churazov et al. 2012). The scales predicted by the
equation (28) (for the velocity of 400 km s~!) also fall into this
range. In fact, numerically it is close to the Taylor scale A. It will
therefore be possible to search for structural changes in the den-
sity/velocity perturbation spectrum around these scales. It is inter-
esting that in the recent simulations of the Coma Cluster (Gaspari &
Churazov 2013) with the effective viscosity at the level comparable
to the Spitzer value, the Mach number of ~0.25 and the Reynolds
number ~10?, clear steepening of the density fluctuations power
spectrum is indeed seen at scales of few tens of kpc.

6 SUMMARY

We investigated the long-term evolution of the viscous KHI for the
case of a constant kinematic viscosity and a strongly temperature-
dependent Spitzer-like viscosity. We considered density ratios be-
tween the shear flow layers from 1 to 100. We expressed our results
in terms of the Reynolds number that relates to the perturbation
scale, i.e. as defined in equation (7).

We showed that a constant kinematic viscosity suppresses the
KHI for Reynolds numbers <100, and already for Re < 200 for
density contrasts <2. This agrees well with our analytic estimate of
the critical Reynolds number at low density contrasts. We note that
the long-term evolution of the boundary layer over 10 or 20 KHI
growth times, i.e. the spinning of the KHI rolls, is affected already
for Reynolds numbers of ~1000. We derive an empirical relation
between the viscous KHI growth time and Re (see equation 21
combined with equations 22 and 23).

The strong temperature dependence of the Spitzer viscosity
causes a significant difference of Reynolds numbers between the
hot and the cold layer in a shear flow. The ratio of Reynolds num-
bers scales as D/*. Consequently, only the viscosity in the hotter
layer can suppress the instability, and Reynolds numbers below ~30
or 10 are required for density contrast of 2 or > 10, respectively. In
fact, at intermediate density contrasts around 10 the KHI enters a
hybrid state where it does not mix both fluids, but induces turbu-
lence in the cold layer. At lower density contrasts the evolution
becomes more symmetric between both layers.

At higher density contrast (at 100), the inertia of the cold dense
layer is so large that turbulence is not induced in the cold layer even
for high Reynolds numbers.

We apply our results to potential mixing layers in the ICM
in galaxy clusters, i.e. sloshing CFs, gas-stripped galaxies, AGN
cavities and turbulence. The difference between ongoing or sup-
pressed mixing is observable with current X-ray observatories.
There are several observations that indicate a viscosity signifi-
cantly below the Spitzer value, but not all observations fit this
picture straightforwardly. It may well be that additional ICM prop-
erties such as magnetic fields or anisotropic transport processes
even on macroscopic scales are required to explain all observations
consistently.
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APPENDIX A: COMPRESSIBILITY

At shear speeds approaching the sound speed, compressibility alters
the behaviour of the KHI. The dispersion relation for modes in a
shear layer between two compressible fluids may be written as
(Gerwin 1968; Nulsen 1982)

w k,vg 2 o \? Se 2 w 2_0 Al
i) W) —(3) () =0

where v is the shear speed, s, is the sound speed in the hotter,
lower density phase and s, is the sound speed in the cooler phase.
For gases of interest here, the density ratio is generally related
to these by D, = s2/s? (although this is modified e.g. when the
shearing layers are in different states). The wave vector is confined
to the shear layer, but it need not be parallel to the shear direction.
Its magnitude is k, while k, is its component in the shear direction,
so that k,vo/(ksy) is the Mach number in the hot phase of the shear
velocity projected on to the wave vector. The complex frequency, w,
here is measured in a frame at rest with respect to the cooler phase.
This quartic equation for w always has two real roots. The remaining
two roots are a complex conjugate pair, so that one corresponds to
a growing mode, if

3/2
k. vo Se 23 ¥
<{1+ (= ) (A2)
kSh Sh

Fig. Al shows the real and imaginary parts of the scaled
frequency, w/(ksy), plotted against the effective Mach number,
kyvo/(ksy), for the case when scz / sﬁ = 0.1, corresponding to a den-
sity ratio of 10 (cf. Fig. 16). The full line shows the growth rate,
i.e. the imaginary part of w/(ksy), while the dash—dot line shows
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Figure Al. Real and imaginary parts of the frequency for unstable KHI
modes in compressible fluids when s?/sﬁ = 0.1. As indicated in the legend,
the curves show the real part (frequency) and imaginary part (growth rate)
of the scale frequency, w/ksy, for the growing KHI modes in a shear layer
of speed vo. The independent variable, k,vo/(ksy), gives the Mach number
measured in the hotter fluid of the shear velocity projected on to the wave
vector of a mode.

