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ABSTRACT
We present accurate models of the gravitational potential produced by a radially exponential
disc mass distribution. The models are produced by combining three separate Miyamoto–Nagai
discs. Such models have been used previously to model the disc of the Milky Way, but here
we extend this framework to allow its application to discs of any mass, scalelength, and a wide
range of thickness from infinitely thin to near spherical (ellipticities from 0 to 0.9). The models
have the advantage of simplicity of implementation, and we expect faster run speeds over a
double exponential disc treatment. The potentials are fully analytical, and differentiable at all
points. The mass distribution of our models deviates from the radial mass distribution of a pure
exponential disc by <0.4 per cent out to 4 disc scalelengths, and <1.9 per cent out to 10 disc
scalelengths. We tabulate fitting parameters which facilitate construction of exponential discs
for any scalelength, and a wide range of disc thickness (a user-friendly, web-based interface is
also available). Our recipe is well suited for numerical modelling of the tidal effects of a giant
disc galaxy on star clusters or dwarf galaxies. We consider three worked examples; the Milky
Way thin and thick disc, and a discy dwarf galaxy.
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1 IN T RO D U C T I O N

The mass distribution of the stellar disc of most galaxies is well
represented by a radially exponential profile (Freeman 1970). It
is advantageous to be able to accurately model the potential field,
accelerations, or tides that arise from a mass distribution with an
exponential profile. A radially exponential disc profile has the fol-
lowing form:

�(R) = �0exp(−R/Rd), (1)

where � is the surface density, �0 is central surface density, R is
radius within the disc, and Rd is the disc scalelength.

Radially exponential discs may have different vertical density
distributions. For galaxy discs, a commonly used form for the ver-
tical density distribution is a sechn form:

ρ(R, z) = ρ0 exp(−R/Rd)sechn(−|z|/z0), (2)

where z0 is the scaleheight, and n is typically ∼1–3.

�E-mail: rsmith@astro-udec.cl

Another form of radially exponential disc, the ‘double exponen-
tial’, has an exponentially decaying vertical distribution:

ρ(R, z) = ρ0 exp(−R/Rd) exp(−|z|/hz), (3)

where hz is the exponential disc scaleheight. In fact, the double
exponential is a special case of equation (2) when n → ∞. To
calculate the potential from a double exponential disc, it is necessary
to perform the following integral (Binney & Tremaine 1987):

�(R, z) = −4 G�0

Rd

∫ ∞

−∞
dz′ exp(−z′/hz)

×
∫ ∞

0
dR′ sin−1

(
2R′

A+ + A−

)
R′K0(R′/Rd), (4)

where A+ =
√

z2 + (R′ + R)2, A− =
√

z2 + (R′ − R)2 and K0 is
the modified Bessel function of the second kind. This integral cannot
be performed analytically, and therefore is calculated numerically
(e.g. Dehnen & Binney 1998; the GALPY package: Bovy 2015),
except for in the special case where an infinitely thin exponential
disc is assumed.
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Due to these limitations, the potential of disc galaxies has of-
ten been modelled using a single Miyamoto–Nagai (MN) disc (e.g.
Allen & Santillan 1991; Fellhauer et al. 2006; Fellhauer et al. 2007;
Küpper et al. 2010; Smith et al. 2013), as this is analytical, and fully
defined and provides continuous derivatives at all points. The po-
tential of a single MN disc is described by the following expression
(Miyamoto & Nagai 1975):

�(R, z) = −GMMN√
R2 + (a + √

z2 + b2)2

, (5)

where MMN is the total disc mass, a is the radial scalelength, and
b is the vertical scaleheight. This expression can be trivially dif-
ferentiated in the R and z direction to produce expressions for the
acceleration at any location. If a = 0, the potential of a single MN
disc reduces to that of a Plummer distribution (i.e. spherical). For
b = 0, the potential reduces to that of an infinitely thin Kuzmin
disc (Kuzmin 1956). Hence by varying the parameters a and b,
mass distributions can be modelled with a range of thicknesses.
Additionally, the density of a single MN disc is given by

ρ(R, z) =
MMNb2

[
aR2 + (a + 3

√
z2 + b2)(a + √

z2 + b2)2
]

4π
[
R2 + (a + √

z2 + b2)2
]5/2

(z2 + b2)3/2

.

