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Abstract: With the emergence of Low-Cost Sensor (LCS) devices, measuring real-time data on a
large scale has become a feasible alternative approach to more costly devices. Over the years, sensor
technologies have evolved which has provided the opportunity to have diversity in LCS selection for
the same task. However, this diversity in sensor types adds complexity to appropriate sensor selection
for monitoring tasks. In addition, LCS devices are often associated with low confidence in terms of
sensing accuracy because of the complexities in sensing principles and the interpretation of monitored
data. From the data analytics point of view, data quality is a major concern as low-quality data more
often leads to low confidence in the monitoring systems. Therefore, any applications on building
monitoring systems using LCS devices need to focus on two main techniques: sensor selection and
calibration to improve data quality. In this paper, data-driven techniques were presented for sensor
calibration techniques. To validate our methodology and techniques, an air quality monitoring case
study from the Bradford district, UK, as part of two European Union (EU) funded projects was
used. For this case study, the candidate sensors were selected based on the literature and market
availability. The candidate sensors were narrowed down into the selected sensors after analysing
their consistency. To address data quality issues, four different calibration methods were compared to
derive the best-suited calibration method for the LCS devices in our use case system. In the calibration,
meteorological parameters temperature and humidity were used in addition to the observed readings.
Moreover, we uniquely considered Absolute Humidity (AH) and Relative Humidity (RH) as part of
the calibration process. To validate the result of experimentation, the Coefficient of Determination
(R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) were compared for both
AH and RH. The experimental results showed that calibration with AH has better performance as
compared with RH. The experimental results showed the selection and calibration techniques that
can be used in designing similar LCS based monitoring systems.

Keywords: Low-Cost Sensor (LCS); calibration; data-driven techniques; drift analysis; air quality

1. Introduction

Low-Cost Sensors (LCSs) are changing the conventional way to monitor and measure
instances in real-time with the help of micro-scale sensing techniques [1]. The use of
LCSs has benefits in terms of cost-effectiveness, compactness, and portability which make
these devices an efficient alternative against the high-cost monitoring systems [2]. For
example, building LCS-based air quality monitoring devices (use case used in this study)
to deploy against high-cost air quality monitoring stations in a city is more feasible in
terms of high spatio-temporal and instantaneous data monitoring to the user at any specific
location. Additionally, LCSs have appeared as an economical substitute for high-cost
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sensors devices in many applications including air quality monitoring (Indoor–Outdoor),
flood monitoring, and observing health status. In recent years, with the enhancement in
sensor technology, there have been many alternative sensors to perform the same tasks
while developing any LCS-based applications. However, there has not been a universal
single type of LCS implementation as the LCSs have different working principles such as
electrochemical, optical particle counters (OPC), non-dispersive infra-red (NDIR), metal-
oxide-semiconductor, or solid-state microsensors designed to monitor air pollutants [3–5].
This diversity in working principles of sensors adds complexity to the process of LCS
selection while building the monitoring systems using LCS-based devices. Apart from
the working principle of LCS devices, meteorological parameters such as temperature
and humidity make LCS data unreliable and less accurate when they have been used in
an open environment [6,7]. Furthermore, LCSs are monitoring various components from
the environment according to their function which can cause sensitivity issues [8,9]. For
example, when the LCS is used to monitor air pollutants, the sensor also responds more
to other gas compounds in addition to the actual gas detection [10]. Moreover, LCSs have
characteristics that cannot give a stable performance over a certain period due to drift of
sensitivity and ageing which can cause increased data inaccuracy [9,11]. Apart from the
issues discussed earlier, LCSs also often face challenges to detect measured levels below a
point where it would not be able to differentiate between sensor noise and actual sensed
values in the environment [9,12,13]. This is because the sensor is designed in a range called
the dynamic boundary. When the sensor faces the actual data level near or below the
dynamic boundary, it often fails to monitor the data accurately. To overcome this, it is a
prerequisite to calibrate LCSs before the on-field application is required [14]. In addition to
these challenges, LCS data quality and their consistency under the same environment are
other factors that make the LCS-based applications even more complex.

Considering the lower feasibility of high-cost air quality monitoring sensors to de-
ploy at many strategic locations within a small area, LCS-based devices become a feasible
solution for many applications. However, the use of LCSs brings forth its challenges in
terms of sensor selection, quality of data and accuracy of measurement [9,15]. There have
been different applications that have used LCSs for real-time monitoring, but these appli-
cations do not talk about the sensor selection and their calibration process [3,5,8–10,16].
Furthermore, the market availability of sensors in different forms to measure the same
component adds a challenge to LCS selection. To our best knowledge, there have been
challenges in terms of how to select, calibrate, and build LCS-based devices considering
twin factors of sensors’ availability and data quality. To improve the data quality issue,
calibration methods have been used to improve LCS-based devices’ performances. Over
the years, there have been different calibration methods such as Multiple Linear Regres-
sion (MLR) [5,17], Random Forest (RF) [18,19], Support Vector Regression (SVR) [3], and
Artificial Neural Networks (ANN) [20] have been used to improve data quality. Finding
an accurate calibration method for the LCS selection based on the LCS deployment en-
vironment has made the calibration task further complex as various LCSs have different
working principles and configurations [9]. Although different calibration methodologies
have been applied to improve data quality to the LCS-based monitoring applications, there
is a need for a more precise and comparable approach on how to calibrate LCSs to ascertain
data quality assurance with respect to industrial scale, high-cost, high-quality reference
data. Since the calibration is dependent on the types of LCS-based devices, applications,
deployment environment, and meteorological parameters, there is a need for a well-defined
methodology for sensor calibration.

