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ABSTRACT

Legg-Calvé-Perthes’ (Perthes’) disease is a developmental disease of the hip joint that may result
in numerous short and long term problems. The aetiology of the disease remains largely unknown, but
the mechanism is believed to be vascular and/or biomechanical in nature. There are several anatomical
characteristics that tend to be prevalent in children with Perthes’ disease, namely: skeletal immaturity,
reduced height and rostral sparing. We present an overview of the literature, summarising the current
understanding of the pathogenesis, particularly related to how the formation of the vasculature to the
femoral epiphysis places children aged 5-8 at a higher risk for Perthes’ disease, how skeletal immaturity
and rostral sparing could increase the probability of developing Perthes’ disease, and how animal
models have aided our understanding of the disease. In doing so, we also explore why Perthes’ disease
is correlated to latitude, with populations at higher latitudes having higher incidence rates than
populations closer to the Equator. Finally, we present five hypotheses detailing how Perthes’ disease

could have a biomechanical cause.
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INTRODUCTION

Legg-Calvé-Perthes’ (Perthes’) disease is a developmental disease of the hip joint that can result
in both short and long term morbidity, including pain, limited hip movement and early onset
osteoarthritis. It is believed that the disease is caused by a restriction of the epiphyseal blood supply,
which leads to necrosis and weakening of the femoral head. Physiological loading of the hip can then
lead to a subchondral fracture in the bony epiphysis, and collapse of the bony part of the epiphysis.
Although the disease was first described over a hundred years ago (Calvé, 1910; Legg, 1910; Perthes,
1910) and the pathogenesis has been hypothesized for three decades (Salter and Thompson, 1984;
Thompson and Salter, 1987), the aetiology of the disease remains unknown (Perry and Hall, 2011).
Research into the aetiology of Perthes’ disease has focused mainly on factors that are well-known to
have negative influences on health; for example, birth factors (i.e. low birth-weight, late in the birth
order and parents who are older at the time of the birth) (Molloy and Macmahon, 1967; Fisher, 1972;
Wynne-Davies and Gormley, 1978; Hall et al., 1979; Wang et al., 1990; Margetts, 2001; Lappin et al.,
2003; Sharma et al., 2005; Wiig et al., 2006), second-hand smoking (Molloy and Macmahon, 1967;
Garcia Mata et al., 2000; Gordon et al., 2004; Sharma et al., 2005; Bahmanyar et al., 2008) and low
socioeconomic status (Barker et al., 1978; Wynne-Davies and Gormley, 1978; Hall et al., 1979, 1983,
1988; Wijesekera, 1984; Hall and Barker, 1989; Kealey et al., 2000; Gordon et al., 2004; Pillai et al., 2005;

Sharma et al., 2005; Perry et al., 2011, 2012a, 2012b).

Inconsistencies in aetiological factors between cases of Perthes’ disease make it difficult to
predict those at risk of the disease. The high degree of variability in incidence rates around the world
also makes it difficult to identify common factors (Perry et al., 2012d). However, some factors appear
consistent across studies. These include: rostral sparing (dysmorphic growth patterns with sparing of

the head and upper limbs (Burwell et al., 1978; Burwell, 1988)), being short in stature while being
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heavy/normal weight for age (Goff, 1954; Ralston, 1955; Cameron and lzatt, 1960; Weiner and O’Dell,
1970; Fisher, 1972; Emr et al., 1973; Katz and Siffert, 1977; Burwell et al., 1978; Wynne-Davies and
Gormley, 1978; Cannon et al., 1989; Wiig et al., 2006; Perry and Hall, 2011) (although these factors were
not found to be statistically significant in some studies (Girdany and Osman, 1968; Laron et al., 1973;
Kealey et al., 2004; Sharma et al., 2005)), and being skeletally immature (Goff, 1954; Caffey, 1968;
Girdany and Osman, 1968; Weiner and O’Dell, 1970; Fisher, 1972; Laron et al., 1973; Emr et al., 1973;
Harrison et al., 1976; Katz and Siffert, 1977; Thompson et al., 1978; Bohr, 1979; de Guembecker and
Duriez, 1981; Edvardsen et al., 1981; Harrison and Burwell, 1981; Kristmundsdottir et al., 1984, 1986,
1987; Wijesekera, 1984; Thompson and Salter, 1987; Burwell, 1988; Loder et al., 1995; Vila-Verde and
da Silva, 2001; Kitoh et al., 2003; Lee et al., 2007; Zarco et al., 2008). These conditions appear to
predispose an individual to Perthes’ disease, and/or promote a vascular insult to the medial circumflex

artery, causing infarction to the developing epiphysis and Perthes’ disease to ensue.

