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Abstract  22 

Scope: Quercetin is reported to reduce blood pressure in hypertensive but not normotensive 23 

humans, but the role of endothelial redox signalling in this phenomenon has not been 24 

assessed.  This study investigated the effects of physiologically-obtainable quercetin 25 

concentrations in a human primary cell model of endothelial dysfunction in order to elucidate 26 

the mechanism of action of its antihypertensive effects. 27 

Methods and results: Angiotensin II (100 nM, 8 h) induced dysfunction, characterised by 28 

suppressed nitric oxide availability (85 ± 4% p<0.05) and increased superoxide production 29 

(136 ± 5 %, p<0.001). These effects were ablated by an NADPH oxidase inhibitor.  Quercetin 30 

(3 μM, 8 h) prevented  angiotensin II induced changes in nitric oxide and superoxide levels, 31 

but no effect on upon nitric oxide or superoxide in control cells.  The NADPH oxidase 32 

subunit p47phox was increased at the mRNA and protein levels in angiotensin II-treated cells 33 

(130 ± 14% of control, p<0.05), which was ablated by quercetin co-treatment.  Protein kinase 34 

C activity was increased after angiotensin II treatment (136 ± 51%), however this was 35 

unaffected by quercetin co-treatment. 36 

Conclusions: Physiologically-obtainable quercetin concentrations are capable of ameliorating 37 

angiotensin II-induced endothelial nitric oxide and superoxide imbalance via protein kinase 38 

C-independent restoration of p47phox gene and protein expression. 39 

 40 

 41 

 42 

 43 
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Introduction 44 

Evidence from a wide variety of studies suggests that particular dietary polyphenolic plant 45 

secondary metabolites are capable of modulating clinical markers of cardiovascular health in 46 

humans (1-5).  Of the many thousands of these structures present in fruit and vegetable-rich 47 

diets, the flavonol quercetin is amongst the most ubiquitous, being found most commonly in 48 

berries, apples and onions, and being freely available as an isolate marketed as a nutritional 49 

supplement. Quercetin has been shown to reduce blood pressure in hypertensive but not 50 

normotensive human volunteers (6-10).  These studies showed significant decreases of both 51 

systolic and diastolic blood pressure in hypertensive individuals, apparently independent of 52 

brachial artery vasodilation, angiotensin converting enzyme activity, and plasma nitrite 53 

concentrations (7, 8). However, the molecular mechanism underpinning the potential beneficial 54 

effects of quercetin have remained elusive.  In models of rodent hypertension modulation of 55 

NADPH oxidase expression and reactive oxygen species (ROS) formation (11, 12) have been 56 

suggested as key targets for quercetin.  However, most of these experiments have used rodent 57 

aortic ring segments which do not allow specific assessment of endothelial function (13-15).  58 

The endothelium is an important source of vasodilatory and constrictive signalling factors 59 

involved in the downstream regulation of blood pressure and normal vascular function.  60 

Notably, the redox signalling agents nitric oxide (NO˙) and superoxide (O2
·-) rapidly and 61 

antagonistically mediate such effects (16). Imbalance in this redox equilibrium is strongly 62 

implicated in the pathophysiology of several cardiovascular diseases, and it may therefore be 63 

hypothesised that restoration of endothelial function plays a significant role in mediating the 64 

effects of quercetin in endothelial dysfunction. Indeed, relaxation studies using stimulated 65 

aortic ring segments have suggested the involvement of endothelial NO˙ availability in the 66 

mechanism of action of quercetin, and a cell culture model of HOCl-induced endothelial 67 

dysfunction has shown that supraphysiological concentrations of quercetin can increase NOS 68 
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activity (13-15, 17).  Interestingly, this suggestion is in apparent conflict with the later study 69 

of Larson et al. (2012), which concluded that the clinical effects of quercetin in hypertensive 70 

individuals were independent of plasma nitrite concentrations;  a clinical marker of circulating 71 