In this paper, a data-driven LCS calibration methodology was presented to address
the challenges of LCS-based device building for an application. In this proposed methodol-
ogy, at first, candidate LCS selection was applied based on literature reviews and sensors’
market availability. Data-driven statistical analyses [21] give the confidence to select the
most consistent LCSs for building LCS-based devices to improve data quality. In this paper,
considering the air quality monitoring application, a comparative analysis was explored
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among the widely used calibration methods by applying Absolute Humidity (AH) and
Relative humidity (RH) along with temperature and measured pollutants. Four different
calibration methods, (i) Multivariate Linear Regression, (ii) Multi-Layer Perceptron (MLP),
(iii) Convolution Neural Network (CNN), and (iv) Random Forest (RF) were compared
with both AH and RH as calibration parameters to find the best-suited calibration method
for the selected LCS in a real-world use case application in two EU projects. The calibration
of selected LCSs was accomplished with the reference of a high-cost air quality monitor-
ing station from Urban Observatory, Sheffield (https://urbanflows.ac.uk/, accessed on
1 March 2021). Among different calibration models, the RF model has better performance
in terms of the coefficient of determination, root mean square error, and mean absolute
error. In addition, it was observed that calibration accuracy has better performance when
AH was used over RH as one of the calibration parameters.

The rest of the paper is organised as follows. In Section 2, a comprehensive review of
LCSs and LCS-based applications is presented. In Section 3, the data-driven calibration
techniques are presented. In Section 4, the experimental result analysis and discussion are
presented. In Section 5, the paper is completed with a conclusion along with future work.

2. Literature Review

With the increase in the availability of micro-sensor technology in recent years, the
use of LCS-based devices has been boosted in monitoring and measurements applications
with wider spatial coverage in different domains [22]. Comparing LCSs with high-cost
monitoring stations, LCSs are less expensive and easy to access and deploy. Though, the
data from LCSs are generally less reliable with low quality [9,15,23]. Predominantly, the
data collected from LCS-based devices are easy to handle, process, and can be analysed by
experts allowing sharing the monitoring outcomes with the public or stakeholders to spread
awareness and other purposes [1]. There has been a wide range of application domains such
as air quality [16], road traffic [24], water quality [25] and human health [26] which makes
the LCS-based devices more demanding. Castell et al. [10] evaluated the performance of
the LCS (AQMesh) and analysed data quality. They also listed several funded applications
based on LCS-based applications such as OpenSense (https://gitlab.ethz.ch/tec/public/
opensense, accessed on 15 February 2021), Everyaware (http://www.everyaware.eu/,
accessed on 20 February 2021), Citi-Sense-MOB and Citi-Sense [27] where the devices
mount on vehicles or any stationary location and start sending real-time data to their web
platform from eight European cities for further processing. These devices have individual
gas sensors which cost around EUR 20–100 each and the whole monitoring device cost
range is EUR 500-5000 approximately. Chojer et al. [16] reviewed various works from
2012 to 2019 based on LCS-based monitoring systems and finalised the most relevant
35 research applications with meteorological parameters such as temperature and RH.
Additionally, this study has shown that out of 35 applications, only 10 applications were
focused on sensor performance including validation, calibration, and testing. The main
benefit of LCS-based applications is their affordability and availability in the market [28].
Kumar et al. [29] showed the benefits of LCS-based applications in terms of accessing
real-time data, increased spatial resolution, reduced uncertainty, identification of emitting
sources from indoor activities, and health benefits compared with the traditional monitoring
systems. This work also highlighted some challenges such as data quality and performance
evaluation for LCS-based device development.

Some of the studies [30–32] showed that neither temperature nor RH has any influence
on LCS performance. Zou et al. [33] experimented with eight different low-cost PM sensors
to find the relation between temperature and humidity in a lab environment and found
that the temperature does not have any significant effect on LCS functioning. Additionally,
their study highlighted that the RH in the range of 10–90% may affect the magnitude
of the sensor’s output and it can be improved through calibration. Zamora et al. [34]
show that the meteorological parameter RH has a significant impact on LCS performance.
Similarly, Jayaratne et al. [35] have experimented with different Particulate Matter (PM)
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sensors and found that if RH exceeds 75% then it affects the sensor’s performance adversely.
Laurent et al. [36,37] used AH instead of RH and temperature for the LCS calibration
process. This study raised the significance of environmental parameters and working
principles of LCSs, which required more sophisticated calibration efforts for data reliability.