the same thing for the incompressible case. The dashed line shows
the real part of w/(ks,) and the dotted line shows the same thing
for the incompressible case. As expected, the incompressible ap-
proximation is good for low Mach numbers, but fails as the effec-
tive Mach number approaches unity. For effective Mach numbers
kyvo/(ksy) 2 1.77 in this case there are no growing modes. How-
ever, for larger Mach numbers, inclined modes with k, < k can
still grow. Note also that for a Mach number of 1.5 (Section 4.5),
the growth rate of the parallel mode with k, = & is slower than for
inclined modes with k,vo/(ks,) =~ 1.2. Such modes are excluded
in our 2D simulations, so we may have underestimated the true
growth rate in this one case. It is the only case we have simulated
where inclined modes may make an appreciable difference to the
outcome.

APPENDIX B: CODE TESTS

We tested the viscosity implementation on two set-ups with analytic
solutions.

B1 Viscous flow between plates

We set up the classic viscous flow between two plates, i.e. through a
2D pipe. Initially, the fluid has a homogeneous density and zero ve-
locity. A constant pressure gradient is applied in x-direction. Bound-
ary conditions are no-slip, i.e. v, = 0, at the y-boundaries, and open
in x-direction. The pressure gradient accelerates the fluid. Viscous
forces lead to a parabolic profile in v, (y):

V() = Vmax (y* — d?) with (B1)
1 op

max — S A s B2

v 2vp 0x (B2)

where d is half the distance between the plates, v the kinematic
viscosity, p the gas density and 0p/0x the pressure gradient. Our
chosen parameters (pipe diameter 10 kpc, maximum flow velocity
17.3kms~" and kinematic viscosity v = 10*° cm? s~!) correspond
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Figure B1. Viscous flow through a 2D pipe — profile of velocity component
parallel to the pipe v, as a function of position perpendicular to the pipe, y.
The centre of the pipe is at y = 0, the outer boundaries are at y = £5kpc.
Symbols of different colour denote different time-steps. As the flow started
from zero velocity, some time is needed to reach the predicted steady state.
The black line is the fit of the analytic prediction (equation B1) to the
simulation result, leaving the viscosity as a free parameter. We recover the
viscosity within 1 or 2 per cent.

to a Reynolds number of 0.5. We ran the same test for a 30 times
higher Re. The pipe is sufficiently long such that at its centre in
x-direction a steady state is reached before boundary effects reach
the centre. Fig. B1 shows velocity profiles v,(y) at different time-
steps. We measure the actual viscosity in the simulation by fitting
equation (B1) to the final time-step, leaving the viscosity as a free
parameter. We recover the intended viscosity within 1 or 2 per cent.

B2 Viscous smoothing of a shear flow discontinuity

We set up the same shear box like in our KHI tests, but induce
no perturbation. Because of momentum diffusion, viscosity spreads
the initial discontinuity in horizontal velocity v,(y), according to

ve(y) = erf (2%/%) . (B3)

This behaviour is shown in Fig. B2. Symbols denote simulation
results. For each time-step, we fit the simulation results with the
expected analytical function (lines in Fig. B2), leaving the viscos-
ity as a free parameter. We recover the intended viscosity within

1 per cent.
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Figure B2. Viscous smoothing of shear flow discontinuity. Initially, v,
has a discontinuity in y-direction, which is progressively smoothed out by
viscosity. Symbols denote simulation results, colours and symbol styles
code different times. Lines of matching colour present fits of the analytic
prediction (equation B3) to the simulation results. The viscosity is left as a
free parameter. The fit results and the originally set viscosity are listed on
the left.
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APPENDIX C: ANALYSIS METHODS

C1 Height of KH rolls

‘We measure the height of the KH rolls, or the width of the KH mixing
interface, by using the fluid tracer F. Initially, F is set to 1 below
the initial interface, and to 0 above the interface. In Fig. 1 we mark
the ‘edges’ of the upper and lower fluid by the two thin black lines:
for each x we find the maximum y,,(x) for gas with F" > 0.9 and the
minimum Yqow, (X) of gas with F' < 0.1. We define the upwards height
of the KH rolls as /,, = max (y,p(x)), and the downwards height as
Ndown = min (Yaown(X)). In the case of equal densities as shown in
Figs 1 and 2, the KHI evolves symmetrically and &y, = hgown. For
unequal densities the KHI evolves asymmetrical, see Figs 7 and 10.