(6)

While most galaxy discs are well represented by a radially expo-
nential profile (see equation 1), a single MN disc is a poor match
to a radially exponential disc. Its surface density near the centre is
too low, and it attains too high surface density at large radius. We
quantify the deviation from a pure exponential disc for the models
considered in this paper in the following manner. We calculate the
difference in mass found within a radial annuli of a single MN disc
and a pure exponential disc, and sum up the absolute of these differ-
ences in all annuli out to a chosen radius. In this way, we calculate
that the total mass deviation of a single, thin, MN disc from a pure
exponential disc is 5.0 per cent at 4 Rd, and 19.9 per cent at 10 Rd.

To improve the match to a radially exponential disc, Flynn,
Sommer-Larsen & Christensen (1996) combined three MN (3MN)
disc profiles, each with different radial scalelength a, one with neg-
ative mass, and all with a single vertical scaleheight b. This model is
better at matching a radially exponential disc at large radii, and we
calculate the total mass deviation from a thin, radially exponential
disc is 9.4 per cent at 4 Rd, and 10.0 per cent at 10 Rd. This 3MN
model has since been used extensively for modelling the potential
from the disc of the Milky Way (MW; e.g. Hänninen & Flynn 2004;
Rodionov & Orlov 2008; Moni Bidin et al. 2015). However, minor
alterations to the original parameter values have been used to bet-
ter match more recent measurements of the MW’s disc scalelength
and circular velocity (Gardner & Flynn 2010; Jı́lková et al. 2012;
Moyano Loyola et al. 2014).

The aim of this study is to extend the utility of the framework in-
troduced by Flynn et al. (1996), a framework which was developed
specifically for the recovery of an MW-like radially exponential disc
using 3MN potentials. Our extension here allows its general appli-
cation to discs of any mass, scalelength, and thickness, rather than
simply for the singular purpose for which it was initially designed.
Our new models also better match the distribution of a radially
exponential disc. In Section 2, we derive the new 3MN models,
in Section 3 we consider three worked examples, in Section 4 we
compare a 3MN model to other well-known disc models, and finally
we summarize and conclude in Section 5.

2 N E W 3 M N POT E N T I A L S

From equation (5), a single MN potential has three free parameters;
disc mass (Md), radial scalelength (a), and vertical scaleheight (b).
Following Flynn et al. (1996), we choose a single fixed value of
b for all three MN potentials. This substantially reduces the total
parameter space we must consider, and ensures our models have
a uniform scaleheight. It also enables us to control disc thickness
through a single parameter. Thus our 3MN models have a total of
seven free parameters; MMN, 1, MMN, 2, MMN, 3, a1, a2, a3, and b.
Our aim is to find a combination of these seven parameters that
minimizes the mass deviation from a radially exponential disc, out
to 4 Rd.1

In order to find a good combination, we used a brute force ap-
proach. We fix the value of b, then numerically ran through a grid
of values for the other six parameters MMN, 1, MMN, 2, MMN, 3, a1, a2,
a3. For each parameter set, the mass deviation from a pure exponen-
tial disc out to 4 and 10 Rd was quantified numerically. Due to the
significant numbers of combinations of parameter values possible,
we initially ran with a coarse grid, and then later ran with a finer
grid focused on the best matches.

Using this brute-force approach, we find that for an infinitely thin
disc (b/Rd = 0.0), a 3MN model can be found that radially deviates
from a radially exponential disc by only 0.4 per cent within 4 Rd,
and only 1.9 per cent out to 10 Rd.

2.1 A recipe for different discs: varying disc mass, size and
thickness

Our choice of 3MN model has a highly useful property – once a
good match to a radially exponential disc of mass Md and scalelength
Rd has been found, it can be easily scaled to different masses and
disc sizes. For example, an equally good match can be found for a
disc twice as massive by simply doubling all the MN disc masses
(MMN, 1, MMN, 2, MMN, 3).

Therefore to calculate the best 3MN model with a different thick-
ness, a new six-parameter set must be found. However, if the change
in b/Rd is very small, and smooth, we can expect that each parameter
changes in a smooth, and continuous manner. We initially searched
for best matches for different disc thicknesses using the brute force
approach. However, in practice it was difficult to find a smooth
fit-line through these points for which every point on the fit-line
provided a good radial match to an exponential. This was also
highly time consuming as the brute force approach involves search-
ing through all possible combinations of a broad range of values
for each of the six parameters. Thus we changed our approach –
instead we use our best solution for an infinitely thin disc, found
by the brute-force approach, as a prior, and then use an alternative
approach to find the variation of each parameter as a function of
b/Rd.