Sensor calibration is the method of adjustment performed on the sensor to make
the functionality of the sensor as accurate as possible and error-free. Maag et al. [9]
surveyed various calibration methods and categorised calibration types into two parts:
pre-deployment calibration (calibration model) and post-deployment calibration (network
recalibration strategies). Additionally, this literature review listed an overview of sensor
calibration models classified as follows: i. Offset and Gain Calibration; ii. Temperature
and Humidity Correction; and iii. Sensor Array Calibration. Offset and gain calibration
gather calibration errors due to uncertain boundaries and discard any possible non-linear
responses. Temperature and humidity correction extends the recorded values with existing
values to calibrate the LCS. Sensor array calibration is an extension of temperature and
humidity correction where it applies interfering gases and environmental factors. Sensor
calibration can be done either in a controlled environment or an uncontrolled environment.
A controlled environment implies calibration of the sensor either with high-end instruments
or with already calibrated sensors. Whereas, an uncontrolled environment implies that
sensor parameters are regulated according to other sensors because it cannot measure the
data in a controlled environment which can lead to erroneous data monitoring [36,38].

In general, the monitoring stations with high-cost equipment are deployed at static lo-
cations. The high-cost devices are reliable but infeasible to deploy in different locations [10].
However, there is always a trade-off between high cost and generally high-fidelity devices
with low-cost and often low-fidelity devices. This raises an issue when selecting appropri-
ate LCSs that can minimise this trade-off and provide more reliable data. All applications
based on LCSs have common problems that are data reliability and data quality [5,18].
Maag et al. [9] surveyed LCS problems and found that LCS data quality can be influenced
and relied upon by several factors such as sensor types and working principles, meteoro-
logical parameters, low sensitivity, and sensor consistency. Kotsev et al. [39] explain the
approaches for reliable data quality from LCSs and mention some of the known parameters
which can affect electrochemical sensor responses such as temperature, humidity and
cross-sensitivity.

As a solution to address all of these challenges of LCSs, sensor calibration is re-
quired [40,41]. Some of the calibrations have been conducted in a lab environment such
as the research of Wang et al. [42] who calibrated LCS PM in lab conditions whereas
Spinelle et al. [37] applied on-field calibration of LCSs against a reference station. Choosing
a calibration model depends upon certain parameters such as the type of sensor, type of
phenomena of the device, resources required for that device, storage, computation, and
communication capabilities of those sensors [38]. Multivariate Linear Regression (MLR)
has been widely used for calibration [5,17]. For the calibration using MLR, two or more
covariates are mainly used to get the targeted variables outcome. The MLR model is easy to
implement but has limitations as well since the MLR used a linear equation with coefficients
based on some assumptions such as linearity, residual error, and co-linearity. Another
model that has been also widely used is Random Forest (RF) [18,19]. The RF-based model
improved the stability by randomly selecting several observations from the dataset during
training leaving some of the datasets for testing the model. The predictions are based on
the mean of the results coming from a number of trees. However, the tree size grows with
the increase in the dataset size, which increases time complexity while training the model.
Support Vector Regression (SVR) appeared as another method used for the calibration [3].
An SVR-based calibration model uses kernel functions to train the model with the given
datasets. SVM generates an optimal hyperplane to distinguish different classes to predict
the outcomes. However, the SVM-based model required users to define the number of
support vectors. Artificial neural networks (ANN) [20] are also among the commonly
used calibration models. ANN-based models are mostly used when datasets have noise.
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However, the ANN training requires a number of iterations with certain user-defined
parameters such as the number of nodes, hidden layers, activation function, and weights.
The performance of the ANN model depends on the user-defined parameters.

In these calibration processes, experts have used statistical calibration models as men-
tioned above. The selection of the right sensors based on the literature and market accessi-
bility is also challenging due to the wide-ranging availability of LCSs. Williams et al. [43]
provide a guidebook that can help with LCS selection, however, their studies suggested
that the sensor selection fully relies on the user preferences based on the sensor manual. In
a similar study [44], it has been explained that the sensor selection process fully depends
upon the end-user and it is an application that can help to define the scope. Similarly,
Sousan et al. [45] checked the consistency of PM sensors (Sharp GP sensors) using the
average slope method where it has been found that calculating the average of multiple
measurements over the large time-frequency can decrease the random noise and hence
increase the data quality.