NO˙ availability. In addition, the barrier function of the endothelium makes this structure most 72 

likely to be exposed to plasma quercetin following oral administration.   73 

This study therefore aimed to determine the potential effects of physiologically-obtainable 74 

quercetin concentrations on NO˙ and O2
·- signalling imbalance.  For this study primary vascular 75 

endothelial cells (Human Umbilical Vein Endothelial Cells; HUVEC) have been used rather 76 

than endothelial cell lines, which have been reported to vary in characteristics quite 77 

dramatically when compared to ex vivo tissues.  HUVEC are well characterised, relatively 78 

easily accessible, primary cells that have been reported to exhibit key endothelial cell functions, 79 

and are extensively used in the study of the effects of dietary chemicals upon cardiovascular 80 

biology and diseases (18-24).  Specifically, we have assessed the effects of quercetin on NO˙ 81 

availability, O2
·- production and NADPH oxidase subunit protein levels and activity. The 82 

concentrations of quercetin added have been chosen to replicate those which may arise from 83 

dietary intake, providing meaningful information on the mechanisms which underlie clinical 84 

observations.  This use of physiologically-obtainable quercetin concentrations is an important 85 

part of the novelty of this study as although the role of NADPH oxidase and NO˙ production 86 

in the mechanism of action has been previously investigated in a variety of model systems, 87 

these studies have mainly assessed supra-physiological concentrations of quercetin.  Thus there 88 

is a possibility that the previously reported effects of quercetin upon vascular dysfunction are 89 

actually due to off-target effects and are therefore not relevant to the mechanism of action in 90 

humans.  Our study aims to address this important consideration. 91 

 92 



Jones 

5 
 

Materials and methods 93 

Materials 94 

Unless otherwise listed below, all reagents were sourced from Sigma-Aldrich (Poole, UK).  95 

 Human Umbilical Vein Endothelial Cells were purchased from Promocell (Heidlberg, 96 

Germany) as cryopreserved aliquots of 5 x 105 cells pooled from 4 donors.  Endothelial Cell 97 

Growth Medium (ECGM) was also purchased from Promocell (Heidlberg, Germany).  98 

Medium 199 (M199) was obtained from Life Technologies (Paisley, UK).  Nunc Nunclon 99 

plasma-treated black 96-well plates were bought from Fisher Scientific (Leicestershire, UK).  100 

4, 5-Diaminofluorescein diacetate (DAF-2 DA) was purchased from Enzo Life Sciences 101 

(Exeter, UK).  The DC protein assay kit, 2x Lamelli buffer, Mini-Protean 12% TGX gels, 10x 102 

TGS buffer, 0.2 μm PVDF Turboblot membrane packs, Precision Plus protein marker ladder, 103 

Clarity Western ECL solution, Aurum total RNA extraction kit and iScript cDNA synthesis kit 104 

were all obtained from Bio-Rad (Hertfordshire, UK).  Marvel low-fat powdered milk was 105 

purchased from a local supermarket.  Autoradiography films (Amersham ECL) were purchased 106 

from Fisher Scientific (Loughborough, UK).  An Endothelin-1 ELISA assay kit was purchased 107 

from Enzo Life Sciences (Exeter, UK).  Solaris PCR expression assays for NOS3 (eNOS), 108 

NCF-1, EF1α and β-actin, and the Solaris qPCR mastermix were purchased from GE 109 

Healthcare (Buckinghamshire, UK).  110 

The following antibodies were used: p47phox (Abcam, Cambridge, UK, Ab63361, Lot # 111 

803556), gp91phox (Abcam, Cambridge, UK, AB129068, Lot # GR83718-3), β-actin (Abcam, 112 

Cambridge, UK, ab20272, Lot # GR88824-1), Phospho-(Ser) PKC substrate antibody (Cell 113 

Signalling, 2261,Lot # 18), anti-beta tubulin (Millipore, 06-661, Lot # 239882), Goat anti-114 

rabbit HRP-conjugate (Sigma-Aldrich, Poole, UK, A6154, Lot # 090116176), Goat anti-mouse 115 
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HRP-conjugate (Abcam, Cambridge, UK, ab97023 , Lot # GR87150-8), Goat anti-rabbit HRP-116 

conjugate (GE Healthcare, RPN4301, Lot # 9526414).  117 

 118 

Human Umbilical Vein Endothelial Cell (HUVEC) culture 119 

 HUVEC were grown to ~95% confluence with ECGM + 20% foetal bovine serum (FBS) over 120 

3-4 d, with the culture media refreshed every 2 d.  After trypsinisation, HUVEC were seeded 121 

into either 96-well or 6-well plates at a density of 14,700 cells/cm2 and cultured for the 122 

durations described below and in the figure legends, with media refreshed every 2 days.    123 

 124 

Live cell measurement of NO˙ availability in HUVEC cultures 125 

Passage 4 – 6 HUVEC were seeded in 96-well plates (5 x 103 cells / well) and allowed to 126 

proliferate for 2 - 3 d as required.  Cell cultures were serum-deprived for 24 hours in Medium-127 

