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Abstract 

 

This paper presents a study of modelling post-combustion CO2 capture process using 

bootstrap aggregated neural networks. The neural network models predict CO2 production 

rate and CO2 capture level using the following variables as model inputs: inlet flue gas flow 

rate, CO2 concentration in inlet flue gas, pressure of flue gas, temperature of flue gas, lean 

solvent flow rate, MEA concentration and temperature of lean solvent. In order to enhance 

model accuracy and reliability, multiple neural network models are developed from bootstrap 

re-sampling replications of the original training data and are combined. Bootstrap aggregated 

model can offer more accurate predictions than a single neural network, as well as provide 

model prediction confidence bounds. The developed neural network models can then be used 

in the optimisation of the CO2 capture process. 

 

Keywords: CO2 capture; chemical absorption; neural networks; data-driven modelling; 

reliability. 

 

1 Introduction 

Post-combustion Carbon dioxide (CO2) capture in coal fired power plants is attracting more 

attention as a result of the large amounts of existing coal fired power plants and none 

significant changes to equipment configurations required [1]. For the efficient design and 

operation of a post-combustion CO2 capture plant, process optimisation is required. Process 

optimisation requires reliable and efficient process models. Different modelling technologies, 

such as mechanistic models and statistical models, have been studied to investigate the post-

combustion carbon capture process efficiency. Previous studies showed that the 

establishment of mechanistic models is very time consuming and requires extensive 

knowledge of the underlying physics of the process. Numerical optimisation typically 
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required thousands of function evaluations. Evaluation of a detailed mechanistic model is 

typically computationally very demanding. To overcome this problem, neural network 

models can be developed from process operational data and used in plant optimization. 

Neural network models can be developed very quickly from process data and their evaluation 

is much less computationally demanding than a mechanistic model. Conventional neural 

networks sometimes suffer from poor generalisation performance due to the limitations in 

training data and training algorithms. More advanced neural network modelling methods 

should be utilised. This paper uses bootstrap aggregated neural networks to build data-driven 

models for a CO2 capture process with chemical absorption. 

   

The paper is organised as follows. Section 2 presents an overview of CO2 capture processes. 

Section 3 presents bootstrap aggregated neural networks. Modelling of a CO2 capture process 

using bootstrap aggregated neural networks is detailed in Section 4. Both static and dynamic 

models are developed. Section 5 draws some concluding remarks.  

 

2 An overview of CO2 capture processes 

2.1 Methods for post-combustion CO2 capture 

Post-combustion CO2 capture process removes CO2 emission after the combustion of fossil 

fuel in a combustor. It is a technology which can be applied to retrofit the most existing coal-

fired power plants for NOx, SOx and CO2 capture. Several separation technologies can be 

employed in this process and they include adsorption, physical absorption, chemical 

absorption, cryogenics separation and membranes [1].   

Specifically, adsorption is a physical process that adopts adsorbents to attach CO2 to its 

surface. However, absorption process cannot be applied to large scale power plant flue gas 

treatment because of the low adsorption capacity of most available absorbents. Physical 

absorption is a physical process based on Henry’s Law. The challenge is the high cost to treat 

the flue gas streams with CO2 partial pressures lower than 15 vol%.  Cryogenics separation 

condenses CO2 in flue gas stream at -56.6 °C in atmospheric pressure and then removes it. As 

with the physical absorption, because of the high cost of operation, especially refrigeration, 

the technology can only be applied with high CO2 concentration. Membrane absorption 

applies membrane only as a contact device between gas and liquid, while the membrane 

cannot provide supererogatory selectivity. The outstanding point of this process is the 
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membranes are more compact so that they will not be influenced by flooding, entrainment, 

channelling or foaming. Nevertheless, the pressures of gas and liquid phases are required to 

be equal to enable CO2 cross the membrane easily. In this case, membrane absorption is only 

suitable for high concentration of CO2 in flue gas, such as the flue gas coming from oxyfuel 

process.  

Lastly, the chemical absorption is a chemical reaction process in which the chemical solvent 

is used to react with CO2 to form a new intermediate compound with weak bound, and then 

CO2 is regenerated in the circumstance of high temperature. The high selectivity and final 

pure CO2 stream make chemical absorption being widely used for CO2 capture of industrial 

flue gas [1]. 