Going through the literature, it has been observed that many applications have been
developed using LCSs. The literature also highlights the increase in LCS-based applications
over the years. The applications areas of LCSs are not limited to only a few domains,
rather LCS-based applications have been covered in wider domains suggesting that LCSs
have been extensively used in recent years. The enhancement in the use of LCSs in
different applications is due to the emergence of a wide range of LCSs and alternatives
for similar tasks. From the literature, it has been also noted that there has been the use of
different sensors in different applications which raises the challenge of sensor selection
while developing LCS-based devices. With the appearance of more alternative LCSs for
the same tasks, the sensor selection challenge will increase further in the coming years.
Therefore, there is a need for the sensor selection strategy to build effective LCS-based
applications. Data quality has been another concern that is argued in many LCS-based
applications. Different calibration methods have been applied in different applications.
However, how different meteorological parameters affect the calibration method and
which calibration method is more efficient remains a challenging aspect as the calibration
process efficiency depends on the parameters being used for calibration, the sensor working
principles, and the application domain. In general, to build an effective LCS-based device
for an application, sensor selection and calibration are crucial for making the LCS-based
system more effective with higher data quality.

3. Data-Driven Sensor Calibration: Our Methodology

For the development of LCS devices, a data-driven sensor calibration methodology,
as shown in Figure 1, was presented. At first, several sensors were selected as candidate
sensors based on literature and market availability. From the literature, we enlisted widely
used candidate sensors such as OPC-R1, PMS5003, PM Nova SDS011, and Particulate Matter
Sensor SPS30 for PM monitoring, SGP30, CJMCU-611, and CU-1106 for CO2 monitoring
and similarly for other air pollutants monitoring sensors. While deciding on the candidate
sensors, we considered the sensor’s availability in the UK market and their suppliers. The
suppliers were chosen based on the procurement criteria set by our organisation. Following
this, we also explored the datasheets provided by the manufacturer and available libraries
to support sensor implementation with programming. By applying these three factors, we
shortlisted candidate sensors to examine for our use case. After that, sensors were selected
based on the statistical analysis presented in our previous work [21]. In the next step, the
calibration process for the selected sensors was applied to improve data quality in the
selected use case.

Use case: Bradford district, UK, air quality (indoor and outdoor) monitoring is pre-
sented as the use case in this study. There have been more than 1500 air quality monitoring
stations, such as Automatic Urban and Rural Network (AURN) (https://uk-air.defra.gov.
uk/networks/network-info?view=aurn, accessed on 17 January 2021), deployed across
the UK. These stations have installed large, expensive, and calibrated sensors devices that

https://uk-air.defra.gov.uk/networks/network-info?view=aurn
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can monitor several air pollutants such as oxides of nitrogen (NOx), sulphur dioxide (SO2),
particles (PM10 and PM2.5), carbon monoxide (CO), and ozone (O3). Additionally, in many
cases, these stations are located away from traffic areas or a small distance from city centres
which can put a limitation on this station’s coverage to monitor air quality. The limitation
on coverage area from the high-cost monitoring stations in Bradford city allows deploying
LCS-based devices as an effective alternative to monitor air quality (indoor-outdoor) across
the city and also allows real-time exposure assessment from many locations. This work
contributes to part of two EU projects, Smart Cities and Open data Reuse (SCORE) and
LifeCritical. For both projects, an area of Bradford needs to be covered with sensors indoors
and outdoors to support constant monitoring of air quality over a year. The focus is to have
sufficient geographical coverage of this area to support a granular level of monitoring. The
high-cost and immobile devices, used, for example, as part of AURN, is completely imprac-
tical. Hence, we needed to rely on the use of LCS-based devices for this purpose where the
accuracy of monitoring is paramount in order to support analytics and policymaking.
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3.1. Selection of Candidate Sensors

In the LCS-based use case, the aim is to build a reliable air quality monitoring system
that can measure several pollutants such as PM, CO2, NO2, NH3, CO, and Volatile Organic
Compounds (VOCs) as these pollutants are heavily dependent on various activities carried
out by humans [46]. The pollutant concentration depends not only on the emissions of a
pollutant but also on meteorological conditions like wind speed (WS), relative humidity
(RH), and turbulence. The meteorological parameters and other atmospheric compounds
can influence the sensor measurements. For the gas sensors, there can be a cross-sensitivity.
In other words, the concentration of a particular pollutant measured by a sensor can be
affected by the concentration of a different pollutant due to the measurement techniques.
However, the cross-sensitivity of sensors was not considered when selecting the gas sensors
for this study. We relied on the information provided by the manufacturer to measure
particular gases. For the use case, the following candidate sensors, as listed in Table 1, were
considered to measure air pollutants either outdoors or indoors. These candidate sensors
were selected based on the existing studies and market availability [47–49].

3.2. Narrowing down the Selection of Low-Cost Air Quality Monitoring Sensors

The next challenge was to find the most feasible sensors from the candidate sensors.
To achieve this, statistical analysis presented in our earlier work [21] was applied that
gives the most feasible sensors among the candidate sensors. For example, to measure
PM2.5 and PM10, three different sensors SDS011, PMS5003, and OPC-R1 were compared
in the lab environment for 48 h to find the best feasible sensor among these three for PM
measurements. If the sensors from the same type and same manufacturer are not consistent
among themselves when they are exposed to the same environment, then they need to be
discarded from consideration in the next step of calibration.