199 containing 0.5% FBS (M199) before endpoint measurement.  Ang II was prepared as a 1 128 

mM stock in ddH2O (18.2 MΩ), diluted in culture media to produce 10 nM – 10 μM final 129 

concentration.  8 hr before end-point measurement cells were treated in M199 with or without 130 

Ang II.  Cells were treated with quercetin or solvent only as directed in the Figure legends for 131 

8 hours in the presence or absence of Ang II.  For cells treated with L-NAME, a stock solution 132 

of 100 mM was prepared in DMSO, and diluted 1000-fold in culture media.  Cells were treated 133 

with L-NAME, or a vehicle control, for 30 minutes before end-point measurement. After 134 

incubation with the appropriate treatment(s), cells were washed once on a warmed plate with 135 

200 μl of warmed HBSS (containing magnesium and calcium), and 70 μl of warm HBSS 136 

(containing magnesium and calcium) containing 2 μM DAF-2DA was added per well.  For L-137 

NAME treated cells, L-NAME was also included in this dye solution.  Fluorescence (λex 485 138 
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nm, λem 520 nm) was measured every 3 min over a 30 minute period using a Tecan infinite 139 

X200 plate reader, maintained at 37°C, with a matrix of 4x4 points per well measured (ten 140 

flashes per point), and a manual gain of 100 set.  Linear rates (r2 ≥0.99) were calculated for all 141 

wells and a mean rate of fluorescence was calculated for each treatment (n=4-6 wells per 142 

treatment).  Wells containing cells only, and wells without cells were also assessed 143 

Protein extraction from HUVEC cultures 144 

Cells were cultured as described and treated 8 h before extraction with either DMF (0.1% v/v), 145 

quercetin (3 μM), DMF (0.1% v/v) and Ang II (100 nM), or quercetin (3 μM) and Ang II (100 146 

nM), in M199 containing 0.5% FBS.  Monolayers were washed twice in 3 ml of PBS per well, 147 

before the addition of 200 μl of RIPA buffer (1% NP-40 substitute, 0.5% w/v sodium 148 

deoxycholate, 0.1% w/v sodium dodecyl sulphate, made up in PBS containing protease 149 

inhibitor cocktail) per well.  Cells were harvested by scraping before incubation for 5 min on 150 

ice to aid lysis.  The cell lysates were sonicated (Sonic Vibracell VCX130PB) for 3 x 10 s 151 

bursts on ice.  Lysates were centrifuged at 16 100 x g, 5 min, and the resulting supernatant 152 

stored at -20°C.   153 

 154 

Western blotting for NADPH oxidase subunits p47phox and gp91phox 155 

 Protein extracts, prepared as above, were quantified using the DC protein assay as described 156 

by the manufacturer.  20 μg of protein extract was added in a 1:1 ratio to 2x Lamelli buffer.  157 

The resulting samples were then boiled for 5 minutes at 95°C, before incubation on ice for 2 158 

minutes, and centrifugation at 16 100 x g for 30 seconds.  Proteins were separated using 12% 159 

TGX gel for 30 minutes at 250 V in 1x TGS buffer.  Separated proteins were transferred PVDF 160 

membranes before washing in 1x TBST buffer (20 mM Trizma base, 137 mM sodium chloride, 161 
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1 ml of tween20, pH 7.6) and blocking in a solution of 5% w/v milk in 1x TBST for 30 minutes.  162 

Membranes were rinsed and washed 3x 10 minutes in 1x TBST buffer, before incubation for 1 163 

hour with the appropriate primary antibody dilution (p47phox – 1:2000; gp91phox – 1:5000) in 164 

1% w/v milk in 1x TBST buffer.  Following further rinsing and 3 x 10 minute washes in 1x 165 

TBST buffer, membranes were incubated for 1 hour with the appropriate secondary antibody 166 

(Goat anti-rabbit HRP conjugate – 1:30000) diluted in 1% w/v milk in 1x TBST.  The 167 

membranes were then rinsed and washed again (3x 10 minutes in 1x TBST) and processed by 168 

ECL.  Membranes were stored at 4°C for use in measuring β-actin levels as a loading control.  169 

Membranes were incubated for 2x 10 minute washes in stripping buffer (200 mM glycine, 3.5 170 

mM sodium dodecyl sulphate, 1% tween20, adjusted to pH 2.2), washed twice in TBST, and 171 

then blocked (5% w/v milk, 30 minutes) and washed a further 3 times.  The membranes were 172 

incubated with the β-actin HRP conjugated antibody (1:2 000 000 dilution) in 1% w/v milk in 173 