See upper and central panel of Fig. 1. The best solution from
the brute force approach is shown by cross symbols. We then shift
along the b/Rd axis in small steps, searching for new solutions
that allow a continuous path across the figure, while simultaneously
attempting to minimize the differences between the 3MN model
and that of an exponential. In practice, this approach is significantly
less computationally challenging in comparison to the brute-force
approach, as only a small range of possible values for each parameter
are permitted in order to form a continuous path. As a result, in

1The choice of 4 Rd is rather arbitrary, however >90 per cent of an expo-
nential disc mass is enclosed within 4 Rd.
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Figure 1. Top panel: evolution of the three mass parameters, and (middle
panel) three scalelength parameters of the 3MN model, as a function of
disc thickness b/Rd. Cross symbols are the solution from the brute-force
approach for an infinitely thin disc. Solid lines are the continuous solutions
for a range of disc thicknesses. Dashed lines are fourth-order fits to the solid
lines. Lower panel: the fractional difference in mass between the model
and a pure exponential disc measured radially outwards to 4 scalelengths
(black), and 10 scalelengths (red).

a fraction of the computational time required for the brute-force
approach to find a single parameter set, hundreds of parameter set
solutions are found for a wide range of b/Rd value. These solutions
naturally form a continuous path, allowing a user to choose an
arbitrary value of b/Rd within the permitted range. The solutions
are shown by the solid lines in Fig. 1, and cover a range of disc
thickness from b/Rd = 0.0 to 3.0.

The dashed lines in the upper and central panel show a fourth-
order fit to the solid lines. This fit produces 3MN models that
match a radially exponential disc to <1.0 per cent out to 4 Rd,
and <3.3 per cent out to 10 Rd (dashed black and red line in lower
panel, respectively), for the range of disc thickness considered. The
fourth-order fit to each parameter has the form:

Parameter = k1x
4 + k2x

3 + k3x
2 + k4x + k5, (7)

where x = b/Rd. The values of the constants (k1–k5) are given in
Table 1.

Table 1. Table of constants in equation (7), providing an accurate fit to the
variation of each of the six parameters (see column 1) of the 3MN model
shown in Fig. 1.

Parameter k1 k2 k3 k4 k5

MMN, 1/Md − 0.0090 0.0640 − 0.1653 0.1164 1.9487
MMN, 2/Md 0.0173 − 0.0903 0.0877 0.2029 − 1.3077
MMN, 3/Md − 0.0051 0.0287 − 0.0361 − 0.0544 0.2242

a1/Rd − 0.0358 0.2610 − 0.6987 − 0.1193 2.0074
a2/Rd − 0.0830 0.4992 − 0.7967 − 1.2966 4.4441
a3/Rd − 0.0247 0.1718 − 0.4124 − 0.5944 0.7333

2.2 Issues with negative densities

A shortcoming with the models described in Fig. 1 and Table 1 are
that the MN model with negative mass, also has the largest scale-
length. As a result, it is inevitable that at sufficiently large radius,
negative densities will be found. Negative densities at large radii
also occurred in the original Flynn et al. (1996) model. In practice,
the negative densities occur near the plane of the disc, and only in
the very outer disc (at R =5.6–11.2 scalelengths for b/Rd in the range
0.0–3.0). As a result, the negative densities are very small, and if the
disc is placed within a dark matter halo, then the negative densities
will be more than offset by the halo leaving only positive densities
everywhere. If this is of concern (e.g. if discs without haloes are
studied), we also present alternative models. These models are ad-
vantageous as they have positive densities at all positions, for disc
thickness b/Rd from 0 to 1.35. For b/Rd > 1.35, negative densities
begin to appear in the outer disc of these models as well. The lower
panel of Fig. 2 shows that these models are still very accurate out
to four scalelengths (solid black line): <1 per cent difference from
a pure exponential. However, they are often less accurate out to 10
scalelengths (solid red line): 1.5–7 per cent difference from a pure
exponential, with the value being quite sensitive to disc thickness.
Once again, the dashed lines show a fourth–order fit of the form
shown in equation (7). We provide the values of the constants k1–
k5 for these additional models in Table 2. Although we also found
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Figure 2. Caption as in Fig 1, except now for models with positive densities
at all positions for the thickness range b/Rd = 0–1.35.

Table 2. Table of constants in equation (7), providing an accurate fit to the
variation of each of the six parameters of the 3MN model shown in Fig. 2.
These models have positive densities at all positions for the disc thickness
range b/Rd from 0 to 1.35.