All selected LCSs have working limitations, mentioned in the manufacturer’s datasheet,
e.g., SDS011 has a particle measurement range of 0.00–999.99 µg/m3. In the lab experimen-
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tation, we considered the general case scenarios that reflect that all sensors’ ranges’ fall
under the general working environment.

Table 1. List of candidate sensors and their details.

Candidate Sensor
Name Description Sensor Specification Image

BME680
This sensor can measure temperature,

humidity, barometric pressure, and
VOC gas.

Temp in Celsius (◦C);
Humidity—%; barometric

pressure—hPa
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multiple sensors such as 

BME280 which can measure 
temperature, humidity, and 

pressure, MICS6814 ana-
logue gas sensor is responsi-
ble for measuring CO, NO2, 

and ammonia (NH3) and 
LTR-559 is light and proxim-

ity sensor. Additionally, it 
has a built-in ADS1015 ana-
logue-to-digital convertor 
and 0.96 “colour LCD for 

display”. 

BME280: temperature (°C); 
pressure (hPa), humidity (%)
婉LTR-559 light and proxim-
ity sensor婉MICS6814 ana-
logue gas sensor (CO, NO2, 

NH3) 
 

SDS011 

This sensor is used to meas-
ure PM2.5 and PM10 air pollu-
tants. This sensor is an infra-
red-based laser sensor and 

has a fan to provide self-air-
flow. 

PM2.5: ug/m3婉PM10: ug/m3 

 

PMS5003 
It is used to measure PM1, 

PM2.5, and PM10. PM2.5: ug/m3婉PM10: ug/m3 

 

SGP-30 This gas sensor is mainly used to
monitor eCO2 and TVOC.

eCO2 in ppm, VOC gases in
ppb.
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Table 1. Cont.

Candidate Sensor
Name Description Sensor Specification Image

MQ-2 This gas sensor is mainly used to detect
CO, methane, butane, LPG, smoke.

• LPG and
propane—200–5000 ppm

• Butane—300–5000 ppm
• Methane—5000–20,000

ppm
• Hydrogen—300–5000

ppm
• Alcohol—100–2000 ppm
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3.3. Sensor Calibration

After implementation of previous steps, BME680, SGP30, Enviro+, MQ-2, and SDS011
sensors were selected. These sensors were used to build an Air Quality (AQ) monitoring
device for measuring air pollutants, as shown in Figure 2. For computational and connec-
tivity purposes, selected sensors were assembled with Raspberry Pi 3B+ (RPi) which gives
remote access control of the whole device and sends data to the cloud-based web server for
data storage, analysis, and visualisation.
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Figure 2. (a) Final LCS-based AQ monitoring device using RPi 3B+. (b) Block diagram of the final
device with Raspberry Pi 3B+ and other LCS components.

After building the air quality monitoring LCS-based device, data quality aspects were
applied. Studies have argued that [5,9,18] sensor calibration is required to increase the data
quality of LCS-based systems. Considering this, from the calibration point of view, the two
AQ devices were deployed at “The Urban Flows Observatory (https://urbanflows.ac.uk/,
accessed on 1 March 2021), Sheffield” (Figure 3) for one month. Both the devices had all
selected sensors that monitor air pollutants such as CO2, NO2, CO, NH3, TVOC, and PM
(PM2.5 and PM10). Additionally, these devices had sensors that can measure meteorological
parameters (temperature and humidity). In this paper, the calibration methods for PM2.5
and PM10 are presented. For PM2.5 and PM10 data calibration, SDS011 PM sensors were
calibrated against the “high-end Palas Fidas 200” instrument which was installed at the
remote van, as shown in Figure 3, by Sheffield City Council. This station monitors data
at the 30 min interval whereas our AQ devices monitor data at every 10 min interval.
Data pre-processing was applied to the AQ data to convert into 30 min data using the
mean value of three 10 min readings. All the measured data were received from the
AQ devices in every 10 min time interval that was sent to the cloud-based web server

https://urbanflows.ac.uk/
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(http://smartbradford.co.uk:7201/, accessed on 12 January 2021) and also stored in the
AQ devices in CSV (Comma-Separated Values) format.
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Figure 3. LCS-based AQ monitoring devices using RPi 3B+ at Urban Observatory, Sheffield Site.

Different calibration models were experimented with to compare and select the most
accurate model. For example, we took PM2.5 and PM10 data for experimental purposes
and undertook experiments on four calibration models: Multivariate Linear Regression
(MLR), Multi-Layer Perceptron (MLP), Convolution Neural Network (CNN), and Random
Forest (RF). The literature has argued that AH and RH act differently with different LCSs in
the calibration process. Mead et al. [50] show that the RH greatly depends on temperature,
therefore, fluctuations can be observed in RH throughout the day. In contrast, AH is ob-
served to be constant as it is independent of temperature. Due to this factor, the calibration
process was adapted based on AH as the corrections were constant and linear based on

http://smartbradford.co.uk:7201/


Sensors 2022, 22, 1093 10 of 23

per unit change in AH. Piedrahita et al. [51] observed that temperature has a significant
impact on this sensor signal response, but the impact of AH is lower on the signal response
as it has been observed to be almost constant, contradictory to the RH impact on sensor
signal response. However, they still consider AH in calibration modelling to improve
the model performance. Additionally, some of the studies [52,53] show that temperature
and humidity have a non-linear relationship with particle concentrations. Research also
shows that PM2.5 and PM10 values have a positive correlation with RH but a negative
correlation with temperature and AH [37]. Considering these previous studies, in this work,
temperature and humidity along with the pollutant were applied for the calibration. For
humidity as a factor in calibration, both AH and RH were examined to determine which
among these two humidity measures gives better results for the data quality.