A review of the recent literature reveals a decline in studies investigating the aetiology of
Perthes’ disease. Instead, recent research tends to focus on treatment modalities (Kim, 2012).
Treatment methods vary from observation to immobilisation, splintage, or surgery depending on the
child’s age, the level of damage experienced by the bony epiphysis, and the beliefs of the surgeon
(Catterall;,1971; Stulberg et al., 1981; Herring et al., 1992; McQuade and Houghton, 2005; Canavese and
Dimeglio, 2008; Osman et al., 2009). Past treatment methods focused on immobilisation and reduction
of the loading of the hip in the hope that this would prevent further collapse of the femoral head
(Danforth; 1934; Herndon and Heyman, 1952; Goff, 1954; Katz, 1967). However, these treatments were
largely unsuccessful, perhaps because muscles crossing the hip can produce significant forces at the

joint that far exceed the forces produced by body weight (Bergmann et al., 1993, 2001).

The primary goal of the current treatment methods is containment of the femoral head within

the acetabulum. This maintains the weakened femoral head within the relative sphericity of the

John Wiley and Sons, Inc.

This article is protected by copyright. All rights reserved.



Page 5 of 38

Clinical Anatomy

acetabulum, thereby encouraging the femoral head to adopt the shape of the acetabulum during the
reossification stage of the disease. Attempts are made to achieve this non-invasively with a range of
motion exercises and braces, or surgically through femoral or pelvic osteotomies (Herring et al., 2004).
When deciding between non-invasive and surgical treatment, Catterall classification and “at risk signs”
play crucial'roles: non-invasive treatment is more appropriate for children in Catterall groups | and I,
and surgical treatment (namely, a femoral osteotomy) is more appropriate for children in Catterall
groups-lil-and IV, particularly when they are “at risk” for further femoral collapse (Catterall, 1971; Lloyd-
Roberts etal., 1976). Outcomes tend to be correlated with sex and age at onset of the disease, with
those 6 years old and younger doing better than older children, and boys doing better than girls (Herring
et al., 2004; Canavese and Dimeglio, 2008; Osman et al., 2009). This could be because a smaller portion
of the epiphysis is bony in younger children and boys. These treatments can be time consuming, place a
significant financial and psychological burden on the family, and consume a significant proportion of the

individual’s childhood (Goff, 1954).

The mechanism underpinning Perthes’ disease is believed to be vascular, and although the
aetiology of the vascular insult remains unknown, it has been hypothesized to be biomechanical in
nature (Trueta, 1957; Caffey, 1968; Harrison and Burwell, 1981; Kristmundsdottir et al., 1984; Salter and
Thompson, 1984; Thompson and Salter, 1987; Wiig et al., 2007; Nelitz et al., 2009). Surprisingly,
research concerning the biomechanics of the disease is sparse and tends to focus on the effects rather
than the causes of the disease (Moseley, 1980; Brown et al., 1982; Rab et al., 1982; Kristmundsdottir et
al.,-1984; Ueo et al., 1987). The goal of this paper is to propose a number of biomechanically-based

hypotheses that explain the development of Perthes’ disease.
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PATHOGENESIS

The pathogenesis of Perthes’ disease is described in detail by Salter and Thompson (1984) and
Thompson and Salter (1987). Initially, an ischemic episode occurs, avascular necrosis of the femoral
epiphysis ensues, and epiphyseal growth is arrested (Fig. 1). This can occur up to a year before the
collapse of the femoral head (Inoue et al., 1976). Eventually, the epiphysis is revascularized, necrotic
bone is resorbed, and new bone is laid down. During the time of bone resorption, the epiphysis is
particularly' weak and prone to fracture because a) necrotic bone is weaker than healthy bone (Pringle et
al., 2004; Koob et al., 2007; Hofstaetter et al., 2010), and b) the resorption of the weak, necrotic bone
removes.what little structural support the necrotic bone was providing (McQuade and Houghton, 2005;
Kim et al., 2006). Observations in children with Perthes’ disease (Inoue et al., 1976; lwasaki et al., 1982)
and animal models (Kemp, 1973) suggest this process may occur once or multiple times before Perthes’

disease develops.

When the epiphysis is particularly weak, a pathological (most likely subchondral) fracture occurs
and Perthes’ disease becomes evident both clinically and radiographically. Salter and Thompson (1984)
argue that up until the point of fracture, the child does not have Perthes’ disease, and is simply at risk of

developing Perthes' disease.