1xTBST buffer for 1 hour before a further 3x 10 minutes washes in 1x TBST buffer.  The 174 

membranes were incubated in ECL solution and developed as previously described, with a 2.5 175 

minute exposure to the autoradiography film.   176 

For the assessment of PKC-phosphorylated substrate consensus sequences membranes were 177 

blocked using 10% bovine serum albumin (BSA) for 1 h followed by incubation with a PKC-178 

phosphorylated substrate consensus sequence primary antibody diluted to 1:1000 in 1 % BSA 179 

for 1 h.   An appropriate HRP-conjugated secondary antibody diluted 1:10,000 in 1% BSA was 180 

used to detect the primary antibody.  Membranes were stripped and re-probed with for β-tubulin 181 

at a dilution of 1:1000 overnight at 4°C. 182 

All films were digitised and densiometry was done using the ImageJ software.  A ratio of 183 

protein of interest: β-actin was calculated for each sample with the control samples for each 184 

biological replicate set at 100%.  For the PKC-phosphorylated substrate films, the entire lane 185 

was quantified by densitometry as described above, and normalised to β-tubulin.   186 
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Intracellular O2
·- determination by LC-MS detection of 2HE+ 187 

HUVEC were cultured as described in 6-well plates and serum-deprived in M199 containing 188 

0.5% FBS for 24 h prior to experiments.  At 8 h before experiments these cultures were 189 

incubated with or without Ang II (100 nM) in the presence of vehicle (0.1% v/v DMF), 3 nM, 190 

or 3 µM quercetin, with 3 wells per treatment.  For experiments using the NADPH oxidase 191 

inhibitor VAS-2870, cells were treated with or without Ang II for 8 h, with either vehicle (0.1% 192 

DMF) or 1 μM VAS-2870 for 30 minutes before assay.  After 8 h incubation the cells were 193 

washed twice in excess warm PBS containing 100 µM DTPA and then incubated in darkness 194 

with 2 ml of 20 µM dihydroethidium (DHE, dissolved in DMSO at a stock concentration of 20 195 

mM) in HBSS for 30 min .  Following two further washes with excess PBS - DTPA, each well 196 

was scraped in 500 µl of methanol, and wells from the same treatment groups were pooled and 197 

stored overnight at -20 °C.  The resulting lysates were centrifuged (16,100 x g, 10 minutes, 4 198 

°C) with both the supernatant and pellet retained separately.  The supernatant was evaporated 199 

to dryness using a centrifugal evaporator without heating (Genevac MiVac, Genevac, Ipswich, 200 

UK), and the resulting residue was dissolved in 1:1 water:stabilisation solution (33.3% 201 

methanol, 10 μM fluorescein internal standard, 0.1 mM DTPA, and 5 mM sodium ascorbate, 202 

made up to final volume with water) with a final volume of 120 µl for LC-MS analysis.  The 203 

pellet was dissolved in 100 µl of 0.1 M sodium hydroxide and the protein content was 204 

quantified using the DC assay as directed by the manufacturer. 205 

For LC-MS analysis of DHE oxidation products, the specific O2
·- reaction product (2-HE+) 206 

was detected at a m/z ratio of 330.3, and at a retention time of 7 min.  Separation was achieved 207 

using a Shimadzu prominence LC20 quaternary pump and autosampler, a Shimadzu CTO10 208 

column oven, and an Agilent Eclipse XDB-C18 column (5 µm, 4.6 x 150 mm) at a flow rate 209 

of 0.5 ml/min.  Water containing 0.5% formic acid (solvent A) and methanol containing 0.5% 210 

formic acid (solvent B) were used to achieve separation as follows; 43% B for 3.35 minutes, 211 
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increasing to 85% B by 8 minutes, maintained at 85% B until 11.5 minutes, reduced to 43% B 212 

by 11.75 minutes, held at 43% B until 18.75 minutes.  Column oven temperature was set to 40 213 

°C.  The injection volume used was 20 μl.  A Shimadzu LC2020 single quadrapole mass 214 

spectrometer was used as the detector with the following settings: Fluorescein was used as an 215 

internal standard, at a m/z ratio of 333.0 and a retention time of 11.25 minutes.  Peaks 216 

corresponding to 2-HE+ and fluorescein were integrated and peak areas were calculated.  The 217 

ratio of 2-HE+:fluorescein was normalised to the total protein.  Control samples from each 218 

independent experiment were set to 100%, with all other treatments expressed as a percentage 219 

of control, and 3 independent experiments were analysed.  A representative chromatogram is 220 

shown in Figure S1.  221 

 222 

RNA extraction, cDNA synthesis and qPCR of eNOS and β-actin 223 

HUVEC cultures were grown as described above in 6-well plate format, with and without Ang 224 