2.2 Post-combustion capture via chemical absorption 

As shown in Figure 1, CO2 capture with chemical absorption is mainly consisted of two parts: 

the absorber and stripper columns, which are both packed columns. The flue gas from power 

plant is fed into the bottom of absorber and contacted counter-currently with lean amine 

solution from the top side. The lean amine solution chemically reacts and absorbs CO2 in flue 

gas. Then the treated gas stream containing much lower CO2 contents is generated and leaves 

from the top of absorber column. The amine solution of much more CO2 (now rich amine), 

coming from the bottom of absorber, is pumped to the stripper unit after preheating in cross 

heat exchanger. In the stripper, the absorber amine solution is regenerated by heating rich 

amine in a reboiler. The low-pressure steam from power plant is used in reboiler to maintain 

the operating condition, resulting in large energy consumption. In details, the heat supplied in 

the reboiler is used for increasing the rich solution coming from the absorber, desorption heat 

required for separating CO2 in rich amine, and vaporization of gas in stripper [2]. After that, 

the vapour is cooled in a condenser and returned to the stripper, while CO2 leaves the 

condenser and is compressed for storage. In addition, the amine solution coming from the 

stripper (now lean amine) is cooled in cross heat exchanger by exchanging heat with rich 

amine and pumped back to absorber for absorption. 

 

A significant portion of operation cost of CO2 capture with chemical absorption is the energy 

requirement. In order to make CO2 capture economically viable, the process operation should 

be optimised to identify the best process operating conditions such as temperature and 

pressure in absorber, stripper, reboiler and condenser. A reliable model is essential in 

carrying out the optimisation task. 
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Figure 1.  Simplified process flow diagram of chemical absorption process for post-

combustion capture [3]  

 

2.3 Overview of previous post-combustion CO2 capture modelling studies 

 

Post-combustion CO2 capture with chemical solvent is a reactive absorption, due to two 

simultaneous phenomena in the process. One is mass transfer of CO2 from the bulk vapour to 

the liquid solvent and the other one is chemical reaction between CO2 and the solvent. As 

stated in [4], mass transfer rate contributes a lot to reactive absorption design. The 

relationship between transport and reaction rate will determine where the species can react, 

such as in the bulk phase, or in the bulk and interfacial regions, or purely in the interfacial 

layers.  

 

Two-film theory and penetration theory are employed to create rate-based models [1]. In 

details, for two-film theory, there is an assumption that the liquid and vapour phases are both 

consisted of two regions: bulk and film. The effects of heat of mass transfer resistances are 

taken into account only in the laminar film regions. They also explained penetration theory, 

which assumes the exposure time between every element on surface of liquid and the vapour 

phase is same. The exposure time affects mass transfer coefficient significantly, because it 

can imply the effects of hydrodynamic properties of the system. 

 

In the study [5], a steady-state model was developed for the absorber of packed column. This 

assumes a rate-based mass transfer involving an enhancement factor to estimate the actual 

absorption rate. The study emphasized that the variation of enhancement along the absorber 

column is important for model prediction. The evaporation and condensation of water, the 
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variations in physical properties and heat of chemical reaction all play a vital role to provide a 

reliable model prediction. On the other hand, most CO2 absorption took place in the bottom 

of absorber. In the study [6], a further steady-state model for complete recycling process, 

including both absorber and stripper, was developed. The rate-based model is presented, 

which involves different enhancement factors to estimate absorption and desorption rates. In 

the study [7], a steady-state model was implemented in Aspen Plus based on RADFRAC, to 

study the effects of chemical reaction and mass transfer on the absorption process.  

 

However, steady-state models are not particularly helpful to understand the impact of post-

combustion capture on the operability of the power plant. For instance, what is the response 

of post-combustion capture plant when the power plant is operating with a varying load? Will 

modifications (flooding and higher pressure drop) occur during transient conditions, such as 

start-up and shutdown procedures? Therefore, a dynamic model is necessary to explain and 

solve all these questions. In the study [3], a dynamic model of absorber was developed with 

assumptions of equilibrium-based approach in Aspen Plus and rate-based mass transfer in 

gPROMS. They showed that the rated-based approach gave better prediction than the 

equilibrium-based approach. Kvamsdal et al. (2009) Reference [8] has also developed a 

dynamic model for an absorption column in gPROMS, with an assumption of rate-based 

mass transfer. In this study, the enhancement factor is taken into account to count the impact 

of chemical reaction. In [9], a dynamic model of stripper was created in ACM in Matlab by 

using rate-based approach. Two operating strategies were carried out in this study: reducing 

reboiler steam rate with and without adjusting the rich solvent rate. By implementing the ratio 

of rich solvent rate to steam rate control, the lean loading and temperature remained constant, 

as well as less response time for the system. The rate-based dynamic model of the amine 

regeneration unit was also developed in [10], with an enhancement factor to represent the 

influence of the reactions on the CO2 mass transfer.  