This therefore suggests two distinct steps in the disease mechanism; the first being to weaken
the bone via a vascular insult, and the second being a trauma to the femoral head. Our hypotheses
provide biomechanical explanations for how the blood supply could be cut off and how the pathological

fracture could occur.
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BLOOD SUPPLY TO THE EPIPHYSIS

During the first three years of development, the femoral epiphysis has two main blood supplies
arising from the medial and lateral circumflex arteries, which enter the epiphysis via the superior,
posterior, lateral and the inferior, posterior, medial quadrants, respectively (Trueta, 1957; Ogden, 1974).
These arteries supply blood to the epiphysis via vessels that branch off and directly enter the
cartilaginous head, and via vessels that branch off, enter the metaphysis, and travel around the growth
plate to enter the epiphysis (Ogden, 1974; Chung, 1976). As an individual ages, fewer vessels reach the
epiphysis and there is marked individual and racial variation (Trueta, 1957). When the individual is
about two to three years old, the lateral circumflex artery stops supplying blood to the epiphysis and
only supplies blood to the metaphysis. In addition, the blood vessels that previously skirted around the
periphery of metaphysis and supplied blood to the epiphysis via the metaphysis cease to exist (Crock,
1965; Lauritzen, 1974; Ogden, 1974). Thus, from the ages of four to seven years, the bony part of the
femoral epiphysis only receives blood from the medial circumflex artery. By the time the child is seven
yearsold, the foveolar artery (i.e. the acetabular branch of the obturator artery) begins to supply blood

to the bony epiphysis (Tucker, 1949; Trueta, 1957).

As a result, the bony part of the femoral epiphysis is particularly susceptible to ischemic
episodes between the ages of four and seven years old, especially if the medial circumflex artery is
damaged or restricted. African children are believed to have a higher level of vascularization to the
epiphysis during this age period, but this has never been systematically tested (Ogden, 1974). This could
explain why Perthes’ disease tends to occur in Caucasian children between the ages of five and eight
more thanany other race or age group. Angiograms of children with Perthes’ disease have revealed
that, in early stages of the disease, there is a devascularization of the epiphysis most likely caused by an

abrupt interruption of the medial circumflex artery (Théron, 1980; de Camargo et al., 1984).
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Furthermore, in children with Perthes’ disease older than seven years old, there is an absence of a blood
supply to the femoral head from the lateral circumflex and obturator arteries (Théron, 1980; de
Camargo et al., 1984; Atsumi et al., 2000). This is followed by revascularization of the epiphysis,
although the number of arteries supplying blood to the epiphysis of the afflicted side is reduced

compared to the contralateral side (de Camargo et al., 1984; Shore et al., 2012).

It should be noted that the occlusion observed in the angiograms may have occurred as a result
of the damage from the subchondral fracture and/or the femoral head collapse, and therefore may not
have led to the initial infarction (Kitoh et al., 2003). Nevertheless, evidence supporting the hypothesis
thatrestriction of the blood supply from the medial circumflex artery leads to the development of
Perthes’ disease is considerable (lwasaki et al., 1982; Perry et al., 2012c). Furthermore, animal models
have shown that vascular occlusion of the medial circumflex artery can cause Perthes’-like radiographic

changes (Yoshida et al., 2000; Kim, 2010; Zhang et al., 2010).

SKELETAL IMMATURITY

Skeletal maturity is commonly measured via hand-wrist radiographs of children, although it can
be measured in other ways (Acheson, 1954, 1957; Stuart et al., 1962; Greulich et al., 1971; Tanner et al.,
1976; Gaskin et al., 2011). The two methods usually used for measuring skeletal maturity in the wrist
are the Greulich and Pyle, and Tanner Whitehouse (TW2 and TW3) methods (Greulich et al., 1971;
Tanner at al., 1976). The Greulich and Pyle method compares hand-wrist radiographs of a patient to a
series of published hand-wrist radiographs with known skeletal ages. Skeletal age is determined by
deciding which published radiograph the patient’s radiograph best resembles, and assigning the patient
that skeletal age, making the method prone to significant interobserver variation (Bull et al., 1999). The

Tanner Whitehouse method assigns a score to each of the ossification centres in the hand and wrist,

John Wiley and Sons, Inc.

This article is protected by copyright. All rights reserved.

Page 8 of 38



Page 9 of 38

Clinical Anatomy

summing the scores and assigning an age based on the final score, making it less prone to interobserver

variation (Bull et al., 1999).