II (8 h, 100 nM) and quercetin (3 µM, 8 h) treatments.  Cells were washed and scraped in PBS, 225 

with wells from the same treatment group pooled together, centrifuged, and RNA was extracted 226 

using the Bio-Rad Aurum RNA extraction kit as directed by the manufacturer.  Eluted RNA 227 

was quantified by spectrophotometry.  Using the Bio-Rad iScript cDNA synthesis kit, as 228 

directed by the manufacturer, 500 ng of RNA was reverse transcribed, and the resulting cDNA 229 

was quantified by spectrophotmetry.  Relative quantification of gene expression, comparing 230 

control against treated samples, was achieved using the validated Solaris PCR expression assay 231 

probes for eNOS, p47phox, Elongation Factor 1α and β-actin, by loading 150 ng of cDNA 232 

template to the assay probes and Solaris PCR master mix as directed by the manufacturer.  The 233 

following PCR conditions were used for these probe sets: 1 cycle of 95°C 15 min followed by 234 

50 cycles of 95°C for 15 sec and 60°C for 1 min.  The resulting Ct values were analysed by the 235 
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ΔΔCt method, using β-actin or Elongation Factor 1α as the reference gene.  Three independent 236 

experiments were analysed, with mean fold change in eNOS or p47phox expression in treated 237 

samples compared to control samples calculated, ± 1 standard deviation.      238 

 239 

 240 

Statistical analysis 241 

All statistical analyses used Sigmaplot version 12.0, with comparisons between multiple 242 

groups done by ANOVA or ANOVA on ranks, as appropriate after testing for normality of 243 

distribution and homogeneity of variance.  Post-hoc tests were done using Tukey post-hoc tests. 244 

Values less than p = 0.05 were considered statistically significant. 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 
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Results 256 

Ang II inhibits the production of NO˙ in HUVEC 257 

In order to examine the effects of quercetin on endothelial  dysfunction  we first exposed 258 

HUVEC to a range of Ang II concentrations (10 nM – 10 μM) for up to 24 h, under optimised 259 

culture conditions (as outlined in Figure S2), and the effect of Ang II treatment upon NO˙ 260 

availability was determined (Figure 1 A-D).  It was observed that concentrations below 10 µM 261 

Ang II resulted in a 10 – 20% decrease in the rate of nitric oxide production, measured in live 262 

HUVEC cultures by determining the rate of fluorescence accumulation using 263 

diaminofluorescein (DAF).  The greatest and most consistent reduction in NO˙ was observed 264 

for an 8 h incubation at 100 nM angiotensin II (Figure 1B).  We did not observe a dose-response 265 

for Ang II in these experiments over the concentration range tested, however the observation 266 

of a lack of effect at higher concentrations (1 μM and above) is consistent with previous 267 

research, as is the observed time dependency of Ang II treatment (18).  Based upon these 268 

experiments future Ang II treatments were at a concentration of 100 nM for 8 h; a treatment 269 

regime that resulted in a decrease in NO˙ availability of 15 ± 4% compared to untreated cells 270 

(Figure 1E, p<0.05). To confirm that this effect was mediated in a receptor dependent manner 271 

the experiments were repeated in the presence of the angiotensin receptor type 1 antagonist 272 

irbesartan (10 μM, 8 h). Under these conditions no change in NO production was observed 273 

(Figure 1E).  It was also noted that DMSO (0.1% v/v, 8 h), a commonly-used carrier solvent, 274 

attenuated the effects of Ang II on NO˙ levels in this system (Figure S2).   Dimethyl-formamide 275 

(DMF) did not attenuate the effects of Ang II on NO˙ and was therefore used for all future 276 

experiments.  277 

 278 

 279 
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Physiologically-obtainable quercetin concentrations prevents Ang II-induced decreases in 280 

nitric oxide production  281 

Using the live-cell nitric oxide assay described above, we next assessed the effect of quercetin 282 

upon the rate of nitric oxide production in HUVEC cultures with and without Ang II treatment 283 

(8 h, 100 nM).  An initial test concentration of 3 µM quercetin was selected for these 284 

experiments in order to test a physiologically-obtainable concentration (7, 25, 26).  Quercetin 285 

(3 µM, 8 h) was shown to prevent Ang II-induced decreases in the rate of nitric oxide 286 

production but had no effect on control cells (Figure 2A).  A dose response of quercetin (3 nM 287 