 

However, these researches so far were only looking at the individual unit (absorber or 

stripper). Due to the coupling of two columns linked together with a recycle loop in factories, 

it is inaccurate to analyse the stand-alone columns. Therefore, further researches were 

concluded to investigate the performance of the complete recycling process by dynamic 

models. Reference [11] has carried out a study to compare the accuracy of dynamic models 

for stand-alone columns and integrated columns. The rate-based models assumed all reactions 
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attained equilibrium, implemented in gPROMS. The absorber and stripper units were linked 

together with heat exchanger. The results showed that the integrated model predicted the 

temperature profile better than stand-alone models.  In [12], a rate-based model was 

developed to analyse two dynamic cases, including reducing power plant loading and 

increasing capture level set point to 95%. They summarized that the CO2 capture plant had a 

slower response than power plant. They further explored how capture level affects the power 

plant loading and difficulties to achieve a steady power plant output quickly. 

 

All these simulation models, relating to chemical-, fluid mechanic- and thermodynamic laws, 

require extensive knowledge and underlying physics of the process. Even though they can 

provide advanced features such as customizing component models for the application in 

hand, there is still a limitation to carry out complicated simulations. For instance, it is 

difficult to identify which underlying theory and assumption result in the rising uncertainties 

of the simulation model. In addition, the solution of these simulators is very complex and 

time consuming. Thus, data-driven “black-boxes” models should be employed as an 

alternative the mechanism models. In [13], a model of the relationship between critical 

parameters in post-combustion carbon capture was developed by applying multiple 

regression. However, it is unable to represent the non-linear relationships among the 

parameters and the selection of input variables strongly relies on the experts’ knowledge. 

Reference [14] compared three modelling approaches, statistical model, artificial neural 

network (ANN) model combined with sensitivity analysis (SA) and neuro-fuzzy model. 

Reference [15] has developed ANN model with sensitivity analysis for a chemical absorption 

process, by exploring the relationships between inputs and outputs from data set of complete 

recycling process. However, some previous studies pointed out the disadvantages of single 

ANN model, such as over-fitting of the training data and poor generalisation performance 

[16]. The combination of different neural network models would overcome the mentioned 

shortcomings, thereby increasing the prediction accuracy [17,18]. Bootstrap aggregated 

neural network [18] is used in this study to model the post-combustion CO2 capture with 

chemical absorption. 

 

3 Bootstrap aggregated neural networks 

Due to the limitations in training data and training algorithms, it is generally not possible to 

obtain a perfect neural network model. For example, neural network training might be 
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trapped in a poor local minimum or the trained network might over fit noise in the training 

data. Several techniques have been developed to improve neural network generalisation 

capability, such as regularisation [19], early stopping [20], Bayesian learning [21], training 

with both dynamic and static process data [22], and combining multiple networks [23-25]. In 

training with regularisation, the magnitude of network weight is introduced as a penalty term 

in the neural network training objective function with the purpose of avoiding unnecessarily 

large network weights which usually leads to poor generalisation. In training with early 

stopping, neural network performance on the testing data is continuously monitored during 

the training process and the training process stops when the neural network prediction errors 

on the testing data start to increase. Among these techniques, combining multiple networks 

has been shown to be a very promising approach to improving model predictions on unseen 

data.  

 

Figure 2 shows a bootstrap aggregated neural network model, where several neural network 

models are developed to model the same relationship. These individual networks are trained 

on bootstrap replications of the original training data. Instead of selecting a “best” single 

neural network model, these individual neural networks are combined together to improve 

model accuracy and robustness. The overall output of the aggregated neural network is a 

weighted combination of the individual neural network outputs: 

 

 f X w f X
i i

i

n

( ) ( )



1

         (1) 

 

where f(X) is the aggregated neural network predictor, fi(X) is the ith neural network, wi is the 

aggregating weight for combining the ith neural network, n is the number of neural networks 

to be combined, and X is a vector of neural network inputs. Since the individual neural 

networks are highly correlated, appropriate aggregating weights could be obtained through 

principal component regression [25]. Instead of using constant aggregating weights, the 

aggregating weights can also dynamically change with the model inputs [26,27]. Another 

advantage of bootstrap aggregated neural network is that model prediction confidence bounds 

can be calculated from individual network predictions [18]. The standard error of the ith 

predicted value is estimated as 
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/);(  and n is the number of neural networks in an aggregated 

neural network. Assuming that the individual network prediction errors are normally 

distributed, the 95% prediction confidence bounds can be calculated as y(xi; .)  1.96e. A 

narrower confidence bound, i.e. smaller e, indicates that the associated model prediction is 

more reliable. Thus, model prediction associated with a narrow prediction confidence bounds 

is preferred and is considered to be reliable. On the other hand, model prediction with a wide 

confidence bound is unreliable and should not be trusted.  