To find AH, we used the Clausius Clapeyron equation [54] as shown in Equation (1),

AH =
6.112 ∗ e[

17.67∗T
T+243.5 ] ∗ RH ∗ 2.1674
273.15 + T

(1)

where,

T = Temperature (*C)
RH = Relative Humidity (%)
e = Exponential function

Using Equation (6), AH was calculated based on the two observations T and RH
coming from the BME680 sensor and the exponential function. This AH was used as one of
the parameters for the calibration process.

R2 =
SSRES
SSTOT

= 1− ∑i(yi − ŷi)
2

∑i(yi − y)2 (2)

RMSE =

√√√√ n

∑
i=1

(ŷi − yi)
2

n
(3)

MAE =
n

∑
i=1

|(ŷi − yi)|
n

(4)

where

R2 = R-squared.
RMSE = Root Mean Square Error.
MAE = Mean Absolute Error.
SSRES = Residual sum of squared errors of our regression model.
SSTOT = Total sum of squared errors.
yi = Observed value from our kit.
yi = Mean value of pollutants value from our kit.
ŷi = Values predicted by the model.
n = Number of observations.

For comparative analysis between RH and AH, we experimented with selected models
and analysed their impacts on the results. Additionally, for model evaluation, the following
statistical measures were used as shown in Equations (2)–(4). Using these equations,
performance measures such as R2, RMSE, and MAE were calculated using observed values
(yi) recorded using our LCS-based device and (yi) recorded as a mean value of pollutant
values from our devices. R2 was calculated as a ratio of the residual sum of squared errors
(SSRES) of our regression model and the total sum of squared errors (SSTOT).
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3.3.1. Multivariate Linear Regression

Multivariate Linear Regression (MLR) is one of the widely used calibration methods
applied for two or more independent variable dependencies with one single targeted
variable by adjusting coefficients in linear equations, as represented in Equation (5) [55].

yi = ap * xip + . . . + a1 * xi1 + a0 + zi (5)

Equation (5) is the generalised representation of MLR where ap, a1, and a0 are co-
efficients, xip, xi1 are dependent variables, zi is constant, and yi is the calibrated tar-
geted variable. In this study, the MLR model was applied for the selected sensors using
Equations (6) and (7).

ŷref = b0 + b1 * T + b2 * PMraw + b3 * AH (6)

ŷref = b0 + b1 * T + b2 * PMraw + b3 * RH (7)

where

ŷref = reference data from Palas Fidas 200, Sheffield.
b0, b1, b2, and b3 = Regression coefficients.
T = Temperature (*C), RH = Humidity (%) from the BME680 sensor.
AH = Absolute Humidity (g/m3).
PM2.5raw = Mean PM data (from SDS011).

For the calibration analysis, line and scatter plots were presented for both PM2.5
and PM10 as shown in Figures 4–7. Figures 4 and 6 present the line plots for PM2.5 and
PM10, respectively, whereas Figures 5 and 7 shows scatter plots for PM2.5 and PM10,
respectively. Further detailed statistical analysis was also undertaken (presented in
Section 4) to validate the graphical analysis. From the line plots, for PM2.5 and PM10,
it can be observed that calibrated values are closer to the reference data when AH was
used. From the scatter plots, it can be also observed that the regression fit line is closer
to the line of equality when AH was used for the calibration in comparison to the RH for
both PM2.5 and PM10. Analysis of these plots infers that AH has better performance than
RH in the calibration process.
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3.3.2. Statistical Approaches

Multi-layer perceptron (MLP) is a forward-structured Artificial Neural Network that
operates on sets of input vectors to give output with a set of output vectors. MLP is one of
the efficient calibration methods that has been applied in many problems [56]. The Multi-
Layer Perceptron model, as shown in Figure 8, was designed as the second calibration
model. In the input layer, four parameters, temperature, humidity (AH and RH), PMref,
and PMraw were applied and the calibrated PM value was obtained at the output layer.
The same dataset used for MLR was used for MLP as well. The model was designed as a
sequential model with relu activation function, Adam optimiser, and mean square error as
a loss function with 2000 epochs for training.