– 3 µM) in Ang II treated cells showed that quercetin prevented Ang II-induced dysfunction at 288 

all concentrations tested (Figure 2B). We next assessed the effect of quercetin treatment (3 µM, 289 

8 h) on the expression of endothelial Nitric Oxide Synthase (eNOS) using qPCR, with no 290 

changes in gene expression observed for any treatment compared to untreated cells (Figure 291 

2C). 292 

 293 

Quercetin prevents Ang II-induced superoxide production by NADPH oxidases 294 

As NADPH oxidase expression and reactive oxygen species (ROS) formation have been 295 

suggested as key targets for quercetin (11, 12) we next sought to determine the effects of both 296 

Ang II and quercetin treatments on superoxide production in HUVEC cultures.  Superoxide 297 

was increased by 36 ± 5% compared to control cells, and this was prevented by quercetin co-298 

treatment at both 3 µM and 3 nM (Figure 3A).  The prevention of Ang II-induced superoxide 299 

production by the NADPH oxidase inhibitor VAS-2870 (Figure 3B, 1 μM, 8 h, (27)) suggests 300 

that this ROS-producing complex was a major source of Ang II-induced superoxide in these 301 

HUVEC cultures. 302 
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Quercetin prevents Ang II-induced p47phox expression at the protein and mRNA levels 303 

In order to explore the potential mechanism by which quercetin prevents Ang II-induced 304 

dysfunction we next assessed the effect of quercetin treatment on the expression of the NADPH 305 

oxidase subunits p47phox and gp91phox.  Quercetin (3 µM, 8 h) prevented Ang II-induced p47phox 306 

protein levels (130 ± 14% of untreated cells), but had no effect upon p47phox protein levels in 307 

control cells (Figure 4A).  This trend was also reflected at the mRNA level (Figure 4B).  The 308 

expression of gp91phox protein was unaffected by either Ang II or quercetin treatments (Figure 309 

4C). 310 

Ang II-induced PKC activity is not modulated by quercetin co-treatment 311 

Protein Kinase C activity is a well-characterised component of the Ang II signalling cascade 312 

and known activator of NADPH oxidase activity. Treatment of HUVEC with Ang II caused a 313 

trend of increase in PKC activity (116 ± 32%, p<0.05), which was unaffected by co-incubation 314 

of cell with quercetin (Figure 5).  Quercetin alone (3 μM, 8 h) appeared to have no PKC activity 315 

(Figure 5).  These data suggest the possibility that the observed effects of quercetin are 316 

independent of PKC activity.   317 

 318 

Discussion 319 

In this study we have utilised angiotensin II to induce endothelial dysfunction in vitro, as 320 

characterised by decreased availability of NO˙, increased intracellular O2
·- , increased NADPH 321 

oxidase subunit expression and increased PKC activity.  Using this model we have probed the 322 

impacts of the flavonoid quercetin, which has previously been reported to modulate the 323 

expression of the NADPH oxidase subunit p47phox, O2
·- (SOD-inhibitable lucigenin detection), 324 

and of NO˙ production (nitrate and nitrite levels) in vitro (28, 29).  However, these previous 325 
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studies used supraphysiological concentrations of quercetin under non-dysfunctional 326 

conditions and their findings are in conflict with clinical research.  Consequently we have 327 

sought to address the discrepancy between the in vitro and clinical data by using 328 

physiologically-attainable quercetin concentrations and assessed effects under both non-329 

dysfunctional and dysfunctional conditions. 330 

Our study has shown that physiologically-obtainable concentrations of quercetin restore 331 

endothelial function (availability of NO˙, intracellular O2
·- and p47phox expression) to control 332 

levels in dysfunctional cells (induced by Ang II) whereas there are no effects in non-333 

dysfunctional cells.  This is in concordance with the current clinical data for the effects of 334 

quercetin in healthy and diseased populations (7, 8).  The mechanism of action of quercetin 335 

that underlies these effects is currently unknown, with mechanistic insights from clinical 336 

studies and rodent studies being conflicting.  Although these rodent studies have implicated 337 

changes in NADPH oxidase activity and increased availability of NO˙ as part of the mechanism 338 

of action, due to the inherent multicellular and multi-tissue complexity of the aortic ring 339 

segments, they have mainly focussed upon the effects of quercetin on vascular smooth muscle 340 

rather than the endothelium in ex vivo aortic ring segments.  The findings presented from our 341 

study demonstrate that quercetin restores endothelial function in Ang II-treated cells and 342 

suggests that the observed restoration of endothelial NO˙ and O2
·- signalling via the restoration 343 

of NADPH oxidase expression (possibly independently of PKC activity) is part of the 344 

mechanism of action of quercetin (Figure 6).  Interestingly, over the concentration range tested 345 