Differences in the techniques can lead to two different skeletal ages for the same individual.
There is a particularly high risk of this happening in children with Perthes’ disease because of skeletal
disharmony (Kristmundsdottir et al., 1984; Bull et al., 1999; Lee et al., 2007). Under the Greulich and

I"

Pyle method, “skeletal standstill” — a period of time, usually years, in which there is no progress in
skeletal maturation — was observed in a number of boys followed by catch-up growth (Harrison et al.,
1976).- However, when these same children were skeletally aged using the Tanner Whitehouse method,
no skeletal standstill was observed (Kristmundsdottir et al., 1984). Since it is unlikely that the children
stopped maturing skeletally at such a young age, it can be concluded that the Greulich and Pyle method
is not appropriate for children with Perthes’ disease (Bull et al., 1999). In addition, the method used to

skeletally age children with Perthes’ disease must be taken into account when comparing studies

dealing with skeletal age and Perthes’ disease.

Hypotheses concerning the cause(s) of skeletal immaturity in children with Perthes’ disease
have included malnutrition (Burwell, 1988) to endocrinopathies (Rayner et al., 1986; Kealey et al., 2004).
The best investigated nutritional deficiency is manganese deficiency, as it was proven to cause similar
growth failure in chicks (Hall et al., 1989). Whilst an initial study of manganese deficiency was highly
suggestive of a nutritional deficiency (Hall et al., 1989), a subsequent confirmatory study was unable to
replicate these results (Perry et al., 2000), making the nutritional component uncertain. There is no
strong association with endocrinopathies, with investigations for hypothyroidism and growth hormone
deficiencies failing to yield consistent findings (Kenet et al., 2008; Vosmaer et al., 2010; Perry and Hall,

2011).
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From a biomechanical perspective, we hypothesise that an immature skeleton is less efficient at
supporting the loads of a child, because skeletal mechanical properties are known to increase with age
(Currey and Butler, 1975). We hypothesise that the small bony epiphysis is less able to resist loading.
This could lead to mechanical failure of the joint (Acheson, 1957), especially considering the material
properties in a mature hip joint are distributed in a way to resist effectively normal loading conditions
(Hong et al., 2000; Lubovsky et al., 2011; Wright et al., 2012). In the case of Perthes’ disease, if the hip
joint were skeletally immature, it would be inefficient in resisting the loads applied to it, and would be
susceptible to occlusion of the blood supply and trauma (e.g. a subchondral fracture) (Loder and

Skopelja, 2011).

In children with Perthes’ disease, it is important to consider how the skeletal age of the hip
relates to chronological and skeletal age in general. One such study has compared the pelvis to the
wrist, using a modified method of Acheson’s method, and found that the pelvis was skeletally immature,
but not as skeletally immature as the wrist (Acheson, 1957; Loder et al., 1995). The differences were
suggested-to be due to the rostral sparing observed in Perthes’ disease (see later). Differential
maturation, mirroring the rostral sparing pattern of growth, may be an important contribution to the

disease mechanism.

SOCIOECONOMIC STATUS, SECOND-HAND SMOKING, AND DECREASED

ARTERIAL HEALTH

The association between socioeconomic status (SES) deprivation and Perthes’ disease is strong
(Gordon et al., 2004; Sharma et al., 2005; Perry et al., 2011, 2012a,b; Perry, 2013 a,b; ), while the

relationship between second-hand smoking and Perthes’ disease is more contested (Garcia Mata et al.,
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2000; Gordon et al., 2004; Bahmanyar et al., 2008). In early studies investigating the relationship
between SES and Perthes’ disease, a positive correlation was discovered between people who lived in
urban regions, lower SES, and Perthes’ disease. It was hypothesized that living in an urban area caused
the increase in incidence rates of Perthes’ disease: this hypothesis was eventually proven false (Joseph
et al., 1988; Hall and Barker, 1989; Kealey et al., 2000), as it was discovered the correlation between
urbanization and Perthes’ disease only existed because low SES and urbanization covaried (Barker et al.,
1978; Perry et al., 2012b). The current hypothesis is that people of lower SES may share a deprivation-
related ‘exposure’, which is the aetiological determinant in Perthes’ disease (Hall et al., 1983; Kealey et

al., 2000).

Given the strong association between SES and smoking (Winkleby et al., 1992; Adler et al.,
1994), attention has been directed to identify if tobacco smoke exposure may be the aetiological
determinant (Garcia Mata et al., 2000). However, the strong correlation between SES and smoking is

such that it is difficult to disentangle the two adequately.