For the MLP calibration analysis, line and scatter plots were observed for both PM2.5
and PM10 as shown in Figures 9–12, where Figures 9 and 11 present the line plots for
PM2.5 and PM10, respectively, and Figures 10 and 12 show scatter plots for PM2.5 and
PM10, correspondingly. The same as MLR, the calibrated line plots for PM2.5 and PM10 are
closer to the reference value when AH has been used. Similarly, in the scatter plots, the
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regression fit line is closer to the line of equality when AH has been used for the calibration
in comparison to the RH for both PM2.5 and PM10. Analysis of these plots concludes that
AH has better performance than RH in the calibration process in the case of MLP as well.
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Figure 8. Block diagram of the Multi-Layer Perceptron model.

3.3.3. Convolution Neural Network

Recently, CNN architectures have been used in various modelling scenarios of sequen-
tial data such as time series [57,58]. CNN has appeared as one of the most widely used
calibration models as CNN can extract inherent information from the data set [59]. In the
calibration, the same as the MLP model, the CNN model has four 3D inputs and reshape
was applied that gives one output, two hidden convolutional layers with 64 filters each,
and a window size of 2 was also defined for the CNN model. All layers were activated
through the “relu” function with 2000 epochs support with the “adam” optimiser. The
output in terms of line plots and scatter plots were analysed for both AH and RH as shown
in Figures 13–16. This model also has similar results in both plots that support better
calibration performance for AH in comparison to RH.
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3.3.4. Random Forest

The Random Forest (RF) model is a machine learning technique based on a com-
bination of classification or regression trees which was first introduced by Breiman
in 2001 [60]. In this experiment, 20 trees were used in the forest for calibration. The
experimental results, lines, and scatter plots were analysed as completed for the previous
three models. Figures 17–20 show the lines and scatter plots obtained for AH and RH
for both PM2.5 and PM10. The analysis of the plots shows similar results as the previous
three models which supports the conclusion that AH gives better performance than RH
for calibration.
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4. Experimental Results, Analysis, and Discussion

Four calibration models were examined with the dataset of 1891 records for 1 month
at the Sheffield site. Among the 1891 data, we divided it into a 70/30 ratio for training
and testing data (number of training data = 1324 and number of testing data = 567) for
all four models. For the comparative analysis, experimented results are summarised in
Tables 2 and 3 for PM2.5 and PM10, respectively. In both the tables, five fields are presented:
R2 (Coefficient of Determination), RMSE (Root Mean Square Error), and MAE (Mean Ab-
solute Error), Mean PMs’ reading from the reference station, and four calibration models.
From Table 2, the comparative analysis for PM2.5, it can be observed that R2 values (Coeffi-
cient of Determination) for the four calibration models are nearly the same, ranging from
0.87 to 0.89 for the AH whereas there was more variance in R2 ranging from 0.84 to 0.88
when RH was used. Among four calibration models, the RF model has the highest R2 of
both AH and RH cases. The next parameters that were compared are RMSE for both AH
and RH. Analysing this, it was noted that the RF model has the lowest RMSE for both AH
and RH, which tells us that it is able to fit the dataset the best out of the four calibration
models. The next performance parameter that was compared is MAE. Comparing MAE,
the RF model has less error than the other models. It has a nearly 47% improvement in
errors in comparison with MAE for the MLR model.

Table 2. Statistical performance measures analysis for PM2.5.

Model
R2 RMSE MAE

Mean Reading
(After Calibration)
Reference Mean =

9.32 µg/m3

Standard Deviation
(After Calibration)

Reference Standard
= 9.26 µg/m3

AH RH AH RH AH RH AH RH AH RH

MLR 0.87 0.84 3.32 3.65 2.19 2.58 9.36 9.86 8.72 9.13
MLP 0.88 0.85 3.20 3.48 2.13 2.18 9.60 8.10 9.08 7.94
CNN 0.89 0.88 3.07 3.65 2.01 2.30 9.26 10.29 8.32 9.50

RF 0.89 0.88 3.05 3.07 1.19 1.86 9.75 9.67 9.05 9.02
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Table 3. Statistical performance measures analysis for PM10.

Model
R2 RMSE MAE

Mean Reading
(After Calibration)
Reference Mean =

12.24 µg/m3

Standard Deviation
(After Calibration)

Reference Standard
= 9.75 µg/m3

AH RH AH RH AH RH AH RH AH RH

MLR 0.79 0.75 5.28 4.95 3.69 3.53 12.39 12.52 9.10 8.81
MLP 0.81 0.78 4.43 4.68 3.13 3.26 12.64 12.35 9.55 9.01
CNN 0.80 0.81 4.42 4.71 3.04 3.19 12.45 12.10 9.15 9.09