Parameter k1 k2 k3 k4 k5

MMN, 1/Md 0.0036 − 0.0330 0.1117 − 0.1335 0.1749
MMN, 2/Md − 0.0131 0.1090 − 0.3035 0.2921 − 5.7976
MMN, 3/Md − 0.0048 0.0454 − 0.1425 0.1012 6.7120

a1/Rd − 0.0158 0.0993 − 0.2070 − 0.7089 0.6445
a2/Rd − 0.0319 0.1514 − 0.1279 − 0.9325 2.6836
a3/Rd − 0.0326 0.1816 − 0.2943 − 0.6329 2.3193
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other models with positive densities at all points for discs as thick as
b/Rd ∼ 2.0, these models were significantly less accurate matches
to radially exponential discs, and we will not consider them further.

2.3 Rotation curves with the 3MN models

In Fig. 3, we compare the rotation curve for an infinitely thin expo-
nential disc (black dashed line) to those of the 3MN models from
Table 1 (red solid line) and from Table 2 (blue dot–dashed line).
Within four scalelengths, the rotation curves are all virtually indis-
tinguishable. At large radius, the greater accuracy of the models in
Table 1 is visible in comparison to the Table 2 models. We note that
the negative densities arising in the Table 1 models, appear in the
plane of the disc no closer than 8.0 scalelengths for an infinitely
thin model. They have negligible effect on the rotation curve.

2.4 Useful conversion formulae

2.4.1 Disc thickness (b/Rd) and ellipticity (e)

To aid comparison with observed disc ellipticities, we measure how
the ellipticity e of our disc models, seen edge-on, varies with disc
thickness b/Rd. We measure the ellipticity of contours containing
25, 50, and 75 per cent of the total mass, for a range of disc thickness
from b/Rd = 0 to 3. The results are shown in Fig. 4. In practice, the
ellipticity changes very little whether we use the contour containing
25, 50 or 75 per cent of the total mass. This indicates the ellipticity
of the 3MN model is only a weak function of radius. We fit the data
points with a quadratic formula, shown by the blue dashed line in
Fig. 4, giving ellipticity e as a function of disc thickness b/Rd:

e = −0.099(b/Rd)2 + 0.599(b/Rd). (8)

Solving equation (8), we obtain an expression for converting from
disc thickness b/Rd as a function of ellipticity e:

b/Rd = 3.025 − 3.178
√

0.906 − e. (9)
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Figure 3. Rotation curve of an infinitely thin exponential disc with
Md = 1.0 × 1010 M�, and Rd = 1.0 kpc (black dashed line). For com-
parison, the rotation curve of the 3MN models from Table 1 is shown (red
solid line), and the rotation curve of the 3MN models from Table 2 is shown
(blue dash–dotted line). Within four scalelengths, all models are barely
distinguishable.
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Figure 4. Conversion from disc thickness (b/Rd) to ellipticity for 3MN
models viewed edge-on, and with ellipticity measured for contours contain-
ing 25 (black), 50 (red), and 75 per cent (green) of the total mass. The disc
ellipticity is found to be roughly equal for all three contours. A quadratic
fit is made to all the data points (blue dashed line) and the fit is given in
equation (8).

2.4.2 Disc thickness to exponential and sech2 scaleheight

Our 3MN models have a single parameter controlling their thick-
ness, b/Rd. However, users are likely to be unfamiliar with b/Rd

as a measure of thickness. For this reason, we characterize this
to scalelengths for more familiar vertical density distributions; an
exponential, or a sech2 decay with z.

We first sum up the fractional difference between the density of
the 3MN model and the exponential, measured vertically out of
the plane up to five scaleheights (z = 0–5b), measured at R = 0.
We vary the disc thickness b/Rd in order to minimize the sum, and
best match the exponential distribution. We then tabulate the best
matches we find between b/Rd and hz/Rd over a range of b/Rd from 0
to 3. We repeat this procedure to find the best match between 3MN
discs and a sech2 vertical distribution. The best match is the same if
we instead choose to compare the vertical density profiles at R = 2
or 4 Rd.