Second-hand smoke is known to have many adverse health effects in children, including a
decrease in arterial health (Kallio et al., 2007), which has been documented both in children who
currently suffer from and adults who formerly suffered from Perthes’ disease (Hailer et al., 2010; Perry
etal., 2012c). If these arterial problems are severe enough to cause mild ischemias, this could
theoretically cause skeletal immaturity (Catterall et al., 1982; Dillman and Hernandez, 2009), which

couldlead to the development of Perthes’ disease.
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SHORT STATURE, NORMAL WEIGHT

Anatomical problems prevalent in children with Perthes’ disease include rostral sparing and
short stature while maintaining a normal to slightly heavy weight (Fisher, 1972; Burwell et al., 1978;
Thompson et al., 1978; Hall et al., 1988; Eckerwall et al., 1996; Gling6r, 2014). Rostral sparingis a
condition where the axial skeleton follows a normal growth pattern while the appendicular skeleton
follows an impaired growth pattern, with more inferior (caudal) segments having a larger level of
impairment than more superior (rostral) ones (Burwell et al., 1978; Hall et al., 1988; Rao et al., 1995;
Perry and Hall, 2011). This would result in the ratio of bodyweight above the hip joint to bodyweight

below the hip joint to be abnormally high in children with rostral sparing.

The higher bodyweight supported by the hip joint, and skeletally immature hips raises the
possibility that the hip will be overloaded. This overloading could cause occlusion of the blood supply

and-development of Perthes’ disease.

REGIONAL VARIATION IN INCIDENCE LEVELS

The hypothesis concerning differences in body proportions and overloading of the hip joint may
also explain differences in incidence rates of Perthes’ disease around the world. In a recent systematic
review of incidence, Perry et al. (2012d) determined that race was one of the most important factors in
determining variations in incidence levels, with people of East Asian descent having lower incidence
rates (Coyle, 1975; Joseph et al., 1988; Rowe et al., 2005; Kim et al., 2006; Joseph and Willoughby, 2010)
than people of Caucasian descent (Gray et al., 1972; Moberg and Rehnberg, 1992; Margetts, 2001; Pillai
et al., 2005; Sharma et al., 2005; Wiig et al., 2006; Krul et al., 2010; Terjesen et al., 2010). Although
people of African descent are hypothesized to have the lowest incidences, they were excluded from the

study due to insufficient data (Ebong, 1977; Purry, 1982). Further evidence that a racial component
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causes differences in incidence rates comes from two studies that compared incidence levels of two
different races living in the same environment, where people of Caucasian descent had higher incidence

rates than people of African or Asian descent (Purry, 1982; Faraj and Nevelos, 2000).

Once race is accounted for, latitude was the strongest predictor for incidence rates, with an
increase in.incidence of 1.44 times for each ten degrees movement in latitude from the Equator (Perry
et al., 2012d). It is difficult to address the differences in incidences between races without further
information regarding cross-cultural (a) variation in skeletal maturation rates, (b) ontogenetic changes in
anthropometric measurements, and (c) variation in growth curves, as these factors may not be constant.
For-example, it appears skeletal maturation rates are slower in Indians, who also have a later age of
onset for the disease (Joseph et al., 1988). The correlation between incidence and latitude, however,

can be explained using a principle from comparative biology.

In the mid to late 1800’s, Carl Bergmann (Bergmann, 1848) and Joel Allen (Allen, 1877) proposed
two distinct rules concerning body proportions of endothermic animals. These rules were later
combined, and are frequently referred to as Allen’s and Bergmann’s rules. Briefly, these rules predict
that selection will act on endothermic animals that are closer to the Equator in a way that will maximize
an animal’s surface area to volume ratio, helping the animal expend heat. Conversely, the rules predict
that selection will act to reduce the surface area to volume ratio when the animal is further away from

the Equator, helping the animal conserve heat.

Under Allen’s and Bergmann’s rules, selection would be expected to act on humans in a way
that would cause humans closer to the Equator to have longer limbs and shorter bodies, and weigh less
compared to humans further away from the Equator. Not too surprisingly, there is support for this in

the fossil record (Ruff, 1994; Churchill, 2006).
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This would mean that, compared to people with ancestors who lived closer to the Equator,
people with ancestors who lived further from the Equator would appear to have rostral sparing. This
would in turn cause the latter group to have a higher hip loading and therefore be more likely to
experience a higher incidence of Perthes’ disease. Therefore, the correlation between latitude and
increased incidence of Perthes’ disease could be explained by Allen’s and Bergmann’s rules. This

hypothesis remains to be tested.

PERTHES’ DISEASE IN NON-HUMAN ANIMALS

Because the exact cause(s) of Perthes’ disease remain(s) unknown, we cannot say whether or
not non-human animals suffer from Perthes’ disease (Mickelson et al., 1981). Conditions similar to
Perthes’ disease have been reported in a rhesus macaque (Macaca mulatta) (Smedley et al., 2004), a red
panda (Ailurus fulgens fulgens) (Delclaux et al., 2002), a western lowland gorilla (Gorilla gorilla gorilla)
(Douglass,.1981), broiler chickens (Gallus gallus domesticus) (Duff, 1984), dogs (Canis lupis familiaris)
(Tutt, 1935; Ljunggren, 1967) and rats (Rattus norvegicus) (Hirano et al., 1988). One key interesting
difference between “Perthes’ disease” in non-human animals and humans is that it appears to be highly
hereditary in non-humans (Hirano et al., 1988; Vasseur et al., 1989), while there is no evidence for
heritability in humans (Fisher, 1972; Gray et al., 1972; Wynne-Davies and Gormley, 1978; Hall, 1986;

Lappin et al., 2003; W.-C. Kim et al., 2006).