C2 Measuring KH growth times

We measure the growth time of the KHI by tracking the evolution
of the maximum and minimum velocity in y-direction, vymax and
Vymin- We note that these are not the velocity of the interface it-
self, but reflect also the spin-up of the KH rolls as demonstrated in
the left-hand column in Fig. 1. This simple method has the poten-
tial risk of contamination by noise-seeded, unintentional secondary
KHIs. Many previous works used Fourier filtering to bypass this
problem. We find that the presence of at least a small amount of
viscosity avoids secondary instabilities in most of our simulations.
For example, in Fig. 1 even at a Reynolds number of 1000 only the
intended instability exists. At still higher Re, we slightly smooth
the initial interface (see equation 14), which mostly avoids the sec-
ondary instabilities. Only in the equal density case does the KHI
evolve symmetrically. For all other cases we follow the minimum
and maximum v, separately.

For sufficiently high Re, vymax and vyyin show an initial exponen-
tial increase which reflects the growth of the KHI (except for very
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Figure D1. Impact of perturbation strength and region width. A higher
initial perturbation does not help the instability to grow, neither does a
wider perturbation layer around the interface. These simulations are for a
constant kinematic viscosity, a density contrast of 1, a shear velocity of
Mach 0.5 and a Reynolds number of 100.

Viscous KHI 1739

high density contrasts, see Section 4.4). We fit this initial increase
with an exponential function

Umax/min(t) = Vo exp(t/TKHvisc) (Cl)

with free amplitude vy and growth time Tgpuyisc. The latter is the
derived viscous growth time. Examples for the fits are shown in
Fig. 3. In all other corresponding plots, we only state the derived
growth times for both directions, but do not plot the fitted function
to avoid confusion. At low Re we can perform a similar fit during
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Figure E1. Resolution test: comparison of tracer slices for constant kine-
matic viscosity, density ratio 1, Reynolds number 300, shear flow Mach 0.5
and time-step 50 Myr = 6.57kHinvisc- Top to bottom is 128, 64, 32, 16 cells
per perturbation wavelength. The bottom line plot compares the height of
the KHI rolls and the maximum vertical velocity.
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the corresponding early evolution time. This results, however, in
negative growth times, i.e. a suppressed instability.

APPENDIX D: IMPACT OF PERTURBATION
STRENGTH AND REGION

We verity that our simulations do not overpredict the viscous damp-
ing of the KHI due to an insufficient perturbation. Fig. D1 demon-
strates that neither a perturbation of much higher velocity amplitude
nor a wider perturbation region can revive the KHI. We tested a per-
turbation velocity of half the shear velocity, and a perturbation scale
width of 10 kpc instead of the standard 3 kpc. We also tested per-
turbing throughout the simulation grid, using reflecting boundaries
at £10kpc above and below the interface in this case. The viscous
damping of the KHI is a robust result.

APPENDIX E: RESOLUTION TEST

In realistic contexts like gas stripping from galaxies or clouds, or
cluster and galaxy mergers, the KHI is just one of several processes
and is resolved with only tens of grid cells per wavelength or less,
but not >100 grid cells as in idealized KHI tests. Therefore we test
not only the convergence of our results, but also the ability of the
FLASH code to capture the KHI with low resolution.

We compare tracer slices, the height of the KHI rolls and vymax
for different resolutions in Fig. E1. The height of the KHI rolls
is captured correctly for a resolution as low as 16 grid cells per
perturbation length. We note that in this low resolution the height
of the KH rolls above and below the original interface is only +2
grid cells. The morphology of the KH rolls is captured well down
to resolutions of 32 cells per perturbation wavelength. The same is
true for the evolution of vypa,. The peak vy, is about 10 per cent
smaller than for the higher resolutions, but the initial increase and
later decline are reproduced accurately. With only 16 grid cells per
perturbation length, however, the scales on which the peak velocities
occur are not resolved, and the growth rate would be underestimated.
This is not surprising given that the thickness of the mixing layer is
covered by only 4 grid cells.

The PPM hydro scheme spreads discontinuities over 2-3 grid
cells as evident from the tracer slices in Fig. E1. Consequently,
the internal structure of the KH rolls requires resolutions of the
width of the KH layer exceeding several grid cells. For example, the
intermediate tracer values in the KH rolls at the lowest resolution are
due only to numerical diffusion. The low resolution results resemble
the higher resolution results well except for this caveat.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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