The tabulated best matches are plotted in Fig. 5. The given for-
mulae provide smooth fits through the tabulated data points. In
each panel, the upper-left equation provides conversion to b/Rd,
while the lower-right equation provides conversion from b/Rd.
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Figure 5. Conversions between 3MN disc thickness (b/Rd) and (left-hand
panel) exponential scaleheight, or (right-hand panel) sech2 scaleheight. Data
points are found using the technique described in Section 2.4.2. The equa-
tions provide smooth fits through the data points. In each panel, the upper-
left equation gives conversion to b/Rd, and the lower-right equation gives
conversion from b/Rd. Conversions are approximate, but are best matches.
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Figure 6. Projected surface density plots for (upper) the thin disc model,
centre the thick disc model, (lower) the dwarf galaxy model. The left-
hand column is face-on projection, and the right-hand column is edge-on
projection. The grey-scale bar gives surface densities in units of M� pc−2.
All panels are 10 kpc on a side, to give a sense of relative size.

We emphasize that our 3MN models are mathematically ill-
equipped to tightly match an exponential or sech2 vertical density
distribution at all z (an example will be shown in Section 4). Thus
the purpose of these equations is only to provide users with the ap-
proximate (but best available) match. This in turn provides a sense
of the physical meaning of a particular choice of b/Rd value.

3 WO R K E D E X A M P L E S

Finally, we consider three worked examples; the thick disc of a discy
dwarf galaxy, the thin disc of the MW, and the thick disc of the MW.
Projected density plots for all three models are shown in Fig. 6. For
these examples, we use the more accurate Table 1 models.

3.1 A dwarf disc galaxy with a thick disc

We consider a dwarf disc with a total disc mass Md = 1 × 108

M�, and Rd = 0.25 kpc (Fathi et al. 2010). We assume an ellip-
ticity of 0.6 (Sánchez-Janssen, Méndez-Abreu & Aguerri 2010).
From equation (9), b/Rd = 1.27. Substituting b/Rd into equa-
tion (7) with constants from Table 1 we get; MMN, 1 = 1.94 × 108

M�, MMN, 2 = −1.05 × 108 M�, MMN, 3 = 0.142 × 108 M�,
a1 = 0.29 kpc, a2 = 0.58 kpc, a3 = −0.10 kpc. This model matches
a radially exponential disc to better than 0.8 per cent at 4 Rd, and
3.0 per cent at 10 Rd.

3.2 The thin disc of the MW

We consider a radially exponential disc for the MW’s thin disc
with a total mass of Md = 4.6 ×1010 M�, and radial exponen-
tial scalelength Rd = 2.2 kpc (Bovy & Rix 2013). We choose an
exponential scaleheight of hz = 0.2 kpc (Larsen & Humphreys
2003), and Fig. 5 gives b/Rd = 0.11. Substituting b/Rd into equa-
tion (7) with constants from Table 1, we get MMN, 1 = 9.01 × 1010

M�, MMN, 2 = −5.91 × 1010 M�, MMN, 3 = 1.00 × 1010 M�,
a1 = 4.27 kpc, a2 = 9.23 kpc, a3 = 1.43 kpc. This model matches
a radially exponential disc to better than 0.5 per cent at 4 Rd, and to
better than 1.8 per cent at 10 Rd.

3.3 The thick disc of the MW

For the thick disc, we consider a radially exponential disc with
scalelength Rd = 3.8 kpc and scaleheight hz = 0.9 kpc (Moni Bidin
et al. 2012). Using Fig. 5 gives b/Rd = 0.30. We assume that the
thick disc mass is 8.6 per cent of the thin disc mass (Yoachim &
Dalcanton 2006) so the total disc mass Md = 4.0 × 109 M�.
Substituting b/Rd into equation (7) with constants from Table 1
gives; MMN, 1 = 7.88 × 109 M�, MMN, 2 = −4.97 × 109 M�,
MMN, 3 = 0.82 × 109 M�, a1 = 7.30 kpc, a2 = 15.25 kpc,
a3 = 2.02 kpc. This model matches a radially exponential disc
to better than 0.6 per cent at 4 Rd, and to better than 1.4 per cent at
10 Rd.

4 C O M PA R I S O N O F 3 M N M O D E L W I T H
OTHER D ENSI TY PROFI LES

In Fig. 7, we analyse the 3MN thick disc model from Section 3.3
in more detail. In row (a)–(c), we compare cross-sections through
the volume density distribution of the 3MN model (left), a double
exponential (middle), and a radially exponential model whose den-
sity profile decays as sech2 out of the plane (right). The scaleheight
of the exponential and sech2 distribution is the best match to the
3MN model, calculated using the equations in Fig. 5. Clearly, it is
impossible for the 3MN model to exactly match the other profiles,
as they are mathematically distinct. However, by comparing them
we can judge how they differ, and the quality of the best matches
provided in Fig. 5. Comparing along each row, the exponential disc
is most ‘cuspy’ in the vertical direction, whereas the sech2 is the
most ‘cored’, and the 3MN model is found somewhere in between
the other two. This is true whether the cross-section is made at (a)
y = 0Rd, (b) y = 2Rd, or (c) y = 4Rd.