Whilst inheritance may be important, there is a body of evidence implying that Perthes’ disease
has a biomechanical cause. Spontaneously hypertensive rats (SHRs) are a strain of Wistar Kyoto rats
(WKYs) that are prone to having skeletally immature femoral epiphyses (Hirano et al., 1988), and to
developing a Perthes’- like condition, while ordinary WKYs are not skeletally immature and do not

develop Perthes’ features. However, if SHRs are treated with hyperbaric oxygenation, effectively
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increasing the ossification rate and causing the femoral head to develop at a normal rate, the femoral
head does not become overloaded and the SHRs do not develop the Perthes’-like features (Kataoka et
al.,1992). Also, if the SHRs are placed on a restricted diet (leading to a reduction in body weight), there
is a significant drop in the frequency of Perthes’ characteristics (Tomita et al., 1999; Kawahara et al.,
2002), presumably because they overload their hips less. If the ordinary WKYs are forced to stand on
their hind legs when feeding, thereby overloading their hip joints, they develop features of Perthes’ at a
frequency similar to the SHRs (Suehiro et al., 2000, 2005). Thus, it appears that, although there is a
genetic factor that increases levels of susceptibility of Perthes’ disease in non-human animals,

biomechanical overloading of the hip joint appears to be the trigger which causes Perthes’ disease.

PATHWAYS TO PERTHES’ DISEASE

Here, we propose five, untested, hypotheses that describe how Perthes’ disease could be
caused by.a biomechanical overloading of the hip joint, three of which concern skeletal immaturity. The
hypotheses focus on how the blood supply could become occluded biomechanically. In all cases, the

null hypothesis is that Perthes’ disease has no biomechanical cause.

H1: Inadequate blood flow - The impaired blood supply undernourishes growth and
ossification centres throughout the body, with the more proximal portions receiving more
nutrients than the more distal. Because it is nutrient deficient, the bony epiphysis of the femur
is small and inefficient at resisting the loads being applied to it, leading to overloading and
necrosis of the bony epiphysis. The necrotic epiphysis weakens, is further overloaded, and

fractures (see Fig. 2).
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Children with Perthes’ disease have vascular problems. In particular, they have smaller arteries,
slower blood velocity and slower blood flow (Perry et al., 2012c). It is therefore possible that insufficient
nutrients are being delivered to the growth centres, affecting the distal segments more than the
proximal ones. This could also explain the rostral sparing seen in children with Perthes’ disease, and
would be even more likely to occur when the child is between the ages of four and seven, with only one
blood supply to the bony epiphysis (Tucker, 1949; Trueta, 1957). This could lead to a small bony
epiphysis that is inefficient at resisting loads, and could eventually lead to necrosis, causing the epiphysis
to weaken biomechanically. Finally, normal loading of the hip joint could lead to the formation of a

subchondral fracture, and collapse of the bony epiphysis.

H2: Intraosseous vasculature occlusion - The immature epiphysis cannot properly resist the
loads being applied to it, and the cartilage in the epiphysis is excessively compressed. This
causes occlusion of the blood supply, leading to necrosis of the bony epiphysis, causing it to

weaken; overload, and fracture (see Fig. 3).

Cartilage is more compliant than bone and less efficient at resisting loads. It is possible that the
hip joint, being skeletally immature and composed of a larger amount of cartilage than it should for a
child of a given size and age, cannot effectively resist the loads. This could cause the blood vessels
within the cartilage of the developing femoral head to deform and occlude, leading to necrosis. The

necrotic bone can then be overloaded, and fracture can occur.

H3: Epiphyseal overloading - The immature epiphysis cannot resist the loads being applied
to it, causing a subchondral fracture to occur, leading to collapse of the bony epiphysis and

occlusion of the blood supply (see Fig. 4).
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This is the only hypothesis that puts occlusion of the blood supply after the subchondral
fracture. As there is evidence of multiple ischemic episodes occurring in some patients with Perthes’
disease, this hypothesis could not be used to explain all cases. However, it is possible for the disease to
have more than one cause, one of which takes multiple ischemic episodes into account, and one of

which does'not (Inoue et al., 1976).