(3 nM – 3 µM), there was no observed dose response and a similar ablation of endothelial 346 

dysfunction by quercetin was seen at all tested concentrations.  There are several possible 347 

explanations for this observation including that the concentrations assessed in this study were 348 

not in the linear phase of a classical s-shaped dose response, or that quercetin potentially has 349 

multiple different mechanisms of action which can result in a variety of different shaped dose 350 
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response curves (30).  Ultimately, future research should focus upon investigating the dose-351 

response characteristics of quercetin in the context of endothelial dysfuction, as well as 352 

investigating the role of other potential mechanisms of action, such as other kinase signalling 353 

cascades (e.g. MAPK) and the phosphorylation control of eNOS and p47phox. 354 

Quercetin has been reported in human plasma in the nanomolar to low micromolar range, after 355 

dietary intake and supplementation (7, 8, 25, 26).  Human pharmacokinetic studies also have 356 

shown that quercetin undergoes substantial conjugative metabolism, with the formation of 357 

sulfate and glucuronide conjugates, whereas the aglycone form is not detected in human plasma 358 

(31).  It should be noted that these circulating conjugated forms are not currently widely 359 

available, and that as a result we have used the aglycone form of quercetin in this study.  This 360 

is not necessarily a major limitation as it has recently been suggested that the anti-hypertensive 361 

effects of quercetin glucuronides are dependent on deconjugation activity and the liberation of 362 

quercetin (32).  HUVEC have also been reported to express β-glucuronidase at the mRNA level 363 

(33), suggesting that they also possess at least some deconjugative machinery.  Taken together, 364 

these data suggest that the use of the aglycone form of quercetin in the endothelial cell model 365 

reported is a valid approach for assessing its effects on endothelial dysfunction. 366 

In summary, physiologically-obtainable concentrations of the dietary flavonoid quercetin 367 

restored NO˙ availability, O2
·- production and p47phox expression to control levels, possibly in 368 

a PKC-independent manner, in a human primary cell model of endothelial dysfunction.  There 369 

were no further improvements in NO˙ availability under control conditions.  These results are 370 

consistent with clinical observations that quercetin reduces blood pressure in hypertensive, but 371 

not normotensive, individuals, and suggest a potential mechanism by which quercetin mediates 372 

this effect.  373 

 374 
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Figure legends 532 

Figure 1: Angiotensin II reduces NO ̇ availability in HUVEC cultures. 533 

HUVEC cultures were incubated with Ang II for 1 – 24 h at A) 10 nM, B) 100 nM, C) 1000 534 

nM and D) 10 000 nM, with NO ̇ availability assessed post incubation in live cells using 535 

diaminofluorescein as described in the methods.  E) HUVEC cultures were incubated with Ang 536 

II (100 nM, 8 h) ± the Angiotensin receptor type 1 antagonist Irbesartan (10 µM, 8 h). Filled 537 

bars indicate Ang II treatment (100 nM, 8 h).  Graphs show mean values ± 1 S.D., n ≥ 3 538 

independent experiments, * p<0.05. 539 

 540 

Figure 2: Physiologically-obtainable quercetin concentrations prevent Ang II-induced 541 

decreases in nitric oxide production.  542 

 A) Ang II (100 nM, 8 h) induced decreases in NO ̇ availability were restored to control levels 543 

by quercetin treatment (3 µM, 8 h), whereas quercetin treatment alone had no effect on NO ̇ 544 

availability.  This trend was observed for a range of physiologically-obtainable quercetin 545 

concentrations (3 nM – 3000 nM, B).  C) endothelial nitric oxide synthase gene expression was 546 

not altered by either Ang II (100 nM, 8 h) or quercetin (3 µM, 8 h) treatments.  Filled bars 547 

indicate Ang II treatment (100 nM, 8 h). Graphs show mean values ± 1 S.D., n ≥ 3 independent 548 

experiments, * p<0.05; ** p<0.01; *** p<0.001. 549 

 550 

 551 

 552 

 553 
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Figure 3: Quercetin prevents Ang II-induced superoxide production by NADPH oxidases.  554 

A) Ang II-induced increases in intracellular superoxide are restored to control levels by 555 

quercetin co-treatment (8 h) at both 3 nM and 3 µM concentrations, with no effect in quercetin 556 

only treated cells.  B) Ang II-induced increases in intracellular superoxide are ameliorated to 557 

control levels by the NADPH oxidase inhibitor VAS-2870 (1 μM, 8 h).  Filled bars indicate 558 