 

 

Figure 2. A bootstrap aggregated neural network 

4 Modelling of CO2 capture Process 

The CO2 capture Process considered here is through chemical absorption.  Detailed 

mechanistic model for this process was developed in [3] and a simulator based on the 

mechanistic model was developed in gPROMS at the University of Hull. Simulated static and 

dynamic process operation data were generated using the simulator. 

4.1 Static model 

  As to static model, only the absorber is modelled. Simulated static process operation data 

are shown in Figure 3. The process variables that are selected as model input variables are: 

inlet flue gas flow rate, CO2 concentration in inlet flue gas, pressure of flue gas, temperature 

of flue gas, lean solvent flow rate, MEA concentration and temperature of lean solvent. They 

are shown in plots (a) to (g) respectively in Figure 3. CO2 capture level, shown in plot (h) in 

Figure 3, is taken as the model output variable. Considering that static data is usually not 

abundant in practice as a process is usually operated in just a few steady states, a small 

number of data samples are produced as shown in Figure 3.  
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Figure 3. Static process operation data 

 

The generated static data is split into training data (56%), testing data (24%), and unseen 

validation data (20%). The data is scaled to zero mean and unit variance before they are used 

for network training. A bootstrap aggregated neural network consists of 30 individual 

networks is developed. For the development of an individual network, a replication of the 

training and testing datasets is generated through bootstrap re-sampling with replacement 

[28] and the network is developed on each bootstrap replication. Each single hidden neural 

network is a single hidden layer feedforward neural network. The number of hidden neurons 

in each neural network is determined through cross validation. A number of neural networks 

with different numbers of hidden neurons are trained on the training data and tested on the 

testing data. The network with the lowest mean squared errors (MSE) on the testing data is 

considered to have the appropriate number of hidden neurons. Each network was trained 

using the Levenberg-Marquardt optimisation algorithm [29] with regularisation and cross-

validation based “early-stopping”. Figure 4 shows the number of hidden neurons in the 

individual neural networks. It can be seen that number of hidden neurons vary a lot with 

different training and testing data sets. The individual networks are then combined through 

averaging.  
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Figure 4. Number of hidden neurons in individual neural networks  

 

Figure 5 shows the mean squared errors (MSE) on training and testing data (top) and on 

unseen validation data (bottom) from the 30 different single neural networks. Figure 5 shows 

these from aggregated neural networks with different numbers of constituent networks. It is 

clearly seen that single neural networks give inconsistent performance on the model building 

data (training and testing data) and the unseen validation data. For instance, the 14th and 17th 

networks are among the few best networks in terms of performance on the model building 

data, but their performance on the unseen validation data is not among the best. The non-

robustness of single neural networks is clearly indicated by the difference in performance of 

individual neural networks on model building data and unseen validation data. Figure 6 

clearly indicates that the bootstrap aggregated neural networks give consistent performance 

on the model building data and on the unseen validation data. In Figure 6, the first bar in each 

plot represents the first single neural network shown in Figure 5, the second bar represents 

combining the first two single neural networks, and the last (30th) bar represents combining 

all the 30 networks. It can be seen from Figure 6 that as more networks are combined, the 

MSE values on both model building data and unseen validation data decrease and converge to 
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stable values. Furthermore, bootstrap aggregated neural networks give much more accurate 

prediction performance than most of the individual networks. This demonstrates that 

bootstrap aggregated neural networks reliable and accurate prediction performance than 

single neural networks.  
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Figure 5. MSE of CO2 capture level for individual neural networks  
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Figure 6. MSE of CO2 capture level for aggregated neural networks  

 

 

Figure 7 shows the actual values, predictions, and 95% confidence bounds of CO2 capture 

level on the unseen validation data. Clearly, the predictions by using aggregated neural 

networks are close to the actual values. The prediction confidence bounds offer extra 

information to the process operators, such as rejection or acceptation of a particular 

prediction from the stacked neural network model. The confidence bounds are quite narrow 

for almost all samples, except for 2nd, 10th, 11th, and 12th samples. Therefore, extra care needs 

to be taken when using predictions for these samples. 
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Figure 7. Static model predictions for CO2 capture level on unseen validation data 

 

4.2 Dynamic model  

 

The dynamic simulated process operation data were sampled using a sampling time of 5 s. 