Row (d) provides a more quantitative analysis of the vertical
density distribution up to ∼5b, measured at (left) R = 0Rd, (centre)
R = 2Rd, and (right) R = 4Rd. At small z (less than roughly 2 or
3b), the 3MN density distribution roughly matches the other two
profiles. However at greater distances from the plane, the 3MN
model returns higher densities, and this becomes stronger if the
vertical density profile is measured at larger R.

The upper panel of row (e) compares the surface density of the
3MN model (solid curve) to a radially exponential disc (dashed
curve). Curves are plotted out to R = 4Rd. There is clearly an excel-
lent agreement over this radius range, although it can be seen that
the 3MN model returns slightly lower densities at very small radii
(R < 0.2Rd). The lower panel indicates the absolute fractional dif-
ference in surface density between the two profiles. The maximum
density difference is ∼15 per cent at R = 0, but for R > 0.2Rd the
density difference is very low (typically ∼0.5 per cent).
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Figure 7. Analysis of the MW thick disc model of Section 3.3. Rows (a), (b), and (c) are cross-sections through the volume density distribution, and each
row allows comparison between the 3MN model (left), a double exponential (middle), and a radially exponential model with a sech2 density drop off out of
the plane (right). Grey-scale colour bar units are M� pc−3. The plane of the disc lies on the x–y plane, and slices are perpendicular to the plane at (a) y = 0Rd,
(b) y = 2Rd, and (c) y = 4Rd. Row (d) is volume density with distance from the disc plane, measured at (left) 0Rd, (centre) 2Rd, and (right) 4Rd. Different
curves (indicated in key) compare the 3MN model, double exponential, and sech2 model. The upper panel of row (e) compares the surface density profile of
the 3MN model (solid curve) with a radially exponential disc (dashed curve) out to 4Rd. The lower panel of row (e) shows the absolute fractional difference in
the surface density of the two profiles at each radius.
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5 SU M M A RY A N D C O N C L U S I O N S

We present a recipe for using a 3MN disc distribution to model the
potential of a radially exponential disc. 3MN models have previ-
ously been used to model the disc component of the Milky Way.
Here, we extend on this framework to allow its general application
to discs of any mass, scalelength, and a wide range of thickness.
We find parameters of the 3MN model that best match the mass dis-
tribution of a radially exponential disc. We consider a broad range
of disc thicknesses from infinitely thin (ellipticity =0.0), to near
spherical (ellipticity =0.9). The 3MN models have many benefits
as they are entirely analytical, easy to implement, and provide con-
tinuous derivatives (enabling a calculation of accelerations) at all
points.

(i) We provide accurate fitting formulae to our new 3MN models,
that reproduce the mass distribution of a radially exponential disc
to <1.0 per cent out to 4Rd, and <3.3 per cent out to 10Rd for discs
with a range of ellipticities from flat to near spherical (see equation 7
and Table 1).

(ii) We provide a second set of models in Table 2 that en-
sures positive densities at all positions for the disc thickness range
b/Rd = 0.00–1.35. This is equivalent to an ellipticity range from 0.0
to 0.6.

(iii) We provide a fitting formula to allow for easy conversion be-
tween the disc thickness b/Rd and disc ellipticity e (see equation 8),
and in reverse (see equation 9).

(iv) The vertical distribution of our 3MN models is similar to an
exponential or sech2 distribution at small z. We provide a rough
approximation for converting between disc thickness, exponential
scaleheight, and sech2 scaleheight for z up to five scaleheights (see
equations given in Fig. 5).

A user-friendly, online web-form is available at http://
astronomy.swin.edu.au/∼cflynn/expmaker.php. Users can request
the disc thickness they require. The page will automatically provide
the best matching 3MN parameters, calculated using our scheme.
We acknowledge that better 3MN solutions may exist, hidden in
the parameter space. In the future, we will extend on the techniques
developed in this study in order to uncover alternative and poten-
tially more accurate 3MN parameter sets, but also to allow for flared
discs, and for alternative vertical density distributions.
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