Ang II treatment (100 nM, 8 h). Graphs show mean values ± 1 S.D., n ≥ 3 independent 559 

experiments, * p<0.05. 560 

 561 

Figure 4: Quercetin prevents Ang II-induced p47phox expression at the protein and mRNA 562 

levels. 563 

Quercetin co-treatment (3 µM, 8 h) restored Ang II-induced p47phox protein expression (100 564 

nM, 8 h) to control levels in HUVEC cultures as assessed by Western blotting (A).  This trend 565 

was reflected at the mRNA level, assessed using qPCR (B).  The NADPH oxidase subunit 566 

gp91phox was unaffected by either Ang II (100 nM, 8 h) or quercetin (3µM, 8 h) treatments (C).  567 

Filled bars indicate Ang II treatment (100 nM, 8 h). For the Western blotting data shown, the 568 

densitometry of the protein band of interest has been normalised to that of beta-actin, and it is 569 

this ratio that is presented in the bar graphs.  Graphs show mean values ± 1 S.D., n ≥ 3 570 

independent experiments, * p<0.05; ** p<0.01.  571 

 572 

Ang II-induced PKC activity is not modulated by quercetin co-treatment 573 

There was a trend of increase in PKC activity induced by Ang II exposure (100 nM, 8 h) but 574 

this effect was not ablated by quercetin co-treatment (3 μM, 8 h).  Filled bars indicate Ang II 575 

treatment (100 nM, 8 h). For this Western blotting data the densitometry values for each lane 576 
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of the PKC substrates blot has been normalised to that of tubulin.  It is this ratio that is presented 577 

in the bar graphs.  Graphs show mean values ± 1 S.D., n ≥ 3 independent experiments 578 

 579 

Figure 6: Mechanistic insights into the effects of quercetin upon endothelial cell 580 

hypertension.   581 

Quercetin restores angiotensin II-induced redox imbalance, centred around nitric oxide and 582 

superoxide.  Changes in p47phox
 protein expression are also restored to control levels, via 583 

modulation of gene expression, by a mechanism that seems independent of PKC activity.  584 

Arrows indicate the effects of angiotensin II treatment, which were ameliorated by quercetin 585 

co-exposure. 586 

 587 

Supplementary Figure 1 588 

A representative chromatogram of dihydroethidium (HE, precursor), the superoxide-specific 589 

reaction product of HE (2HE+), and fluorescein (internal standard).  Dihydroethidium was 590 

detected at m\z = 316.3, 2HE+ at m\z = 330, and the internal standard fluorescein at m\z = 333.  591 

 592 

Supplementary Figure 2 593 

A) Cell media composition affects HUVEC response to Ang II (100 nM, 8 h). 24 h serum 594 

deprivation in M199 containing 0.5% (v/v) FBS resulted in a consistent decrease in NO ̇ 595 

availability (15 ± 4% of control) when HUVEC were treated with Ang II (100 nM, 8 h).  Filled 596 

bars indicate Ang II (100 nM, 8 h) treatment.  B) The effect of cell passage number upon Ang 597 

II (100 nM, 8 h) induced decreases in NO ̇ availability.  Passages 4-6 are demonstrated to be 598 
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responsive to Ang II, measured by NO ̇ availability.  C) The effect of confluency upon Ang II 599 

induced decreases in NO  ̇availability.  Cells grown for 2-3 days post seeding are demonstrated 600 

to be responsive to Ang II, measured by NO ̇ availability, with decreasing responsiveness by 4 601 

days post seeding.  D) The effects of DMSO and DMF upon Ang II induced decreases in NO ̇ 602 

availability.  It was shown that DMSO (0.1% v/v), but not DMF (0.1% v/v), prevented Ang II 603 

induced decreases in NO ̇ availability.  Thus DMF was used for all experiments.  All 604 

experiments minimum n=3 independent experiments with mean ± SD plotted.  Filled bars 605 

indicates Ang II treatment.  ** p<0.01. 606 



 

Quercetin restores key cellular signalling molecules (nitric oxide and superoxide) to normal levels in 

a model of vascular endothelial cell (the cells that line blood vessels) dyfunction.  This is achieved by 

restoring the levels of p47phox (a key component in the superoxide generating machinery NADPH 

oxidase) to normal levels.  The assessment of the modulation of these pathways by quercetin 

concentrations similar to those measured in human blood is a major part of the novelty of this work. 
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