RF 0.83 0.83 4.03 4.05 2.78 2.77 12.64 12.45 9.43 9.38

The calibrated values from all four models were compared with the reference data.
Mean values and standard deviations of reference data and calibrated models were com-
pared. The comparative analysis showed that the mean values of MLR and CNN calibration
models are closer than the other two models, MLP and RF, to the reference mean when
AH was used. On the other hand, for the MLP and RF models mean values are closer than
the MLR and CNN to the reference means when RH was used. Comparing the standard
deviation, it was found that the RF model has the closest standard deviation values in both
AH and RH cases to the reference standard deviation data. Similarly in Table 3, all four
models are compared with each other for PM10. The comparative analysis reflected that
there is a wider variance among the measured performance measures’ values for AH and
RH for PM10 in comparison to PM2.5. From Table 3, it can be seen that the RF calibration
model has fewer errors than the other three calibration models. It can also be observed
that, for MAE, the RF model has a 25% improvement in MAE error measures than the other
models. When comparing the mean readings, it is noted that the MLR model is closer to
the reference mean and the MLP model is close to the reference standard deviation values
for the Standard Deviation. From this comparative analysis of all these parameters, it was
observed that the calibration models are performing better when AH was used as com-
pared with RH. From the results, it was observed that the RF calibration model (R2 = 0.89,
RMSE = 3.05, and MAE = 1.19) appeared as the best calibration output as compared with
the other models for PM2.5. For the case of PM10, there was a variance in the performances
of the different calibration models. The coefficient of determination of the RF (R2 = 0.83)
model gives better results. However, it was also observed that the CNN model gives a
better result (R2 = 0.81) with the use of RH for calibration, but RMSE and MAE are higher
than RF as shown in Table 3 for PM10.

The experimental setup in our use case involving LCS-based AQ monitoring, and
methodology covering the sensor selection and calibration, are transferable to similar
applications across different domains. This methodology has the potential to be considered
with its key success factors to make any LCS-based application kit design an innovative
solution. This proposed methodology opens the door for efficient and effective practices
for LCS-based applications.

5. Conclusions and Future Work

LCSs give an alternative solution against the high-cost sensors used for various mea-
surement and monitoring purposes as they are compact in size and low-cost. However,
it has been also observed that the use of LCS-based applications is challenging due to
inconsistency in standard and different alternatives when measuring the same components.
Additionally, the LCS has appeared as a multipurpose tool and the system is easy to con-
figure, however, it is difficult to select the right LCS for a specific task due to the diversity
of LCSs available in the market with similar configurations. Even the sensor selection
process has been carefully prepared but it needs to anticipate the possible obstacles such as
delay in supply and different measurement units for the same purpose of measurement.
Furthermore, some of the LCSs’ parameters can directly impact sensor performance and
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data reliability, for example, meteorological parameters make the sensor selection and
calibration process even harder. By examining the experimental outcomes from different
sensors, we found that there have been different environmental responses of individual
sensors. We also observed that there have been consistency issues among the sensors
from the same manufacturer which appear as a challenging factor in deciding on a sensor
during the sensor selection stage. From this study, we also found that the consistency
and sensitivity of individual LCSs to environmental factors including temperature and
humidity need to be analysed before applying the calibration.

The confidence in data from LCSs is lower as it required calibration. Therefore,
building a device using LCSs is challenging and required some methodology on sensor
selection and data processing. Our data-driven approaches provide a methodology that can
help to build LCS-based devices from the sensor selection process and their calibration. To
validate this methodology, experimental analysis was performed with different candidate
sensors along with data collection. The data-driven approach provides a methodology to
enhance data quality. Four widely used calibration models were applied for the LCS-based
AQ device to analyse, and hence comparison was performed among the calibration models
against the high-cost monitoring station data. Calibration parameters were established at
pre-defined locations with a high-cost reference station. This calibration process can also
be transferable to other reference stations and sensors depending on the sensor types and
their application.

The comparison among four commonly used calibration methods was presented
to determine the best-suited calibration model in our use case study. In addition, from
the analysis, it was also observed that AH has better performance than RH in the sensor
calibration. Among the four models, the RF model appeared as the best model for the
calibration of LCSs. To bring more confidence to this work, the calibrated LCS devices
will be deployed across the different regions in Bradford, UK, as a use case study for
3–6 months in the near future. The data coming from calibrated LCS devices will be
analysed against the reference values over a longer duration to analyse the drift in LCS
performance. Additionally, techniques and methodologies for re-calibration will be further
explored to enhance the data quality of LCS-based monitoring systems.

The presented methodology did not include any uncertainty analysis as the obser-
vation was applied for only a short duration for data analysis for sensor selection and
calibration. However, for any LCS-based applications, an acceptable uncertainty needs to
be defined during the measurements. Additionally, in this study, the PM sensors were only
analysed and calibrated. This appears as a limitation of this study as there are gas sensors
that have also been used to monitor gas as a pollutant in AQ. As future work, a longer
period of observation and data analysis needs to be applied to add additional confidence
and to reduce the uncertainty in monitored data from LCSs. Acceptable uncertainty is
required to ensure the measurement uncertainties are lower and are sufficient to make the
calibration results valid. Acceptable uncertainty also ensures the uncertainty in data does
not affect the LCS-based monitoring objectives. In addition, the same principles can be
applied to LCS-based gas sensors.
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