H4: Extra-articular vasculature occlusion - Occlusion of the blood supply occurs in the
medial circumflex artery outside of the femoral head, leading to necrosis of the bony epiphysis,

causing it to weaken, overload, and fracture (see Fig. 5).

Ogden (1974) hypothesized a number of ways that the medial circumflex artery could be
compressed in a child: between the acetabular labrum and intertrochanteric region, the iliopsoas
tendon and adductor longus, or the iliopsoas tendon and the pubic ramus. It is also possible that there

could be a.morphological change in the hip joint which causes the blood supply to be occluded.

Lateral displacement of the femoral head is frequently seen in children with Perthes’ disease,
although it is not known whether this causes or is caused by the disease (Joseph, 1989). It is possible
that the skeletally immature hip joint is not efficient at resisting the loads applied to it, causing the
cartilage to become overworked. Overworked cartilage is known to retain water and cause damage to
the collagen network (Donohue et al., 1983). If this happens on the medial portion of the femoral head
or'on the adjacent portion of the acetabulum, this could cause swelling of the articular cartilage, pushing
the femoral head laterally and forcing it to interact with the lip of the acetabulum. This could lead to
occlusion of the blood supply (Ueo et al., 1987). Temporary swelling of the ligamentum teres could also
lead to the lateralization of the femoral head, and if the femoral head does not return to its original

location after the swelling has subsided, a similar series of events could occur (Kamegaya et al., 1989).
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For this hypothesis, it is worth noting that, during development, a number of peripheral
anastomoses can occur between the medial circumflex artery and other local arteries to supply blood to
the femoral head (Gautier et al., 2000). While these anastomoses are not ubiquitous among adults,
some, such as the inferior gluteal artery anastomosis, can be found in 80% of adults. If these
anastomoses form sufficiently early in life, they could potentially continue to supply blood to the
femoral head through a proximal connection with the medial circumflex artery, even after it has been

pinched off distally (Gautier et al., 2000).

H5: Extraosseous vascular occlusion - The femur and/or acetabulum are morphologically
unique in such a way that causes high stresses and/or strains to form around the areas at which
the arteries are entering the femoral head. This leads to occlusion of the blood supply and

necrosis of the bony epiphysis, causing it to weaken, overload, and fracture (see Fig. 6).

A number of morphological changes have been noted in the acetabulum of patients with
Perthes’ disease (Reynolds et al., 1999; Madan et al., 2003; Grzegorzewski et al., 2006). However,
because of the lack of ossification, it is difficult to view and take measurements of the acetabular rim
from radiographs, forcing the measurements to be simplistic, e.g. distance between the cranial and
caudal points of the rim (Kamegaya et al., 1989; Madan et al., 2003). More complex measurements,
such as acetabular retroversion, have been taken from adults who had Perthes’ disease when they were
children (Eijer et al., 2006; Ezoe et al., 2006; Berg et al., 2010). This calls into question whether any
morphological change in the acetabulum caused or was caused by Perthes’ disease (Eijer, 2007; Sankar
and Flynn, 2008; Larson et al., 2011; Kawahara et al., 2012). In addition, as there are no definitive
symptoms preceding the development of Perthes’ disease, it is unknown whether or not morphological
changes observed in children with the disease, such as femoral anteversion, caused the disease or

occurred as a result of it (Moulton and Upadhyay, 1982; Upadhyay et al., 1986, 1987; Joseph, 1989)
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Other studies have speculated on morphological changes in the femur that could cause Perthes’

IM

disease. However, there is such a wide range of “normal” morphologies that it could be difficult to
identify a set of morphological characteristics that could cause Perthes’ disease. For example, femoral
neck angle (also known as the angle of inclination, femoral inclination, collodiaphyseal angle, and neck
shaft angle), is reduced to about 110 degrees in femoral osteotomies designed to promote containment
of the femoral head in the acetabulum (Joseph and Price, 2011). Yet this angle is known to vary greatly
in adults-and is negatively correlated with activity level (Anderson and Trinkaus, 1998; Toogood et al.,
2009; Osorio et al., 2012) and age (Beals, 1969; Tardieu, 2010). Furthermore, the femoral neck angle
also covaries with other aspects of femoral morphology, such as bicondylar angle, biacetabular distance,
length of the femur, and length of the femoral neck (Isaac et al., 1997; Tardieu and Damsin, 1997).
Understanding how all aspects of femoral morphology co-vary with one another is important when

testing H5, as the differences seen in children with Perthes’ disease may not fall outside the normal

range of children of the same age and sex.