The generated data were split into training data (56%), testing data (24%), and unseen 

validation data (20%). The data were scaled to zero mean and unit variance before they were 

used for neural network training. Two multi-inputs single output (MISO) first order dynamic 

nonlinear models were developed for CO2 capture level and CO2 production rate using 

bootstrap aggregated neural networks. The developed dynamic model is of the following 

form: 

 

 ))1(,),1(),1(),1(()( 821  tutututyfty       (3) 

 

where y represents CO2 capture level or CO2 production rate, u1 to u8 are, respectively, inlet 

gas flow rate, CO2 concentration in inlet gas flue, inlet gas temperature, inlet gas pressure, 

MEA circulation rate, lean loading, lean solution temperature, and reboiler temperature.  
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Each of the nonlinear dynamic models is developed using a bootstrap aggregated neural 

network consisting of 30 individual neural networks. These individual neural networks are 

single hidden layer feedforward neural networks. The number of hidden neurons in each 

network was determined through cross validation. Each network was trained using the 

Levenberg-Marquardt optimisation algorithm [29] with regularisation and cross-validation 

based “early-stopping”. 

 

Figure 8 shows the MSE values on model building (training and testing) data and unseen 

validation data from individual neural networks. It can be seen from Figure 8 that the 

individual networks give various prediction performance. Furthermore, their performance on 

the training and testing data is not consistent with that on the unseen testing data. For 

example, network 15 is among the worst performing networks on the training and testing 

data. However, it offers the best performance on the unseen data. This clearly demonstrates 

the non-robust nature of single neural networks. Figure 9 shows the MSE values on model 

building data and unseen validation data from different aggregated neural networks. In Figure 

9, the horizontal axes represent the number of individual networks contained in an aggregated 

neural network. The first bar in Figure 9 represents the first individual neural network shown 

in Figure 8 and second bar in Figure 9 represents combining the first two individual networks 

shown in Figure 8. The last bar in Figure 9 represents combining all the 30 neural networks. 

It can be seen from Figure 9 that bootstrap aggregated neural networks give much more 

consistent performance on model building data and unseen validation data. The MSE values 

of aggregated neural networks generally decrease as more networks are combined and 

converge to a stable level. This occurs in both the model building and unseen data sets. In 

addition to robustness, Figure 9 also indicates that aggregated neural networks give more 

accurate performance than individual neural networks. Figure 10 shows the one-step-ahead 

predictions and multi-step-ahead predictions of CO2 production rate using aggregated neural 

networks. It is clearly seen that the predictions are very close to the actual values, except for a 

few samples where the CO2 production rates are very high or very low. The slightly larger 

prediction errors at these samples are likely due to the fact that training data is scare at these 

extreme operating points. The accurate multi-step-ahead predictions are very encouraging 

indicating that the model has captured the underlying dynamics of the process. The long 

range predictions are very accurate till about 90 step-ahead predictions. Such accurate long 
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range predictions are more than sufficient for model predictive control and real-time 

optimisation applications. 
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Figure 8. MSE of CO2 production rate for individual neural networks 
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Figure 9. MSE of CO2 production rate for aggregated bootstrap neural networks 
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Figure 10. Dynamic model prediction of CO2 production rate  
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The neural network dynamic model for CO2 capture level is also very accurate as shown in 

Figure 11. It can be seen from Figure 11 that the long range predictions are accurate until 82-

steps-ahead predictions. Again such long prediction horizon is generally adequate for many 

applications such as model predictive control and real-time optimisations.  
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Figure 11. Dynamic model prediction of CO2 capture level 

 

5. Conclusions 

 

The neural network static and dynamic models of CO2 production rate and CO2 capture level 

are developed and they are shown to be able to give accurate predictions. The aggregated 

neural networks model is found to be the useful tool to predict the post-combustion CO2 

capture process, which is more accuracy and reliable than the traditional neural network 

models. Bootstrap aggregated neural networks give consistent performance on the model 

building data and unseen validation data. Furthermore, bootstrap aggregated neural networks 

can give model prediction confidence bounds, which are a very useful measure on the 

prediction reliability and can be incorporated in the optimisation framework to give reliable 
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optimisation results [30]. Reliable optimisation of the CO2 capture process using the 

developed neural network models will be studied in the future. 
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