Finally, many studies that have investigated morphological variations in the affected femur do
so by comparing it to the contralateral femoral epiphysis, and operate under the assumption that the
contralateral hip represents a normal geometry. However, numerous studies of the contralateral hip
have shown that it is frequently abnormal (Harrison and Blakemore, 1980; Harrison and Burwell, 1981;
Arie et al., 1986; Kandzierski et al., 2003; Kitoh et al., 2003). Therefore, a geographically and racially

appropriate control group should be chosen for comparison.

Testing these hypotheses is challenging, but can be achieved using tools to quantify and
compare morphology (e.g. geometric morphometrics), and advanced engineering techniques, such as
finite element analysis (FEA) which are commonly used in comparative anatomical studies (Moseley,
1980; Brown et al., 1982; Rab et al., 1982; Choo et al., 1989; O’Higgins, 2000; Richmond et al., 2005;

Vaverka et al., 2006; Rayfield, 2007; Park et al., 2009; Salmaso and Brombin, 2013; Salmingo et al., 2014,
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Smith et al., 2015). FEA will be particularly useful in quantifying the biomechanical effects of such
variations.in morphology, and the consequences of skeletal immaturity and variations in material

properties.

CONCLUSION

To treat and ultimately prevent Perthes’ disease, we must properly understand its aetiology, the
trigger of which is likely to be biomechanical in nature. However, this trigger only affects a small portion

of the population, whose hip joints are particularly susceptible to overloading.

The biomechanics of Perthes’ disease is poorly understood, and in the case of early stages of the
disease, understudied. We propose several biomechanical hypotheses that describe how a
biomechanical trigger, interacting with the vascular supply to the femoral head, may cause Perthes’
disease, and how being skeletally immature, having rostral sparing, and a problematic vascular system
could make a child more susceptible to this trigger. Furthermore, we speculate on how biomechanical
failure may interact with the known risk factors for Perthes’ disease (e.g. low SES and second-hand

smoking) to make a child even more susceptible.

Through the use of the latest morphological assessment techniques to assess and compare
geometries and advanced engineering modelling techniques to estimate deformations, strains, stresses,
and reaction forces within the hip joint, it will be possible to begin to address these hypotheses and

investigate the role of biomechanical failure in the pathogenesis of Perthes’ disease.
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Avascular necrosis of the femoral head

v

Temporary cessation of growth of the
epiphysis

Revascularization of the epiphysis from
the periphery

v

Resumption of ossification, followed by
trauma

v

Pathologic fracture

L

Perthes

Figure 1: Pathogenesis that leads to Perthes’. Adopted from Fig. 2 in Salter and Thompson (1984)
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Hypothesis 1

Subchondral fracture

Weak blood flow causes Undernourished epiphysis is The necrotic epiphysis
few nutrients to be weaker than they should be. weakens further, is
delivered to the epiphysis, The epiphysis can no longer overloaded, and fractures

causing it to be withstand normal loads, and
underdeveloped, skeletally portions of the epiphysis
delayed and small become overloaded and
begins to die

Figure 1: Inadequate blood flow hypothesis, explaining how an individual could develop Perthes'
disease. Note: This is femur is of a child, 5-8 years old, who is only receiving blood to the epiphysis from
the medial circumflex artery. Therefore, arteries other than the medial cirmcumflex artery are not depicted
for clarity.
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Hypothesis 2

The immature epiphysis The cartilage cannot properly The epiphysis becomes The necrotic epiphysis
has a smaller bony resist the loads being applied necrotic and weaker weakens further, is
epiphysis than it should to it and beings to compresses, overloaded, and fractures
< pinching the capillaries and
cutting off the blood supply

Figure 3: Intraosseous vasculature occlusion hypothesis. The cartilage is depicted as green in the second,
third and fourth frames to emphasize it is being compressed.
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Hypothesis 3

Immature epiphysis is too Loading causes subchondral Subchondral fracture leads
small and weak to resist fracture to occur to collapse of femoral head
the normal loads being and occlusion of the blood

applied to it supply

Figure 4: Epiphyseal overloading hypothesis.
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Hypothesis 4

Occlusion

\7

it

| Occlusion of the blood Necrosis ensues Necrotic epiphysis is
supply occurs outside of overloaded and collapses
the epiphysis

Figure 5: Extra-articular vasculature occlusion hypothesis. Blood supply is occluded outside of the epiphysis.
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Hypothesis 5

High stresses/strains

| The femur and/or acetabulum High stresses/strains cause Epiphysis is overloaded and
are shaped in a way that causes occlusion of the blood fractures
high stresses/strains around supply and necrosis
where the medial circumflex
artery enters the epiphysis

' Figure 6: Extraosseous vasculature occlusion hypothesis. A morphological change in the femur causes
occlusion of the blood supply outside of the epiphysis due to elevated stresses or strains on the epiphysis.
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